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Abstract. A sequence {xn} is S-IK-convergent to ξ, if there exists a ‘big enough’ sub-
sequence {xnk} which K-converges to ξ via semi-open sets. In this paper, we introduce the
concept of S-IK-convergence which generalizes S-I-convergence and discuss some properties,
as well as its relation with compact sets. For two given ideals I and K, we justify the exis-
tence of an ideal such that IK-convergence and convergence with the third ideal coincides for
semi-open sets. Moreover, the notion of S-IK-cluster point of a sequence is defined and stud-
ied here. We characterize the collection of S-IK-cluster points of a sequence as semi-closed
subsets of the space.

1. Introduction

After Kuratowski introduced ideals in 1933, the term became known as a collection
of sets considered to be “small” or “negligible”. In an ordinary space, three basic
topological notions, namely convergence, closure and neighborhood, play a crucial
role in determining other topological properties. In the recent past, ideal theory has
been used together with convergence theory to develop some promising generalizations
of existing concepts in Point-Set Topology.

In particular, two notions for the convergence of a sequence were introduced in
2000 by Kostyrko et al. [7], called I and I∗-convergence for the real numbers and
later, in 2005, by Lahiri and Das [8] for a topological space. Undoubtedly, it was
actively practiced in the following period, and some work from it can be found in [4].
Later, in 2011, Macaz and Sleziak [10] introduced the notion of IK-convergence of a
function in a topological space. Although it appears in the context of I∗-convergence,
IK-convergence further extends the notion of ideal convergence. In particular, if the
ideals I and K coincide, then the terms IK and I-convergence also apply. In the last
decade, IK-convergence has been studied in detail in several articles, namely, [3, 10].
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2 On IK-convergence in topological spaces

On the other hand, Levine introduced semi-open sets [9] in a topological space in
1963, and afterwards it was used to generalize several concepts in Point-Set Topol-
ogy. Recently, Guevara et al. [5] used the concept of semi-open set to define and
study the notion of S-I-convergence in topological spaces. In this paper, we define
IK-convergence using semi-open sets in a topological space and denote it by S-IK-
convergence.

An ideal on a set S is a collection of subsets of the given set that is closed under
subset inclusion and finite union. Fin is a basic ideal that includes all finite subsets
of S. For a given ideal I ⊂ P (N), two additional subsets of P (N) namely, I∗ or F (I)
and I+ of P (N), are defined, namely a: I∗ := {A ⊂ N : A∁ ∈ I} and I+:= collection
of all subsets that do not belong to I. We say that two ideals I and K on S fulfill
the ideality condition if I ∪ K is a proper ideal [14], alternatively, S ̸= I ∪K, for all
I ∈ I, K ∈ K.

In this paper, we deal with the proper ideals (not containing N) on the set of
natural numbers N, which are admissible ideals (containing all finite subsets of N),
to study different aspects of S-IK-convergence in a topological space. Thus, in the
following part of this paper, all considered ideals are proper and admissible. The
main results in this paper are divided into two sections.

Section 2 introduces the S-IK-convergence for two ideals I, K satisfying the ide-
ality condition and some basic properties are investigated. Section 4 deals with the
definition and basic properties of S-IK-cluster points of a sequence. The two sections 3
and 5 contribute to answering an existence problem (Theorem 3.14, Theorem 5.5),
which can be formulated as follows: Whether there exists an ideal J for two given
ideals I, K such that S-IK-convergence and S-J -convergence coincide under certain
assumptions. Section 5 also contains the characterization of the collection sCx(IK) of
S-IK-cluster points of a sequence as semi-closed subsets (Theorem 5.8) and further,
we evaluate a condition for coincidence for the collection of sCx(IK) and sL(IK)
(Theorem 5.3).

2. Preliminaries

For a given function f : S → X, which is in fact a generalization of a sequence, Macaz
and Sleziak [10] defined the IK-convergence for two ideals I and K on S.

Definition 2.1 ([10]). A function f : S → X is said to be K-convergent to x ∈ X, if
for any nonempty open set U containing x, we have {s ∈ S : f(s) /∈ U} ∈ K.

Definition 2.2 ([10]). A function f : S → X is said to be IK-convergent to x ∈ X,
if there exists a set M ∈ F (I) such that the function g : S → X given by g(s) = f(s),
if s ∈ M and g(s) = x, if s /∈ M , is K-convergent to x. If f is IK-convergent to x,
then we write IK-lim f = x.

In particular, following is the definition of IK-convergence of a sequence in a space.
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Definition 2.3. A sequence {xn} is said to be IK-convergent to an element ξ ∈ X
if there exists a set M = {n1, n2, . . . , nk, . . .} ∈ I∗ such that the subsequence {xnk

}
is K-convergent to ξ.

