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INVARIANTS, SOLUTIONS AND INVOLUTION OF HIGHER
ORDER DIFFERENTIAL SYSTEMS
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Abstract. The paper is concerned with the interpretation of the fixed points of an
involution as invariant solutions under certain Lie algebra of symmetries of a given equation.
Our aim is to study the involutivity in terms of the symmetries of an equation. We prove
that if π : E → M is a fiber bundle and ∇ : T ∗M → J1T ∗M is a linear connection on the
base space, then there exists a unique involutive linear automorphism, α∇ in J1J1E, that
commutes with the projections π11 and J1π1,0. Moreover, we prove that the space Jk(π) is
the quotient space of the iterated sesqui-holonomics jets Ĵ1Jk−1(π) relative to the subgroup
of symmetries determined by some involution αg.

1. Introduction

We know [2] that an anti-symplectic involution on a symplectic manifold (M,ω) is
a map α : M → M such that α∗ω = ω and α2 = Id |M . The fixed point set of an
anti-symplectic involution is always a Lagrangian manifold. A classical construction
of such an involution is given by complex conjugation when M is a smooth complex
subvariety of the complex projective space Pn cut out by polynomials with real coeffi-
cients. In this case the fixed point locus is just the intersection with the real projective
space RPn. On another side, using the properties of the fixed point, Villaroel showed
in [9] the following:
(i) The n-planes P in a submanifold Jk(E,n), that are horizontal with respect to the
projection πk and contained in Jk+1(E,n), are fixed by a canonical involution.

(ii) If a submanifold L ⊂ Jk+1(E,n) has at each point an n-plane fixed by the
canonical involution, then L generates an involutive n-distribution on E.
In this paper, we review the notion of involution and the constructions shown by
Villaroel [9] to discuss the interpretation of fixed points of an involution in terms of
the invariant solutions under certain Lie algebra of symmetries of a given equation.
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2 Invariants, solutions and involution of higher order differential systems

In the second section we investigate the basic notion of jet spaces and have a brief
review of iterated jet space with some important identifications. We prove that if
π : E → M is a fiber bundle and ∇ : T ∗M → J1T ∗M is a linear connection on the
base space, then there exists a unique involutive linear automorphism, α∇ in J1J1E,
that commutes with the projections π11 and J1π10.

In the next section we review the notion of the symbol of a manifold and finally the
last section is about the invariant solutions of an equation and we prove that the space
Jk(π) is the quotient space of the iterated sesqui-holonomics jets Ĵ1Jk−1(π) relative
to the subgroup of symmetries determined by some involution αg. The meaning of
all these symbols will be explained later in the next sections.

2. Jet spaces

Let E be an (n + m)-dimensional manifold. Two n-dimensional manifolds L1 and
L2 are k-equivalent in x ∈ L1 ∩ L2 if L1 and L2 have contact of order k in x. This
equivalence defines Jk(E,n) = {[L]kx | dimL = n, x ∈ L}, where [L]kx denotes the k
jets of L in x and is the class of equivalence under the relation of contact. The impor-
tant application that relates the distinct jet spaces is πk,k−1 : Jk(E,n)→ Jk−1(E,n),
where πk,k−1([L]kx) = [L]k−1

x . So the jet spaces are related in the following way,

E J1(E,n)
π1,0oo · · ·

π2,1oo Jk−1(E,n)oo Jk(E,n)
πk,k−1oo .

In the case of a fiber bundle π : E → M where dimM = n and dimE = n + m,
consider all submanifolds of dimension n that are images of local sections of π; we
denote these submanifolds by Γloc(π). If s ∈ Γloc(π), with s : U → E and U an
open set of M , put s(U) = L. We define [s]kx = [L]ks(x) for x ∈ U and the space of

k-jets of the so-defined bundle π is denoted by Jkπ. An important application is the
following: jk(L) : L → Jk(E,n), y 7→ [L]ky . In similar way for the k-jets of a fiber

bundle, jk(s) : U → Jk(E,n), x 7→ [s]kx.

We will denote Im jk(L) = L(k). If L is locally represented by section s, then
we denote Im jk(L) = Γks . Now we use Greek letters µ, λ, . . . to refer to basis coor-
dinates and Latin letters i, j, . . . to refer to fiber coordinates. The k-jet space Jkπ
is a differentiable manifold and a fiber vector bundle with respect to the projection,
πk : Jkπ →M , [s]kx 7→ x . If (xµ, uj) are local coordinates in E, then (xµ, uj , ujσ) are
local coordinates for Jkπ, where

ujσ([L]kx) =
∂|σ|sj

∂xσ
(x) , (1)

and uj = sj(xµ) is a local representation of L, σ = (i1, . . . , in) is a multi-index such
that 0 ≤ |σ| ≤ k, |σ| = i1 + · · · in. A system of differentiable equations of order
k is then a submanifold E ⊆ Jk(E,n) or E ⊆ Jk(π). Since the representation in

coordinates of jk(L) is
(
xµ, sj ,

∂|σ|sj

∂xσ

)
, it is natural to define a solution of E as a

submanifold L, such that jk(L) ⊆ E . The notations and others facts on jet spaces



A. Mastromartino, Y. Nogier, I. Marquez de M. 3

used in this article are taken from the Russian school [1].

