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Abstract. For any fixed integer d ≥ 2, the d-ary increasing tree is a rooted, ordered,
labeled tree where the out-degree is bounded by d, and the labels along each path beginning
at the root increase. Total path length, or search cost, for a rooted tree is defined as the
sum of all root-to-node distances and the Sackin index is defined as the sum of the depths
of its leaves. We study these quantities in random d-ary increasing trees.

1. Introduction

A graph G is a collection of points and lines connecting some pairs of them. The
points and lines of a graph are called vertices and edges of that graph, respectively.
The vertex set and the edge set of G are denoted by V (G) and E(G), respectively.
Let G be a simple connected graph. Two vertices in G which are connected by an
edge are called adjacent vertices. The number of vertices adjacent to a given vertex
v is the degree of v and is denoted by d(v) (or dv for convenience). A path in a
graph is a sequence of adjacent edges, which do not pass through the same vertex
more than once, and the length of the path is the number of edges in it. Trees are
defined as connected graphs without cycles, and their properties are basics of graph
theory. The analysis of the length of paths in trees has received a lot of attention
mostly because of their importance in the analysis of algorithms. A rooted tree is a
tree with a countable number of nodes, in which a particular node is distinguished
from the others and called the root node. In a rooted tree, the number of immediate
descendants of a vertex v is called its out-degree and is denoted by d+(v) (or d+

v ).
Increasing trees are labelled trees where the nodes of a tree of order n are labelled

by distinct integers of the set {1, . . . , n} in such a way that each sequence of labels
along any branch starting at the root is increasing. Several important tree models,
e.g., recursive trees, plane-oriented recursive trees (also known as non-uniform recur-
sive trees or heap ordered trees) and binary increasing trees (and more generally d-ary

2010 Mathematics Subject Classification: 05C05, 60F05

Keywords and phrases: d-ary increasing tree; total path length; Sackin index; covariance.

1
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increasing trees) are members of the family of increasing trees. In fact, for any fixed
integer d ≥ 2, the d-ary increasing tree is a rooted, ordered, labeled tree where the
out-degree is bounded by d, and the labels along each path beginning at the root
increase [2].

There is a simple growth rule for the class of d-ary increasing trees. In this class,
a random tree Tn, of order n, is obtained from Tn−1, a random tree of order n − 1,
by choosing a parent in Tn−1 and adjoining a node labeled n to it.

We explain the following evolution processes for random d-ary increasing trees
of order n, which turns out to be appropriate when studying the Sackin index and
total path length of these trees. The possible insertion positions to join a new node
to a d-ary increasing tree, are called external nodes. In a d-ary increasing tree,
the number of nodes can be attached to node v of out-degree d+(v) is d − d+(v).
Therefore the number of all external nodes in a d-ary increasing tree Tn of order n is∑
v∈V (Tn)(d− d+(v)) = (d− 1)n+ 1.

At the step 1 the process starts with the root. At the step i the i-th node is
attached to a previous node v of the already grown d-ary increasing tree Ti−1 of order

i − 1 with probability pi(v) = d−d+(v)
(d−1)(i−1)+1 . It is obvious that d+

root = droot and for

other vertices d+
v = dv − 1. Thus we have pi(root) = d−droot

(d−1)(i−1)+1 and for other

vertices pi(v) = d−dv+1
(d−1)(i−1)+1 . This fact specially implies that the higher out-degree

vertices possess a lower attraction for new neighbors and there exists no vertex of
out-degree greater than d. The distance Dn,j (or Dj for convenience) between the
root and node j (the depth of j-th node) in a random d-ary increasing tree of order
n has been studied by Panholzer and Prodinger [9]. They proved that (d = 2):

E(Dn,j) = 2Hj − 2, Var(Dn,j) = 2Hj + 2− 4H
(2)
j ,

where Hn is the n-th harmonic number and H
(2)
n is the n-th harmonic number of

order 2.

The Sackin index Sn of a tree of order n is defined as the sum of the depths of
its leaves. Clearly, if two tree structures (molecular graphs) have different values for
Sackin index, then their structures are different and hence, they have some different
properties. Let Sn be the Sackin index of a random d-ary increasing tree of order n
and Fn be the sigma-field generated by the first n stages of these trees [3,5]. Moradian
et al. [7] have studied the Sackin index in random recursive trees. They showed that
E(Sn) = n

2

(
Hn − 1

2

)
. Let Un be a randomly chosen node belonging to a d-ary tree of

order n.