Proposition 2.4 ([14, Proposition 2.1]). Let X be a topological space and f : S → X
be a function. Let I,K be two ideals on S such that I ∪ K is an ideal. Then
(i) IK∗

-lim f = x if and only if (I ∪ K)∗-lim f = x.

(ii) IK-lim f = x implies I ∪ K-lim f = x.

Some of the definitions and concepts of generalized open sets in [2,5,9,11,12] that
are used in the content of the accompanying sections are listed below.

Definition 2.5. Let X be a topological space. Then
(i) O ⊂ X is said to be semi-open [9] if there exists an open set U such that U ⊂
O ⊂ U . The collection of all semi-open subsets of X is denoted by SO(X).

(ii) The complement set of a semi-open set is termed as a semi-closed set.

(iii) The semi-closure [9] of a subset F of X, denoted by sCl(F ), is defined as the
intersection of all semi-closed set containing F . Otherwise, a point x ∈ sCl(A) if and
only if for every semi-open set U containing x, U ∩A ̸= ∅.

(iv) An element x ∈ F ⊂ X is said to be semi-limit point [2] of F , if for every
semi-open set O containing x, O ∩ F ̸= ϕ.

(v) A topological space X is said to be semi-Hausdorff [11] if for every distinct pair of
elements x, y ∈ X, there exists a disjoint pair of semi-open sets U and V containing
x and y respectively.

(vi) A function f : X → Y is said to be irresolute [5] if f−1(O) ∈ SO(X) for each
O ∈ SO(Y ). A function f : X → Y is irresolute [5] if and only if for each x ∈ X
and each V ∈ SO(Y ) containing f(x), there exists U ∈ SO(X) such that x ∈ U and
f(U) ⊂ V .

(vii) A function f : X → Y is said to be semi-continuous [9] if f−1(O) ∈ SO(X) for
each open set O ∈ Y . A function f : X → Y is semi-continuous [9] if and only if for
each x ∈ X and each open V in Y containing f(x), there exists U ∈ SO(X) such that
x ∈ U and f(U) ⊂ V .

Theorem 2.6 ( [5, Theorem 3.5]). Let X be a space and I be an ideal. If every
sequence {xn} in X has an S-I-cluster point, then every infinite subset of X has a
semi-ω-accumulation point. The converse is true if I does not contain any infinite
sets.

Meanwhile, we refer to [6, 8] for the basic general topological and ideal theoretic
terminologies, definitions and results mentioned in the content. In the following,
unless otherwise stated, we denote X as topological space and I and K as ideals
on N.



4 On IK-convergence in topological spaces

3. Some properties of S-IK-convergence

As a generalization of the work on S-I-convergence, we consider IK-convergence,
which is one of the most generalized among all ideal convergences, to study its prop-
erties using semi-open sets. We denote it as S-IK-convergence in a space X. A
sequence x = {xn} is called S-I-convergent [5] to an element ξ ∈ X if for every non-
empty semi-open set U containing ξ, the set {n ∈ N : xn /∈ U} belongs to I. Here we
define the notion of S-IK-convergence of a sequence in a topological space.

Definition 3.1. A sequence {xn} is said to be S-IM-convergent to an element ξ ∈ X
if there exists a set M = {n1, n2, . . . , nk, . . .} ∈ I∗ such that the subsequence {xnk

}
is S-M-convergent to ξ, where M is an ideal convergence mode.

If K is an ideal and M = K∗, then we say that {xn} is S-IK∗
-convergent to an

element ξ ∈ X. Also, if M = K, then {xn} is said to be S-IK-convergent to an
element ξ ∈ X. If the ideal K does not contain an infinite set, then Definition 3.1
exhibits the S-I∗-convergence. Also, if K is a P-ideal [3] (condition AP [8]), then
S-IK∗

and S-IK-convergence both coincide. Basically, K-convergence implies IK-
convergence (Definition 2.3), analogously we have the following lemma.

Lemma 3.2. S-K convergence implies S-IK-convergence.

Proof. Let {xn} be an S-K-convergent sequence to an element ξ in a space X. Then,
for any semi-open set U containing ξ, we have {n ∈ N : xn /∈ U} ∈ K. Then, for
any M ∈ I∗, the set {n ∈ M : xn /∈ U} ⊂ {n ∈ N : xn /∈ U} ∈ K. Thus, {xn} is
S-IK-convergent in X. □

Proposition 3.3. Let {xn} be a sequence in X. For I,K be two ideals on N such
that I ∪ K is an ideal. Then
(i) {xn} is S-IK∗

-converges to x if and only if {xn} is S-(I ∪ K)∗-converges to x.