2.1 Cartan distribution

An integral plane in Jkπ is an n-dimensional plane of the form TθL
(k) that projects

horizontally with respect to the projection πk. For θ = [L]kx ∈ Jkπ we call the tangent
space TθL

(k) the integral plane at the point θ. We denote by Ckθ the linear span of all
integral planes at the point θ. It defines the distribution θ 7→ Ckθ . This distribution
is denoted by Ck and is called the Cartan distribution on Jkπ. It is generated by the
derived formal operators

Dµ =
∂

∂xµ
+
∑
j,σ

ujσµ
∂

∂ujσ
, where ujσµ(sj) =

∂|σ|+1sj

∂xσ∂xµ
.

In terms of forms it is described by the Cartan 1-forms, ωjσ = dujσ −
∑
µ,σ u

j
σµdx

µ.
These forms annihilate the operators Dµ. In general any horizontal sub-space H
of the Cartan plane Ckθ with respect to the projection πk,k−1 has dimH ≤ n. The
important fact about the Cartan distribution is explained by the following theorem.

Theorem 2.1. L is a solution of the equation E if and only if L(k) is a maximal
integral submanifold of Ck(E), where Ckθ (E) = Ckθ ∩ TθE , θ ∈ E, is the induced Cartan
distribution on E.

2.2 Iterated jet spaces J1J1E

Let L ⊂ E be an n-dimensional submanifold and x ∈ L. The application j1(L) : U →
J1E defines a local section of π1 and determines the n-dimensional submanifold in
J1E denoted by L(1). The space consisting of all contact elements of the form [L(1)]1x
is the space of iterated jets J1J1E. If (xµ, uj , ujµ) are the coordinates in J1E, then

we will denote the coordinates in J1J1E by (xµ, uj , ujµ, (u
j)µ, (u

j
λ)µ). By taking the

derivatives of fiber coordinates with respect to the base coordinates, we obtain the
new coordinates in J1J1E . We have then two projections in the iterated jet space
J1J1E:

π1,1 : J1J1E → J1E, (xµ, uj , ujµ, (u
j)µ, (u

j
λ)µ) 7→ (xµ, uj , ujµ),

and J1π1,0 : J1J1E → J1E, (xµ, uj , ujµ, (u
j)µ, (u

j
λ)µ) 7→ (xµ, uj , (uj)µ).

These two projections define the corresponding affine bundles.
We denote by Ĵ1J1E the subset of J1J1E that consists of the elements of contact

that fulfill the condition (uj)µ = ujµ. This space will be called the space of sesqui-

holonomics jets. The coordinates in this space are given by (xµ, uj , ujµ, (u
j
λ)µ). We

note that both projections coincide and Ĵ1J1E = ker(π1,1 − J1π1,0). We can define
from the sesqui-holonomics jets the space of jets of order 2, J2E, like those jets that
fulfill (ujλ)µ = (ujµ)λ = ujµλ. Some other important facts about iterated jet spaces can
be found in [6, 7] The affine bundle π1,1 is modeled on the vector bundle T ∗M ⊗J1E

V J1E and the affine bundle J1π1,0 is modeled on the vector bundle J1(T ∗M ⊗E
V E), see for example [4, Proposition 12.11]. We can prove that there exists a linear
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morphism between the two affine bundles π1,1 and J1π1,0, that we call the involution.
This involution depends on a linear connection on the tangent bundle of the base
space M . For this we consider the following diagram

J1J1E // T ∗M ⊗J1E V J
1E

α∇ //

π1,1

''

J1(T ∗M ⊗E V E)

J1π1,0ww

// J1J1E

J1E

where α∇ is the linear morphism that links the vector bundle models of the corre-
sponding affine bundles π1,1 and J1π1,0. The operator ∇ is a linear connection in
the base space. The existence of this linear morphism is proved by direct construc-
tion. First we consider some important identifications and morphisms. There is a
linear morphism that relates J1TE and TJ1E. Consider coordinates (xµ, uj , ẋµ, u̇j)
in TE and (xµ, uj , ujλ) in J1E: then (xµ, uj , ẋµ, u̇j , (uj)µ, (ẋ

µ)λ, (u̇
j)λ) are coordi-

nates in J1TE and (xµ, uj , ujµ, ẋ
µ, u̇j , u̇jλ) in TJ1E. We define the linear morphism

κ : J1TE → TJ1E, u̇jλ = (u̇j)λ − (ẋµ)λ(uj)µ, having noted that for the case

(ẋµ)λ = 0 we have the isomorphism ι : V J1E → J1V E, (u̇j)λ = u̇jλ. There is
another important linear fiber morphism. If π : E →M is a bundle with coordinates
(xµ, ul), η : W → M a vector bundle with coordinates (xµ, wi) and ρ : F → E a
vector bundle that fibers over M with coordinates (ul, f j), then we can consider the
tensor product W ⊗E F with coordinates (xµ, uj , tij) and J1(W ⊗E F ) with coordi-
nates (xµ, uj , tij , (uj)µ, (t

ij)µ). We have also the vector bundle J1W ⊗J1E J
1F with

coordinates (xµ, uj , ujµ, v
ij , vijµ ); then the universal property of the tensor product

induces a linear fiber morphism defined by

τ : J1W ⊗J1E J
1F → J1(W ⊗E F )

tij = vij = wif j ,

(tij)µ = wiµf
j + wif jµ .

