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CLOSURE OPERATIONS AND TERNARY RELATIONS

Chandan Chattopadhyay

Abstract. In this paper, the concept of a ternary relation (named as C-relation) is
introduced. It is observed that every closure operator can be used to define a C-relation
and conversely, any C-relation induces a closure operator. Thus, topological concepts can
be studied in terms of relations.

1. Introduction

It is well known that binary relations play an important role in the study of unifor-
mity [1,2,6] and proximity [4,5]. A uniformity on X is a family of binary relations on
X. A proximity on X is a binary relation on P(X), where P(X) denotes the power set
of X. In the study of proximity spaces, we have seen that a topology can be generated
by considering binary relations that satisfy certain axioms.
It should be noted that:
(i) A function cl: P(X) — P(X) is called a closure operator [3] if
cl(0) =0, ACB=clACclB, foral ACX,BCX,
ACclA, forall AC X, cl(AUB)CclAUclB, forall AC X,B C X,
cl(clA) =cl A, for all A C X.

(ii) A closure operator cl: P(X) — P(X) generates a topology on X and vice versa,
for a topology on X there is a closure operator cl : P(X) — P(X) that generates the
given topology.

Section 2 examines a ternary relation (called C-relation) that satisfies certain
axioms. The third section examines the following:
(i) conditions imposed on the C-relation for respective topological structures,

(ii) the concept of C-continuous function and its relation to continuous functions and

(iii) a new characterization of compact spaces.
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2 Closure operations and ternary relations

2. Concept of C-relation

Let Y be a non-empty set. Consider a subset p of the Cartesian product P(Y)xY xP(Y)
satisfying the following axioms.
C(@) : (A,t,B) € p= AN B #  for all non-empty subsets A and Bof Y and t € Y.

C@il) :teANB=(A,t,B)epforal ABCY andteY.

C(ii) : (A, t,B)epand ACD, BCF= (D,t,F)€pforall A\ B,D,F CY and
teY.

C@iv) : (AUB,t,D) e p= (At,D) e por (B,t,D) € pforal A, B,D CY and
teY.

C(v) : Let (A,t,B) € pand D C ANB. If (D,y, D) € pVy € ANB then (D,t, D) € p,
forall ABCY andteY.

Cvi) : (A,t,B)epe (B,t,A)epforal ABCY andteY.

The subset p of P(Y) x Y x P(Y) satisfying the above axioms is said to be a
C-relation on Y. From C(v), C(ii) and C(i) we observe that if (A,¢,B) € p then
(ANB,t,ANB) € p.

ExXAMPLE 2.1. Consider Y = {a,b}. Let p = {({a},a,{a}), ({a},b,{a}), ({b},b, {b}),

({a},a,Y), ({a},0,Y), ({0},0,Y), (Y, a,{a}), (Y, b,{a}), (Y, b,{b}), (Y, a,Y), (Y, b,Y)}.
Then p is a C-relation on Y.

THEOREM 2.2. A closure operator cl : P(Y) — P(Y) generates a C-relation p on'Y
and this p induces the same closure operator.

Proof. Let T be the topology on Y corresponding to the given closure operator. Define
p by the rule: (A,¢,B) € piff t € cl(A N B). Obviously, C(i) holds.

For C(ii), let t € AN B. Then let t € cl(AN B) = (A,t,B) € p.

For C(iii) let (A,¢,B) € pand A C D, B C F. Then t € cl(AN B). Now
(ANB)CDNF=c(ANB)Cc(DNF). Sotec(DNF)= (D,t, F) € p.

For C(iv) let (AUB, t,D) € p. Then t € cl[[AUB)ND] =t € cl(AND)Ucl(BN
D)y=tec(AND)ortec(BND)= (A,t,D)epor (B,tD)enp.

For C(v) let (A,¢,B) € p and D C AN B. Furthermore, let (D,y, D) € p Yy €
ANB. Nowlet t € cl(ANDB) and Yy € ANB, y € cI(DND) = clD. Then
ANBCdD=cd(ANB)CcD. SoteclD=c(DND)= (D,t,D) € p.

For C(vi), (A,t,B) € p &t € cl(ANB) &t e c(BNA) < (B,t,A) € p.
Therefore, p is a C' relation on Y.

Now let p be a C-relation on Y. We will first show that p induces a closure operator
cl: P(Y) —» P(Y). Let A CY. We define cl A as follows: t € clA iff (4,t,A) € p.
We will show that ’cl’ is a closure operator. Note that clf) = (). Now if ¢t € A, then
te ANA= (At,A) € p(by C(ii)). Hence t € cl A. Thus A C clA, for all ACY.