(ii) Also, {xn} is S-IK-converges to x implies {xn} is S-I ∪ K-converges to x.

Proof. Consider two ideals I and K such that I ∪ K is an ideal.
(i) Let {xn} be a S-IK∗

-convergent to x. So, there exists M = {n1, n2, n3, . . .}
such that {xnk

} is S-K∗-convergent to x. Then, for any semi open set U containing
x, there exists N ∈ K∗ such that {nk ∈ N : xnk

/∈ U} ∈ Fin, i.e., {n ∈ M ∩N : xn /∈
U} ∈ Fin. But M ∩N ∈ (I ∩ K)∗. Hence, {xn} is S-(I ∪ K)∗-convergent to x.

Conversely, let {xn} be S-(I ∪ K)∗-convergent to x. So, for a semi-open set U
containing x, there exists M ∩ N ∈ (I ∪ K)∗, where M ∈ I∗, N ∈ K∗, such that
{n ∈ M ∩N : xn /∈ U} ∈ Fin. Consider a subsequence {xnk

}nk∈M of {xn}n∈N such
that {nk ∈ N : xnk

/∈ U} ∈ Fin. Thus, {xn} is S-IK∗
-convergent to x.

(ii) Let {xn} be S-IK-convergent to x. So, there exists M ∈ I∗ such that {n ∈
M : xn /∈ Ux} ∈ K, where U is an semi open set containing x. Then, {n ∈ N : xn /∈
U} ⊂ {n ∈ M : xn /∈ U} ∪ {n : n /∈ M}. Therefore, {n ∈ N : xn /∈ U} ∈ I ∪ K. Thus,
{xn} is S-I ∪ K-convergent to x. □

Following results are immediate consequences of Proposition 3.3.
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Corollary 3.4. Let I and K be two ideals on N provided I ∪ K is an ideal. Then
(i) S-IK∗

-convergence implies both S-I-convergence as well as S-K-convergence.

(ii) S-IK-convergence implies S-I-convergence provided K ⊆ I.
(iii) S-IK-convergence implies S-K-convergence provided I ⊆ K.

If K = Fin, then S-IK-convergence implies S-I-convergence. A simple observa-
tion is that if the ideals I and K both coincide, then S-IK-convergence appear as the
S-I-convergence. Eventually, if I, K = Fin, then S-IK-convergence coincide with
S-convergence and hence, further implies usual convergence. Following is an example
to show that even if I = K = Fin, usual convergence does not coincide with the
S-IK-convergence.

Example 3.5. Let I and K be two ideals in N such that I ∪ K is an ideal. Let R
be the set of real numbers with usual topology and let {xn} be defined as xn = ( 1n ).
Then xn → is0. Consider the semi-open set U = (−1, 0] containing 0. But {n ∈ N :
xn /∈ U} = N /∈ I ∪ K for any ideals I and K. So {xn} is not S-I ∪ K-convergent to
0. Therefore, {xn} is not S-IK-convergent to 0 by Proposition 3.3.

The proof of the next lemma follows immediately from the definition of S-IK-
convergence.

Lemma 3.6. S-IK-convergence implies IK-convergence, for any ideals I and K.

The following example shows that the converse of Lemma 3.6 is not necessarily
true.

Example 3.7. Let I and K be two ideals in N such that I ∪K is an ideal. Let [−1, 1]
be the interval in R with usual subspace topology and {xn} a sequence defined as
xn = ( 1n ) sin(

1
n ). Thus, for any open set U containing 0, we have {n ∈ N : xn /∈ U}

is finite, that implies xn →K 0. Therefore, {xn} is IK-convergent to 0. Let us now
consider the semi-open set V = (−1, 0] in [−1, 1]. Then {n ∈ N : xn /∈ V } = N /∈ I∪K.
Hence, xn ↛I∪K 0. It therefore follows from Proposition 2.4 (ii) that {xn} is not IK-
convergent to 0.

Theorem 3.8. In a semi-Hausdorff space X, each S-IK-convergent sequence has a
unique S-IK-limit in X, provided I ∪ K is an ideal.

Proof. Consider a S-IK-convergent sequence {xn} in a semi-Hausdorff space X. Sup-
pose that {xn} has two distinct S-IK-limits, say a and b. Being X a semi-Hausdorff
space, there exists U, V ∈ SO(X) with U∩V = ∅ such that a ∈ U , b ∈ V . As {xn} is S-
IK-convergent to a and b, there exist M1,M2 ∈ I∗ such that {n ∈ M1 : xn /∈ U} ∈ K
and {n ∈ M2 : xn /∈ V } ∈ K. So, for M = M1 ∩ M2 ∈ I∗ (̸= ∅), the sets
{n ∈ M : xn /∈ U} and {n ∈ M : xn /∈ V } belong to K. Now, we have

{n ∈ M : xn /∈ U ∩ V } = {n ∈ M : xn /∈ U} ∪ {n ∈ M : xn /∈ V } ∈ K.