(2)

There is another important embedding for algebraic purposes. In J1J1E we have
the following embedding Λ: J1J1E ↪→ T ∗M ⊗J1E TJ

1E, where Λ = dxµ ⊗ dµ and

dµ = ∂µ + ujµ∂j + (uj)µ∂̂j + (ujλ)µ∂
λ
j is the total derivative operator. We define

the following operator in T ∗M ⊗ TJ1E by d̂µ = ∂µ + (uj)µ∂j + ujµ∂̂j + (ujλ)µ∂
λ
j .

We note that the vertical part of the operators dµ and d̂µ with respect to the

projection π1,0 : J1J1E → J1E are (dµ)V = (uj)µ∂̂j + (ujλ)µ∂
λ
j and (d̂µ)V =

ujµ∂̂j + (ujλ)µ∂
λ
j , respectively. We consider the difference of these two vertical parts

(d̂µ)V − (dµ)V = (ujµ − (uj)µ)∂̂j ∈ V J1E and we define the linear application

ψ : J1J1E → V J1E, (xµ, uj , ujµ, (u
j)µ, (u

j
λ)µ) 7→ (d̂µ)V − (dµ)V .

Proposition 2.2. The application ψ is well defined.

Proof. If (xµ, uj , ujµ, (u
j)µ, (u

j
λ)µ) are coordinates for J1J1E then the coordinates
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transformation formulas for ujµ and (uj)µ are (see [7, Chapter 4]):

u′jµ =
∂xλ

∂x′µ
(
∂λ + uiλ∂i

)
u′j ,

(u′j)µ =
∂xλ

∂x′µ
(
∂λ + (ui)λ∂i

)
u′j .

Then u′jµ − (u′j)µ =
∂xλ

∂x′µ
∂u′j

∂ui
(
uiλ − (ui)λ

)
.

Theorem 2.3. If π : E → M is a fiber bundle and ∇ : T ∗M → J1T ∗M a linear
connection in the cotangent bundle T ∗M , then there exists a unique involutive linear
automorphism α∇ in J1J1E that commutes with the projections π1,1 and J1π1,0. That
is, the following diagram commutes:

J1J1E
α∇ //

π1,1 $$

J1J1E

J1π1,0zz
J1E

Proof. We define an affine morphism by α∇ : J1J1E −→ J1J1E, α∇ = τ ◦ (∇⊗ψ),
where τ is the fiber morphism defined by (2) and ψ is the application of Proposi-
tion 2.2. We describe this application in coordinates. If (xµ) are local coordinates
in M with a local basis (dxµ) for the sections on the bundle T ∗M → M , then the
linear connection ∇ in local coordinates has the form ∇µ = ∂µ + Γνµλ∂ν ⊗ dxλ. Then

we have (∇ ⊗ ψ)jµ = ujµ + Γλµν(ujλ − (uj)λ) dxν and (α∇)jµη = (τ ◦ (∇ ⊗ ψ))jµη =

∂η
(
ujµ + Γλµν(ujλ − (uj)λ) dxν

)
= (ujµ)η + Γλµη(ujλ − (uj)λ), where we observe, that τ

is simply a derivation and the operator ∂η is C∞-linear on 1-forms. Then the coor-

dinate representation of the linear automorphism α∇ is (xµ, uj , ujµ, (u
j)µ, (u

j
λ)µ) 7→(

xµ, uj , (uj)µ, u
j
µ, (u

j
µ)λ + Γνµλ(ujν − (uj)ν)

)
. With this coordinate form, we can see

that α2
∇

= Id and that the diagram commutes, that is, J1π1,0 ◦ α∇ = π1,1. �

Example 2.4. In the sesqui-holonomics case, that is, (uj)µ = ujµ we have the canon-

ical involution α : Ĵ1J1E → Ĵ1J1E, (xµ, uj , ujµ, (u
j
λ)µ) 7→ (xµ, uj , ujµ, (u

j
µ)λ), This is

the canonical involution [9].