The total path length of a d-ary increasing tree, namely, In =
∑n
j=1Dn,j , is

defined as the sum of all root-to-node distances (in which nodes consists of leaf and
non-leaf nodes). This random variable can be served as a global measure of the cost of
constructing the tree. The expectation and variance of the external path length in a
random d-ary increasing tree of order n is investigated in [4]. Linearity of expectation
gives E(In) =

∑n
j=1 E(Dn,j).

For more information about these subjects or related subjects see [1, 4, 6].

The aim of this paper is to determine some distributional propeties of Sackin
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index and total path length for each randomly chosen d-ary increasing tree. Also, we
provide some useful relations related to these indices or other parameters.

2. The main results

Theorem 2.1. Let In be the total path length of the random d-ary increasing tree of
order n. Then

E(In) =

n−1∑
i=1

(
µi

n−1∏
j=i+1

λj

)
,

where λi =
(i+ 1)(d− 1) + 1

i(d− 1) + 1
, µi =

id

i(d− 1) + 1
, i = 1, 2, 3, . . . .

Proof. Let D(v) (or Dv for convenience) be the depth of node v. It is not difficult to
show that ∑

v∈V (Tn),d+(v)≥1

d+(v)D(v) = In − (n− 1).

By stochastic growth role of the tree, In = In−1 +DUn−1 + 1. Thus

E(In|Fn−1) = In−1 +
∑

v∈V (Tn−1)

pn(v)D(v) + 1

= In−1 +
1

(d− 1)(n− 1) + 1

( ∑
v∈V (Tn−1)

(d− d+
v )D(v)

)
+ 1

= In−1 +
1

(d− 1)(n− 1) + 1

[
d

∑
v∈V (Tn−1)

D(v)−
∑

v∈V (Tn−1),

d+(v)≥1

d+
v D(v)

]
+ 1

= In−1 +
1

(d− 1)(n− 1) + 1

[
dIn−1 − (In−1 − (n− 2))

]
+ 1

=
n(d− 1) + 1

(n− 1)(d− 1) + 1
In−1 +

d(n− 1)

(n− 1)(d− 1) + 1
.

Since E(In) = E(E(In|Fn−1)), for each n ≥ 1 we can obtain E(In) by iteration as
follows:

E(In) =

n−1∑
i=1

(
µi

n−1∏
j=i+1

λj

)
.

For each integer n ≥ 1, we define

c[n] :=


Γ(n−1)

Γ
(
n+ 1

d−1

) , n ≥ 2

0, n = 1,

where Γ(·) is the gamma function. This is well defined because n+ 1
d−1 > 0 and hence
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Γ(n+ 1
d−1 ) > 0. Also, for each j ≥ 1 let α(j) =

(d−1)E(Ij)+d j
(d−1)j+1 , j ≥ 1.

Theorem 2.2. Let n ≥ 1. The mean of the Sackin index Sn of a random d-ary
increasing tree Tn of order n is given by

E(Sn) = c[n]

n−1∑
j=1

α(j)

c[j + 1]
.

Proof. Since the result holds for the case n ∈ {1, 2}, we assume that n ≥ 3. For each
v ∈ V (Tn) define the indicator Ĩ(v) as below:

Ĩ(v) =

{
0, d+(v) = 0

D(v), d+(v) ≥ 1.

Note that Ĩ(root) = D(root) = 0. Assume that vn is attached to a randomly chosen
vertex Un−1 in Tn−1. Hence Sn = Sn−1 + Ĩ(Un−1) + 1. Thus

E(Sn|Fn−1) = Sn−1 + E(Ĩ(Un−1)|Fn−1) + 1

= Sn−1 +
∑

v∈V (Tn−1)

d− d+
v

(d− 1)(n− 1) + 1
Ĩ(v) + 1

= Sn−1 +
1

(d− 1)(n− 1) + 1

∑
v∈V (Tn−1),

d+(v)≥1

(d− d+
v )D(v) + 1

= Sn−1 +
1

(d− 1)(n− 1) + 1

[
d

∑
v∈V (Tn−1),

d+(v)≥1

D(v)−
∑

v∈V (Tn−1),

d+(v)≥1

d+
v D(v)

]
+ 1

= Sn−1 +
1

(d− 1)(n− 1) + 1

[
d(In−1 − Sn−1)− (In−1 − (n− 2))

]
+ 1

=
(d− 1)(n− 2)

(d− 1)(n− 1) + 1
Sn−1 +

d− 1

(d− 1)(n− 1) + 1
In−1 +

d(n− 1)

(d− 1)(n− 1) + 1
.