Then let A C B CY and let t € clA. Then (A,t,A) € p, and since A C B,
by C(iii), (B,t,B) € p. Consequently, t € cl B, i.e. clA C clB.
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Now let ¢t € cl(AUB). Then (AUB,t, AUB) € p. According to C(iv), (A,t, AUB) €
por (B,t,AUB) € p. Soby C(vi), (AUB,t,A) € por (AUB,t, B) € p. Through C(iv),
(A,t,A) € por (B,t,A) € por (A,t,B) € por (B,t,B) € p. With C(vi), (A,t, A) € p
or (A,t,B) € p or (B,t,B) € p. Therefore, t € clA or (A,t,B) €porteclB. If
(A,t,B) € p, then (ANB,t, ANB) € p according to C(v). This implies ¢t € cl(AN B).
Since cl(ANB) C cl A and cl(ANB) C cl B (as shown above), it follows that cl(AUB) C
clAUclB.

Now prove that for every A C Y, cl(clA) = cl A. Obviously, cl A C cl(cl A). Let
t € cl(clA). Then (clA,t,clA) € p. Now let y € clA. Then (A4,y,A) € p. Thus
A CclAnclA and therefore for all y € cl AN cl A, we have (A,y, A) € p. It then
follows from C(v) that (A,t, A) € p. Sot € cl A. Consequently, cl(clA) C cl A. So
cl(clA) = cl A. Thus ’cl’ is a closure operator on Y. Let o be the corresponding
topology on Y generated by this closure operator ’cl’.

As defined above, we now write ¢t € cl,(A) iff (4,¢, A) € p. We will now show that
o = 7. If we can show that cl, A =cl; A for all A C Y, then our proof is complete.

Let ACY and t € cl, A. Then by definition (A4,t,A) € p = t € cl. A. Thus
cl, ACcl; A. Now let t € cl; A. Thent € cl,(ANA) = (A, t,A) € p=tecl,A
Therefore cl, A C cl, A. Thus, cl, A = cl, A. O

3. Topological concepts and nature of C-relations

For a closure operator ’cl’, the generated topology 7 on Y and a C-relation p on Y is
called a C-joint on Y iff the following holds: (A, z, B) € p iff x € cl, (AN B)’, for any
two subsets A and B of Y. If 7 and p on Yare C-joint on Y, then (Y, 7, p) is called a
TR-space.

Consider any TR-space (Y, 7,p). The following results in Theorem 3.1 can be
easily derived.

THEOREM 3.1. (i) A is a closed subset of Y with respect to T iff (A,z, A) & p for all
reY — A

(i) T is indiscrete iff for any non-empty subset A of Y, (A,x, A) € p for allxz €Y.
(ii3) 7 is discrete iff for any x €Y, (Y — {z}, 2, Y — {z}) ¢ p.

(iv) T is separable iff there exists a countable subset A of Y such that (A,z,A) € p
forallz €Y.

(v) T is disconnected iff there exists a non-empty proper subset A of Y such that
(A,z,A) ¢ pforallzeY — A and (Y — A,x2,Y — A) ¢ p for all x € A.

Proof. (i) Let A be a closed subset of Y with respect to 7. Let z € Y — A. Then
x ¢ A. Therefore, z ¢ cl,(AN A) (since A = cl; A). But we have (4,z,A4) € p iff
x € cl. (AN A). Hence it follows that (A, z, A) ¢ p. The ’only if’ part follows easily.

(ii) Let 7 be indiscrete. Let A C Y and let A be nonempty. Let © € Y. Since
cl; A =Y, we have z € cl;(AN A). Since 7 and p are C-joint, it follows that
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(A, z, A) € p. Conversely, suppose that for any non-empty subset A of Y, (4, z, A) € p
for all z € Y. Now 7 and p are C-joint. Hence, z € cl, (AN A) for all z € Y, i.e.
cl A=Y. So, Y is the only non-empty closed set in 7. Therefore, 7 is indiscrete.

(iii) Let 7 be discrete. Let z € Y. Now Y —{x} is closed in 7. So z ¢ cl.(Y —{z}),
ie. z ¢ cl (Y —{z})n (Y — {z})). Since 7 and p are C-joint, it follows that
(Y —{a},2,Y — {a}) ¢ p. Conversely, let (Y —{z},z,Y —{z}) ¢ p for every x € Y.
Since 7 and p are C-joint, z ¢ cl, (Y — {z}) N (Y — {z})) for every z € Y. So,
x ¢ cl.(Y — {z}) for every x € Y. Hence for each x € Y, Y — {x} is closed in 7, i.e.
{z} is open in T for every x € Y. Therefore 7 is discrete.

(iv) Let 7 be separable. Then there exists a countable subset say, A of Y which
is dense in 7. Then for each x € Y, x € cl; A. So, for each x € Y, z € cl,(ANA).
Since 7 and p are C-joint, it follows that (A, z, A) € p for all z € Y. Conversely, Let
there exist a countable subset A of Y for which (A,z,A) € p for all z € Y. Clearly
x €cl.(ANA) for all z € Y. Thus A is dense in 7. Hence 7 is separable.