Example 2.5. If π : Rm+n → Rn is the trivial bundle, then we denote by Jk(n,m) the
associated jet space Jk(Rm+n, n) to the bundle π. For simplicity in notation we denote
the coordinates in J1(2, 1) by (x, y, z, zx, zy) and the coordinates in J1(J1(2, 1), 2) by
(x, y, z, zx, zy, (zx)x, (zx)y, (zy)x, (zy)y). In J1(J1(2, 1), 2) the Cartan distribution, is
determined by the fields Dλ = ∂

∂xλ
+
∑
j,µ(ujµ)λ

∂

∂ujµ
λ = 1, 2. Then these fields are

D1 =
∂

∂x
+ zx

∂

∂z
+ (zx)x

∂

∂zx
+ (zy)x

∂

∂zy
,

D2 =
∂

∂y
+ zy

∂

∂z
+ (zx)y

∂

∂zx
+ (zy)y

∂

∂zy
.

(3)
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Let F ∈ C∞(J1(2, 1)); then F determines in a canonical way a scalar differential
operator of first order on the set of sections of the bundle π : R2 → R (see [1, p. 126]).
Then the formal derivatives (3) of F define scalars differential operators of order 1 on
the bundle π : J1(2, 1)→M , by means of

DxF = Fx + Fzzx + Fzx(zx)x + Fzy (zy)x,

DyF = Fy + Fzzy + Fzx(zx)y + Fzy (zy)y.

We note that the Cartan distribution in J1(J1(2, 1), 2) is described by the 1-forms
ω0 = dz − zxdx− zydy ,
ω1 = dzx − (zx)xdx− (zx)ydy ,

ω2 = dzy − (zy)xdx− (zy)ydy .

Whereas the Cartan distribution in J2(2, 1) is described by the 1-forms
ω1

(00) = dz − zxdx− zydy ,
ω1

(10) = dzx − zxxdx− zxydy ,
ω1

(01) = dzy − zyxdx− zyydy .

Example 2.6. We consider the system of differential equations in J1(3, 1) with canon-
ical coordinates (x, y, z, u, ux, uy, uz){

F 1 : uz + yux = 0 ,

F 2 : uy = 0 .

This system is described by the vector valued function F = (F 1, F 2) and determines
the submanifold E = F−1(0) in J1(3, 1). We consider the system in the space of sesqui-
holonomics jets Ĵ1J1(3, 1) by prolonging the equation E ⊂ J1(3, 1) in Ĵ1J1(3, 1). This
prolongation is done by the total derivatives

Dx =
∂

∂x
+ ux

∂

∂u
+ (ux)x

∂

∂ux
+ (uy)x

∂

∂uy
+ (uz)x

∂

∂uz
,

Dy =
∂

∂y
+ uy

∂

∂u
+ (ux)y

∂

∂ux
+ (uy)y

∂

∂uy
+ (uz)y

∂

∂uz
,

Dz =
∂

∂y
+ uz

∂

∂u
+ (ux)z

∂

∂ux
+ (uy)z

∂

∂uy
+ (uz)z

∂

∂uz
.

In this manner the prolonged system takes the form

(uz)x + y(uy) = 0

(uz)y + ux + y(ux)y = 0

(uz)z + y(ux)z = 0

(uy)x = 0

(uy)y = 0

(uz)z = 0 .

We note that we cannot find the integrability condition ux = 0. If we take in consid-
eration the points fixed by the canonical involution α of Example 2.4, we have that
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(ux)y = (uy)x, (uz)x = (ux)z and we arrive to the integrability condition ux = 0 for
this system.

2.3 Symmetries of equations

Let P be a distribution in E and F : E → E a diffeomorphism. We will say that
F is a finite symmetry of P if F∗Pθ ⊆ PF (θ) for any θ ∈ E, that is, F preserves
the distribution P . If the distribution P is described by the 1-forms ωjσ, then F is a
finite symmetry if F ∗ωjσ ⊆ I(P ), for all j andσ, where I(P ) is the ideal generated by
{ωjσ}. A field X in E is an infinitesimal symmetry if the flow that determines X, say
At : E → E, consists of finite symmetries.

Example 2.7. If P = C, then a diffeomorphism that preserves P is called a Lie finite
symmetry. A field X in Jk(π), whose flow consists of Lie finite symmetries, is called
infinitesimal Lie symmetry.

Let us denote the set of all infinitesimal symmetries of the distribution P by
Sym(P ). It is an R-Lie algebra with respect to the Lie bracket. An infinitesimal
symmetry X is called characteristic if X is in P and the set of all characteristics will
be denoted by Char(P ). The characteristics from Char(P ) with respect to the Lie
bracket form an ideal of the Lie algebra Sym(P ). If X ∈ Char(P ) and L is a maximal
integral submanifold of P , then X is tangent to L. We are interested in considering

the quotient Lie algebra sym(P ) = Sym(P )
Char(P ) . The elements of sym(P ) are called simply

symmetries.