Since (d−1)(n−2)
(d−1)(n−1)+1 = n−2

(n−1)+ 1
d−1

= c[n]
c[n−1] , we have

E(Sn) =
c[n]

c[n− 1]
E(Sn−1) + α(n− 1), n ≥ 3. (1)

Since E(S2) = 1, the recurrence (1) implies that E(Sn) = c[n]
∑n
j=2

α(j−1)
c[j] , and this

completes the proof. �

Lemma 2.3. Let n ≥ 2 and let Cov(Sn, Sn−1) be the covariance between two random
variables Sn and Sn−1. Then

Cov(Sn, Sn−1) =
(d− 1)(n− 2)

(d− 1)(n− 1) + 1
Var(Sn−1) +

d− 1

(d− 1)(n− 1) + 1
Cov(Sn−1, In−1).

Proof. For n = 2 the result follows directly because Cov(S1, I1) = 0. For n ≥ 3 from
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equation (1) we see that

E(Sn − E(Sn)|Fn−1) = E(Sn|Fn−1)− E(Sn)

=
c[n]

c[n− 1]
(Sn−1 − E(Sn−1)) +

(d− 1)(In−1 − E(In−1))

(d− 1)(n− 1) + 1
.

Then

Cov(Sn, Sn−1) = E(E((Sn − E(Sn))(Sn−1 − E(Sn−1))|Fn−1))

= E((Sn−1 − E(Sn−1))E(Sn − E(Sn)|Fn−1))

=
c[n]

c[n− 1]
Var(Sn−1) +

d− 1

(d− 1)(n− 1) + 1
Cov(Sn−1, In−1).

For each i ≥ 1, set ai = E(Si), bi = E(Ii), ci = µi−λi

1−λi
E(Ĩ(Ui))− λi

1−λi
E(Ĩ(Ui)D(Ui))

and ei = µiai + bi+1 + ci.

Theorem 2.4. Let In and Sn be the total path length and Sackin index of a random
d-ary increasing tree of order n, respectively. Then

Cov (Sn, In) =


n−1∑
j=1

(
ej

n−1∏
i=j+1

λi

)
− E(Sn)E(In), n ≥ 4

0, n = 1, 2, 3.

Proof. For n = 1, 2, 3, Cov (Sn, In) = 0. Assume n ≥ 4. By definition,

Cov (Sn, In) = E(InSn)− anbn.
Since Sn = Sn−1 + Ĩ(Un−1) + 1, we have

E (SnIn) = E
((
Sn−1 + Ĩ(Un−1) + 1

)
In

)
= E

(
Sn−1In

)
+ E

(
Ĩ
(
Un−1

)
In

)
+ bn.

We have

E
(
Ĩ
(
Un−1

))
=

1

(n− 1)(d− 1) + 1
E
( ∑
v∈V (Tn−1)

Ĩ(v)(d− d+
v )

)

=
1

(n− 1)(d− 1) + 1
E
(
d(In−1 − Sn−1)−

∑
v∈V (Tn−1)

d+
v Dv

)
=

1

(n− 1)(d− 1) + 1

(
(d− 1)E(In−1)− E(Sn−1) + n− 2

)
.

It is not difficult to show that∑
v∈V (Tn)

D2
v = 2In − (n− 1) +

∑
v∈V (Tn),

d+(v)≥1

d+
v D

2
v.

Now, we have

E
(
Ĩ
(
Un−1

)
D(Un−1)

)
=

1

(n−1)(d−1)+1
E
( ∑
v∈V (Tn−1)

(d−d+
v )Ĩ(v)Dv

)
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=

(d−1)
∑

v∈V (Tn−1)

E(D2
v)+2E(In−1)−n+2

(n−1)(d−1)+1
.

But E
(
Ĩ
(
Un−1

)
In

)
= E

(
Ĩ
(
Un−1

)
E
(
In|Fn−1

))
= E

(
Ĩ
(
Un−1

) (
λn−1In−1+µn−1

))
= λn−1E

(
Ĩ
(
Un−1

)(
In−D(Un−1)−1

))
+µn−1E

(
Ĩ
(
Un−1

))
= λn−1E

(
Ĩ
(
Un−1

)
In

)
−λn−1E

(
Ĩ
(
Un−1

)
D(Un−1)

)
−λn−1E

(
Ĩ
(
Un−1

))
+µn−1E

(
Ĩ
(
Un−1

))
.

Hence,

E
(
Ĩ
(
Un−1

)
In

)
=
µn−1−λn−1

1−λn−1
E
(
Ĩ
(
Un−1

))
− λn−1

1−λn−1
E
(
Ĩ
(
Un−1

)
D(Un−1)

)
:= cn−1,

where the two terms on the right of the above equality were previously calculated.
Now, from Theorem 2.1,

E (Sn91In) =E
(
E (Sn91In|Fn91)

)
=E
(
Sn91 E (In|Fn91)

)
=λn91E (Sn91In91) + µn91an91.