(v) Let 7 be disconnected. Then there exists a proper subset A of Y which is both
open and closed in 7. Now if x € Y — A, then = ¢ cl; A, i.e. = ¢ cl.(ANA), ie.
(A2, A) ¢ p. similarly, (Y — A,2,Y — A) ¢ p for all x € A. Conversely, let there
exist a non-empty proper subset A of Y such that (A,z,A) ¢ pforallz € Y — A
and (Y — A,z,Y — A) ¢ p for all x € A. Tt follows easily that A and ¥ — A are both
closed in 7. Thus A is both open and closed in 7. Hence 7 is disconnected. O

DEFINITION 3.2. Let (X,7,p1) and (Y,0,p2) be two TR-spaces. A function f :
(X, 7,0)—(Y, 0, p2) is called C-continuous if (A, z, B) € p1=(f(4), f(z), f(B)) € pa.

THEOREM 3.3. f : (X,7) — (Y,0) is continuous iff f : (X,7,p1) — (Y,0,p2) is
C-continuous.

Proof. Let f : (X,7) — (Y,0) be continuous. Let (A4,z,B) € p;. We will show
that (f(A), f(z), f(B)) € p2. It suffices to show that f(z) € cl,(f(A) N f(B)). Let
H be any open set in o that contains f(x). Since f is continuous, f~*(H) € 7.Now
(A,z,B) € p1 = x € cl,(ANB). Alsox € f~(H) and therefore f~}(H)N(ANB) # 0.
Let z € f~Y(H)N(ANB). Then f(z) € H and f(z) € f(ANB). So f(z) € f(A)Nf(B).
Consequently HNf(A)Nf(B) # 0. Since H is arbitrarily taken from o, which contains
f(x), it follows that f(z) € clo(f(A) N f(B)). This part is therefore proven.
Conversely, let f : (X,7,p1) = (Y,0,p2) be C-continuous. We will show that
f:(X,7) = (Y,0) is continuous. It suffices to show that for any subset A of
Y, f(c-(A)) C cl, f(A). Let A CY. Let x € f(cl.(A)). Then there exists y €
cl-(A) such that f(y) = . Now y € cl,(4) = (A,y,A) € p1. Now, since f is C-
continuous, (f(A), f(y), f(A)) € pa. Therefore, f(y) € cl,(f(A) N f(A)) = cl, f(A)
i.e. x € cly f(A). Tt follows that f(cl-(A)) € cly f(A). This completes the proof. [

DEFINITION 3.4. Let (Y, 7, p) be a TR-space. A net {z,, : n € D} inY is said to have
a c-cluster point  in Y if for any A C Y and for any n € D, (A,z, A) ¢ p = there
exists m € D such that m > n and (A4, z,,, A) ¢ p.

THEOREM 3.5. Let (Y, T,p) be a TR-space.Then (Y, T) is compact iff every net in' Y
has a c-cluster point in'Y .
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Proof. Let (Y, 7) be compact. If possible, let {z,, : n € D} be a net in Y that has no
c-cluster point in Y. Then for each x € Y there exists A, CY and n, € D such that
(Az,x,Ay) ¢ p but for all m € D with m > n, we have (A, Tm, A;) € p.

Now (A,,z,A4,) ¢ p= x ¢ cl(A;) for each x € Y whereas

(Ap, i, Az) € p1 =z €cl(Ay) forall meD with m>mn,. (1)
For each = € X therefore there exists an open set G, (which contains x) such that
G:NA, =0. (2)

Let us now consider the collection {G, : © € Y'}. Since (Y, 7) is compact, there exists
a finite subcollection say, G, Gs,, - .., Gy, from {G, : © € Y} such that

k
Y =G (3)
i=1

Consider the corresponding n,, for each ¢ = 1,2,...,k. Since D is a directed set,
there exists n > n,, for all i = 1,2,...,k. By (3) z, € G, for some j =1,2...,k.
Also by (1), z,, € clA,, for alli =1,2,... k, so that

Gy NAy, #0 forall i=1,2,... k. (4)
But by (2), Gy, N Ay, =0, Gy, NAg, =0, ..., G, N A, = 0. This contradicts
with (4). Tt follows that if (Y, 7) is compact, then every net in Y has a c-cluster point
inY.

Conversely, let (Y, 7) not be compact. Then there exists a net {z, :n € D} inY
that has no cluster point in Y. We claim that {z,, : n € D} has no c-cluster point in
Y. If possible, let {z, : n € D} have a c-cluster point, say x, in Y. We now claim
that z is a cluster point of {z, : n € D}. Let G, be any open set in 7 that contains
x. Let n € D. Take A = X — G,. Then A is closed in 7. Since x ¢ A = cl A, we
have (A, x, A) ¢ p. Since x is a c-cluster point of {x,, : n € D}, there is m € D such
that m > n and (A, xm, A) & p. S0y ¢ cl(A) = A =X — G, = zp, € G, So for
n € D there is m € D such that m > n and x,, € G,. Therefore, = is a cluster point
of {z,, : m € D}. This is a contradiction. This completes the proof. O
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