2.4 Generating section of a Lie field

Let us consider a fiber bundle π : E →M , with dimE = n+m, dimM = n and a Lie
field X in Jk(π), see Example 2.7 above. Such a Lie field X is,in adapted coordinates,
given by (see [1, Theorem 3.3 and 3.4])

X =

n∑
i=1

ai
∂

∂xi
+

m∑
j=1

∑
0≤|σ|≤k

bjσ
∂

∂ujσ
,

where σ is a multi-index as in (1). Now we consider a section s of the fiber bundle π.
The graph of the section jk(s) of the fiber bundle πk is a maximal integral manifold
in Jk(π) of the Cartan distribution and we will denote it by Γks . Let us consider the
1-parameter group {φt} corresponding to the field X. We note that for t sufficiently
small φt(Γ

k
s) is the graph of the k-jet of a section st, that is, φt(Γ

k
s) = Γkst . In other

words Γkst is an infinitesimal deformation of Γks . The velocity of such deformation is
d
dt

∣∣
t=0

st . To measure this velocity, we need to know how Γks is deformed locally by
φt. This deformation is a consequence of the vertical component of X since the com-
ponent tangent to Γks displaces the submanifold along itself not deforming it. Now we
calculate the vertical component of the Lie field X. The rate of change in the vertical

direction of each component is given by d
dt

∣∣
t=0

sjt = XV (sjt ) =
(
bj −

∑n
i=1 aiu

j
i

)∣∣∣
Γks

,

where XV is the vertical part of the Lie field X, that is, (πk)∗(XV ) = 0. If we take
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another section, the rate of change is calculated by the same formula evaluated on the
graph of the k-jet section, so we will call the vector valued function ϕ = (ϕ1, . . . , ϕm)
given by ϕj = bj−

∑n
i=1 aiu

j
i the generating section of the Lie field X. The generating

section measures the infinitesimal deformation of the graph of k-jet sections, that are
maximal integral submanifolds of the Cartan distribution. The following result estab-
lishes that the Lie field and the generating section are in biunivocal correspondence
(see [1, Proposition 3.5]).

Theorem 2.8. Lie field in Jkπ is univocally determined by its generating section ϕ =
(ϕ1, . . . , ϕm). The components of the generating section are given by ϕj = Xyωj(0,...,0),

where ωj(0,...,0) = duj −
∑n
i=1 u

j
i dxi .

Let P be a distribution on M . We define the normal fibration to P , given by
NP = TM

P whose fibers are the vectors spaces TxM/Px, x ∈ M . We consider the
C∞(M)-module D(P ) of all derivations in M that are in P , that is, X ∈ D(P ) if and
only if Xx ∈ Px for all x ∈M . Then [X] = [Y ] ∈ Γ(NP ) if X − Y ∈ P , where Γ(NP )
is the C∞(M)-module of sections of NP . From now on, we will write [X] = X modP .
Let us consider the application D(P )×D(P )→ Γ(NP ) given by

(X,Y ) 7→ [X,Y ] modP . (4)

From [fX, gY ] = fg[X,Y ] + fX(g)Y + gY (f)X, it follows that [fX, gY ] modP =
fg[X,Y ] modP , so (4) defines a C∞(M)-bilinear application and determines a 2-form
with values in Γ(NP ), that is called the curvature of the distribution P . This curvature
is denoted by ΩP . The value of ΩP at the point x ∈ M , is given by ΩP (Xx, Yx) =
[X,Y ] modP , where X,Y are extensions of Xx, Yx ∈ TxM . Let Ann(Px) be the set
of 1-forms ωx ∈ T ∗xM such that ωx(X) = 0 if X ∈ Px. We will call the C∞(M)-
module Ann(Px) the annihilator of Px. We note that N ∗Px = Ann(Px) and P ∗x =
T ∗M/Ann(Px). Let ω1 . . . ωn be a local base for Ann(Px) and Z1, . . . , Zn the dual
base for NP ; then, for all X,Y , ΩP (X,Y ) = −

∑n
i=1 dωi(X,Y )Zi, that is, ΩP =

−
∑n
i=1 dωi ⊗ Zi.

The construction of the curvature of a distribution is very similar to the curvature
of a connection. This curvature ΩP is referred to as the Levi form (see [5]). We will
say that the distribution P is flat if ΩP = 0. We will say that a distribution P is
completely integrable if for each point x ∈M , there exists an integral submanifold N
of P such that dimN equals the rank of the distribution P . This is established by

Theorem 2.9 (Frobenius). A distribution P is completely integrable if and only if P
is flat. Moreover if P is completely integrable and if L1 and L2 are maximal integral
submanifolds of P such that x ∈ L1 ∩ L2, then L1 = L2 in some neighborhood of x.

3. On the involutive systems and the geometric symbol

From now on let Ω ⊂ Rn be some convenient open set and E = Ω × Rm; in this
case the jet bundle JkE can be identified with cartesian product JkE ' Ω × Rm ×
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Rmn1 × · · · ×Rmnk , where nj is the number of partial derivatives of order j. Putting
dj = 1+n1 + · · ·+nj , it is straightforward to show that nj =

(
n+j−1

j

)
and dj =

(
n+j
j

)
.