Hence

E (SnIn) = λn−1E (Sn−1In−1) + µn−1an−1 + cn−1 + bn = λn−1E (Sn−1In−1) + en−1.

Since S1I1 = 0, iterating this recurrence completes the proof. �

For each i ≥ 1, set

β(i) =2
d− 1

i(d− 1) + 1
Cov(Ii, Si)−

( −dSi
(d− 1)i+ 1

+ α(i)− 1
)2

+
1

(d− 1)i+ 1

(
d

∑
v∈V (Ti),d+(v)≥1

E(D2
v)−

∑
v∈V (Ti)

E(D2
v) + 2E(Ii)− (i− 1)

)
,

and for each n ≥ 3 set t[n] :=
Γ
(
n−2− 1

d−1

)
Γ

(
n+ 1

d−1

) .

Theorem 2.5. Let n ≥ 1. The variance of the Sackin index Sn of a random d-ary

increasing tree Tn of order n is given by Var(Sn) = t[n]
n−1∑
j=3

β(j)
t[j+1] .

Proof. Since the empty sum is zero, the result holds for n ∈ {1, 2, 3} and we can
assume that n ≥ 4. We have

E(Sn − Sn−1 − 1)2 = E

( ∑
v∈V (Tn−1),

d+(v)≥1

d− d+(v)

(d− 1)(n− 1) + 1
D2(v)

)
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=
1

(d− 1)(n− 1) + 1
E

(
d

∑
v∈V (Tn−1),

d+(v)≥1

D2(v)−
∑

v∈V (Tn−1),

d+(v)≥1

d+(v)D2(v)

)

=

E
(
d
∑

v∈V (Tn−1),

d+(v)≥1

D2
v −

∑
v∈V (Tn−1)

D2
v + 2In−1 − (n− 2)

)
(d− 1)(n− 1) + 1

=

d
∑

v∈V (Tn−1),

d+(v)≥1

E(D2
v)−

∑
v∈V (Tn−1)

E(D2
v) + 2E(In−1)− (n− 2)

(d− 1)(n− 1) + 1
. (2)

From Lemma 2.3 it follows

E(Sn − Sn−1 − 1)2 = E(Sn − E(Sn)− Sn−1 + E(Sn−1) + E(Sn)− E(Sn−1)− 1)2

=E(Sn − E(Sn)− Sn−1 + E(Sn−1))2 + E(E(Sn)− E(Sn−1)− 1)2

+ 2E
(

(Sn − E(Sn)− Sn−1 + E(Sn−1))(E(Sn)− E(Sn−1)− 1)

)
=Var(Sn) +

(
1− 2

c[n]

c[n− 1]

)
Var(Sn−1)− 2Cov(Sn−1, In−1)

d− 1

(d− 1)(n− 1) + 1

+
( −d E(Sn−1)

(d− 1)(n− 1) + 1
+ α(n− 1)− 1

)2

+ 0. (3)

Now, from (2) and (3) we see that

Var(Sn) =
(

2
c[n]

c[n− 1]
− 1
)
Var(Sn−1) + β(n− 1) =

t[n]

t[n− 1]
Var(Sn−1) + β(n− 1).

By iteration, proof is completed because Var(S3) = 0. �

3. Conclusion

In this paper, we studied the first two moments of the Sackin index in random d-ary
increasing trees. Doing longer calculations with the same approach we can obtain the
higher moments of this quantity. For example,

E(S3
n) = c[n]

n−1∑
j=1

ξ(j)

c[j + 1]
, E(S4

n) = c[n]

n−1∑
j=1

η(j)

c[j + 1]
,

where ξ(j) =
(d− 1)E(I3

j ) + 2dE(I2
j ) + (1 + 3d)E(Ij) + dj

(d− 1)j + 1

and η(j) =
(d− 1)E(I4

j ) + 4dE(I3
j ) + dE(I2

j ) + (2 + 6d)E(Ij) + dj

(d− 1)j + 1
.
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Using the above results, the measures of skewness and kurtosis of the Sackin index
can be obtained as

Skewness(Sn) =
E(S3

n)− 3E(S2
n)E(Sn) + 2E3(Sn)

Var(Sn)3/2
,

Kurtosis(Sn) =
E(S4

n)− 4E(S3
n)E(Sn) + 6E(S3

n)E2(Sn)− 3E4(Sn)

Var(Sn)
,

respectively (see also Naeini et al. [8] for the same calculations for degree-based in-
dices).
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