Hence dim(JkE) = n+mdk and the number mdk is the fiber dimension of JkE. The
coordinates of JkE are denoted by (xµ, uj , . . . , ujσ) where σ is a multi-index such that
|σ| = k (see Section 2). In these coordinates a system of PDEs can be represented
as the zero set of some map f : JkE → Rk: Ek : f(xµ, uj , . . . , ujσ) = 0. Now that the
basic objects of study are defined, we return to the original problems:

(i) define the canonical form,

(ii) give a criterion to recognize if the given system is in the canonical form,

(iii) for a given system, construct the canonical form.

To accomplish these tasks there are only two fundamental operations available: pro-
longation (differentiation) and projection (elimination). By differentiating the system
with respect to all independent variables we get a new system, the prolongation of
the original system:

Ek+1 :



∂f

∂x1
(xµ, uj , . . .) = 0,

...
∂f

∂xn
(xµ, uj , . . .) = 0,

f(xµ, uj , . . .) = 0.

(5)

By further differentiating we can similarly define Ek+r ⊂ Jk+rE for all r. The pro-
jection is in some sense the inverse operation. Now we define the maps that relates
the different jet spaces (see Section 2), πk+r,k : Jk+rE → JkE; in local coordinates
this simply means that we “forget” the highest derivatives. Restricting this map to
the differential equation gives the map πk+r,k : Ek+r → Ek. The image of this map is
denoted by Ek(r).

Note that this map is well defined since we always have Ek(r) ⊆ E
k. If the inclusion

is strict this means that by differentiating and eliminating we have found integrabil-
ity conditions ; i.e., equations of order k which are algebraically independent of the
original equations and which are also satisfied by the solutions of the system.

At this point it is convenient to recall a regularity assumption. While the initial
system Ek is a subbundle by definition, this does not necessarily imply that all Ek+s

(r) ,

in principle, are only subsets of the relevant jet bundle, were also subbundles.

Definition 3.1. A differential equation Ek is called regular, if Ek+s
(r) is a subbundle

for all r, s ≥ 0.

Definition 3.2. A system Ek is formally integrable if Ek+r
(1) = Ek+r for all r ≥ 0.

Now, it is well known that some properties of PDEs depend only on highest order
derivatives terms in the system. The information of this highest part is encoded in
the symbol of the system. There are two types of symbols: the geometric symbol and
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the principal symbol. We consider in this section the geometric symbol. To simplify,
we restrict our attention to linear problems in a system of coordinates.

So consider a linear PDE of order k given by

Ek : A(s) =
∑
|µ|≤k

aµ(x)∂µs = f, (6)

where aµ(x) are matrices of order k ×m and the components of aµ are differentiable
functions. Let Ω ⊂ Rn be the domain where the system is given and let E0 = Ω×Rm
and E1 = Ω× Rk.

Therefore a solution of Ek is a section s of E0 such that jk(s) takes its values in
Ek: f is a section of E1 and the operator A is a function A : C∞(E0) → C∞(E1).
The information of the highest order derivatives is in the matrices aµ with |µ| = k,
these togheter define the symbol.

Definition 3.3. Consider the system in (6) and let Mk be the following matrix
Mk = (aµ1 , aµ2 , . . . , aµnk ), where µ1 > µ2 > · · · > µnk , |µi| = k, and the matrix Mk

is obtained by joining the various matrices. The geometric symbol Mk is the family
of vector spaces defined by the kernels of Mk.

So to each point p ∈ Ω a certain vector space is attached. If the dimension of this
vector space does not depend on p, then the symbol is in fact a vector bundle. This
will be assumed in the sequel, so it is possible to discuss the properties of the symbol
without specifying the base point. One may also call the matrix Mk the symbol
of Ek; i.e., one identifies the object (the family of vector spaces or bundle) and its
representation.

Definition 3.4. Let us suppose that the symbol Mk is in the row echelon form. A
jet coordinate uiµ is a leader, if there is a row whose first nonzero element is in the

column which corresponds to uiµ. Let β
(l)
k be the number of leaders of class l. These

are the indices of Mk.

Definition 3.5. The symbolMk is involutive if and only if rank(Mk+1) =
∑n
l=1 lβ

(l)
k .

This criterion is quite reasonable: one must find the row echelon form of Mk

to determine the indices. Then one must differentiate the equations to obtain Mk+1.
This is also simple. Finally one must calculate the rank of Mk+1 which is also a matter
of linear algebra. For the following theorems we refer the reader to [8, Chapter 7].

Theorem 3.6. If the symbol Mk is involutive and Ek(1) = Ek, then Ek is formally
integrable.

When the symbol is involutive, it is sufficient to test if there are integrability
conditions using only one prolongation. If the initial system is not involutive we have:

Theorem 3.7. For any symbol Mk, there exists k′ ≥ k such that Mk′ is involutive.

There is an explicit bound for the number k′. Let us define k̂ recursively by
k̂(0,m, 1) = 0, k̂(n,m, 1) = m

(
a+n−1
n

)
+ a + 1, where a = k̂(n − 1,m, 1), and
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k̂(n,m, q) = k̂(n, b, 1), where b = m
(
k+n−1
n

)
. Then k′ ≤ k̂. Moreover, one can

show that if Mk is involutive, then Mk is also involutive. Then one can find an
involutive form of a system given in the following way:
(i) The system is prolonged until its symbol becomes involutive.

(ii) The system is prolonged and projected once to verify if there are integrability
conditions.

(iii) If there are no new equations in the previous step, the system is now involutive.
If it is not the case, return to step one.
This is the Cartan-Kuranishi completion algorithm [8]. The next theorem shows that,
under the appropriate hypothesis, the general algorithm is finite.

Theorem 3.8. For a regular system Ek there are numbers r and s such that Ek+r
(s) is

involutive.

In what follows, we try to explain what involutivity means.
Let x = (xµ) be the independent variables and u = (uj) the dependent variables.

Let σ ∈ Nn be a multi-index and let |σ| = σ1 + · · · + σn and xσ = (x1)σ1 · · · (xn)σn .

The derivatives are denoted by ∂|σ|uj

∂(x1)σ1 ···∂(xn)σn = ∂|σ|uj

∂xσ = ∂σu
j = ujσ (see (1)). It is

useful to order the multi-indices with the degree reverse lexicographic order: α < σ

if

{
|α| < |σ|, or

|α| = |σ|, αi = σi for 1 ≤ i < j and αj > σj .

In the same way we can order monomials and derivatives using the order of the
multi-indices: xα < xσ, if α < σ, uiα < ujσ, if α ≤ σ and i > j.

So for example if n = m = |σ| = 2 we have u1
02 > u2

02 > u1
11 > u2

11 > u1
20 > u2

20.
The class of the multi-index σ (resp. monomials xµ, derivatives ujσ) is k, if σ1 = · · · =
σk−1 = 0 and σk 6= 0. So in the example there are two derivatives of class two and
four derivatives of class one.

Example 3.9. Consider the following example, due to Janet [3]

E2 :

{
u002 − x2u200 = 0,

u020 = 0.

Prolonging this system E3 :



u003 − x2u201 = 0,

u012 − x2u210 − u200 = 0,

u102 − x2u300 = 0,

u021 = u030 = u120 = 0,

E2.

Let us now apply the algorithm of Cartan-Kuranishi. Consider the symbols M2 =(
1 0 0 0 0 −x2

0 0 1 0 0 0

)
, M3 =

(
1 1 1 1 1 1 −x2 −x2 −x2

)
. The columns

of the matrices are ordered using the monomial order, i.e., a total order on the set of
all (monic) monomials in a given polynomial ring, satisfying the property of respect-
ing multiplication. In the case of M2 this gives 002 > 011 > 020 > 101 > 110 > 200.
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Therefore, the first column of M2 corresponds to a monomial derivative of class three,
the second and the third to monomials derivative of class two and the rest to mono-
mials of class one. The matrix M2 is in row echelon and therefore, its leaders are

u002 and u020, and its indices are β
(3)
2 = β

(1)
2 = 1 and β

(1)
2 = 0. Then the rank is

M3 = 6. The criterion is not satisfied: rankM3 = 6 > 5 = β
(1)
2 + 2β

(2)
2 + 3β

(3)
2 . In

consequence, the symbol M2 is not involutive. When doing the same analysis with
E3, we find that M3 is involutive. But going to the step 2 in the algorithm, we get a
new condition of integrability:

E3
(1) :

{
u210 = 0,

E3.

Then one starts again in the step 1, with the system E3
(1). Now the symbol M(1)

3 is

not involutive, butM(1)
4 is. However, again in the step 2 one obtains an integrability

condition:

E4
(2) :

{
u400 = 0,

E4
(1).

Then, for the third time, one returns to the step 1. Now, a prolongation shows
thatM5

(2) is involutive and, in the step 2 no new integrability conditions will appear.

Therefore, E5
(2) is an involutive system and then the system E4

(2) is formally integrable.

4. Invariant solutions of an equation

Let g be a Lie sub-algebra of the the algebra of symmetries of the equation E and f0 a
solution of E . We will say that f0 is a g-invariant solution of E if, for each X ∈ g, the
one-parameter group of X, say {At}, leaves the solution invariant, that is At(Γ

k
f0

) =

Γkft =⇒ Γkft = Γkf0 , whenever Γkft projects horizontally. We recall that Γkf = Im jk(L),
where L = Im(f). If the Lie algebra consists of only one generator, Xϕ, where
ϕ is the corresponding generating section, then we will say that f0 is X-invariant
or ϕ-invariant. Let us suppose now that the Lie algebra g is finitely generated by
X1, . . . , Xs. To obtain a g-invariant solution, proceed as follows. We consider an
equation E in Jk(π) given locally by the system {F 1(θ) = 0, . . . , F r(θ) = 0}, with
F j ∈ C∞(Jk(π)) and for all i = 1, . . . , s, ϕi is the generating section associated to
the symmetry Xi. Then, by definition of g-invariant solution, this is determined by
resolving the system of equations

F j(θ) = 0, ϕi(θ) = 0, i = 1, . . . , s, j = 1, . . . , r . (7)

We are interested in studying the involutivity in terms of the symmetries of an equa-
tion, and this can be conceptualized as follows:

g-invariant solution of E ⇐⇒ Set of fixed points of an involutionαg
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More precisely, if αg : Ĵ1Jk−1(π) → Ĵ1Jk−1(π) is an involution and Ẽ ⊂ Ĵ1Jk−1(π)

such that π1,1(Ẽ) = E , then αg(θ̂) = θ̂ if and only if there exist a g-invariant solution f ,

θ ∈ Γkf where αg is a transformation of Ĵ1Jk−1(π) such that α2
g = Id and π1,1(θ̂) = θ.

Example 4.1. If π : E → M is a fiber vector bundle, then a vector field on Jkπ
which takes values in the tangent space of E is called a generalized vector field, also
called Lie-Backlund vector field. A generalized vector field on Jkπ which projects
under πk to zero on M is called a vertical generalized vector field or an evolutionary
vector field.

We consider the empty equation, i.e., E = J2(π), with dimπ = 1, and dimM =
2. Let Ẽ be the embedding of E in Ĵ1J1(π). Let us suppose that the coordinates
in Ĵ1J1(π) are as in Example 2.5: (x, y, z, zx, zy, (zx)x, (zy)x, (zx)y, (zy)y). Let us

consider the evolutionary field, X = [(zx)y − (zy)x]∂z in Ĵ1J1(π). This is a Lie field,
and the generating function is given by Theorem 2.8: ϕ = ω0(X) = (zx)y − (zy)x,
where ω0 = dz − zxdx− zydy is the basic 1-contact form. The function ϕ determines

the g-invariant solution given by the points θ ∈ Ĵ1J1(π) such that ϕ(θ) = 0, that is
(zx)y − (zy)x = 0, with g = {X}. The equation ϕ = 0 determines the transformation

αϕ : Ĵ1J1(π) → Ĵ1J1(π) given by ((zx)y, (zy)x) ◦ αϕ = ((zy)x, (zx)y). We note that
α2
ϕ = Id, that is, αϕ is an involution. So the ϕ-invariant solution corresponds to

the set of fixed points of αϕ, even more, we have Ĵ1J1(π)
αϕ

= J2(π), where we have

identified (zx)y and (zy)x with zxy in J2(π) (see Section 2.2)

Let us note that we can introduce coordinates in Ĵ1J1(π)
αϕ

, through the coordinates

of Ĵ1J1(π) using the identification of αϕ. In the general case it is complicated to
express the coordinates of the quotient space. Generalizing the previous example we
have the following theorem.

Theorem 4.2. The space Jk(π) is the quotient space of the iterated sesqui-holonomics
jets Ĵ1Jk−1(π) relative to the subgroup of the algebra of symmetries determined by a
suitable involution αg .

Proof. Given the multi-index σ = {i1, . . . , ik−1} define the vertical fields Xj
σλ(l)

=[
(uji1,...,λ(l),...,ik−1

)il − (uji1,...,ik−1
)λ
]
∂j , with 0 < |σ| ≤ k − 1, l = 1, . . . , k − 1, λ(l) =

1, . . . , n and j = 1, . . . ,dimπ. Let us note that the fields Xj
σλ(l)

are Lie fields in

Ĵ1Jk−1(π). Then the algebra of Lie symmetries g, generated by these fields is a
Lie sub-algebra of symmetries in Ĵ1Jk−1(π). The g-invariant solution of the empty
equation Ĵ1Jk−1(π) is given by solving the system (7):{

θ̂ ∈ Ĵ1Jk−1(π) (empty equation)

ϕjσλ(l)
(θ̂) = 0 (generating sections)

where ϕjσλ(l)
are the generating sections that correspond to the Lie fields Xj

σλ(l)
with

0 < |σ| ≤ k−1, l = 1, . . . , k−1, λ(l) = 1, . . . , n and j = 1, . . . ,dimπ (see Theorem 2.8).
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Then ϕjσλ(l)
= Xσλ(l)

yωj0. In this way we get

(uji1,...,λ(l),...,ik−1︸ ︷︷ ︸
λ in the l position

)il = (uji1,...,ik−1
)λ = (uji1,...,λ(s),...,ik−1︸ ︷︷ ︸

λ in the s position

)is (8)

for every multi-index σ, s, l = 1, . . . , k− 1 and λ = 1, . . . , n. The equations (8) deter-
mine the transformation αg : Ĵ1Jk−1(π)→ Ĵ1Jk−1(π), given by (uji1,...,λ(l),...,ik−1

)il ◦
αg = (uji1,...,λ(s),...,ik−1

)is . So we have that α2
g = Id. In the sesqui-holonomics jet space

Ĵ1Jk−1π, we make the identifications by equations (8). We denote the quotient space

by Ĵ1Jk−1π
αg

and the identification with the k-jet space Jkπ is done by [(ujσ)µ] = ujσµ
where [ ] represent the equivalent class modulo the relations (8) and σ is a multi-indice
such that |σ| = k − 1. �
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