Again,

{n ∈ N : xn /∈ U ∩ V } = {n ∈ M : xn /∈ U ∩ V } ∪ {n ∈ M∁ : xn /∈ U ∩ V }
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⊆ {n ∈ M : xn /∈ U ∩ V } ∪M∁ ∈ I ∪ K.

But, I ∪ K is an ideal, which implies {n ∈ N : xn /∈ U ∩ V } ≠ N. Therefore, we
conclude that {n ∈ N : xn ∈ U ∩ V } ≠ ∅, which is a contradiction. □

Corollary 3.9. In a Hausdorff space X, each S-IK-convergent sequence has a
unique S-IK-limit in X, provided I ∪ K is an ideal.

Remark 3.10. Since sequences in a general space are inadequate, the unique IK-
limit of every X-valued sequence does not necessarily imply that X is Hausdorff.
But the space X will be at least T1. If not, then there exists one distinct pair x,
y ∈ X such that for U (open set) containing x, it also contains y, or for U (open
set) containing y, it also contains x. Without loss of generality, we assume that for
U (open set) containing x implies that y ∈ U . Consider the sequence {xn} such that
xn = y, ∀n ∈ N. Undoubtedly, {xn} is IK-convergent to y. However, since x shares
all its open sets with y, every sequence IK that converges to y also converges to x.
Therefore, {xn} is IK-convergent to x. This contradicts our assumption. Thus X is
a T1-space. If X is a first countable space, then X is also Hausdorff.

Immediately, we observe that the above remark is true for S-IK-convergence in a
semi-Hausdroff space. So, using Theorem 3.8, we have the following result.

Theorem 3.11. If each sequence in a space X has a unique S-IK-limit, then X has
the semi-T1 [11] property. Moreover, X is a semi-Hausdorff space provided X is first
countable.

In a space, uniqueness of S-IK-limit of sequences is a stronger property than
that of usual limit. So, following question is relevant in this context: Does the
uniqueness of S-IK-limit of every sequence in X imply that the space X is
Hausdorff?

Proposition 3.3 hints at an interesting existence scenario which can be stated
as whether there exists an ideal J such that S-IK-convergence coincide with S-J -
convergence. Similar results for IK-convergence is affirmatively answered for Haus-
dorff spaces in article [14]. Following results contribute to the problem of interlinking
between S-IK-convergence and usual ideal convergence.

Remark 3.12. If I and K be two ideals on N satisfying the ideality condition. Con-
sider the set {K ∪ J : K ∈ K}, for any J ∈ I. If J is the collections of sets under the
operations finite union and subset inclusion among the members of {K ∪J : K ∈ K}.
Then, J is an ideal on N. Also, J ⊆ I ∪ K.

Lemma 3.13. Let I, K be two ideals on N satisfying ideality condition. Let {xn} be
a X-valued sequence. If J = ideal generated by the set {K ∪ J : K ∈ K), for any
J ∈ I. Then {xn} is S-J -convergent to x implies {xn} is S-IK-convergent to x.

Proof. Let x = {xn} be S-J -convergent in X, where J= ideal generated by the set
{K ∪ J : K ∈ K), for any J ∈ I. Assuming M = J∁ and V ∈ SO(X), we can
observe that {nk ∈ M : xnk

/∈ V } ⊆ {n ∈ N : xn /∈ V } \ {nk ∈ N : nk /∈ M}. Again,
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{nk ∈ M : xnk
/∈ V } \ J ⊆ (K ∪ J) \ J ∈ K. Subsequently, xnk

is S-K-convergent to
x. Hence, {xn} is S-IK-convergent to x. □

Theorem 3.14. Let X be a Hausdorff Space. Let {xn} be S-IK-convergent to x.
Then, there exists an ideal J such that x ∈ X is an S-IK-limit of the sequence {xn}
if and only if x is also a J -limit of {xn} provided I ∪ K is an ideal.

Proof. Suppose that {xn} is IK-convergent to x. So, there exists a set M ∈ I∗ such
that {nk ∈ M : xnk

/∈ Ux} ∈ K where Ux ∈ SO(X). Now, let J = M c. Since, (I ∪K)
is an ideal, the set {K ∪ J : K ∈ K} generates an ideal, say J . Then

{n ∈ N : xn /∈ Ux} ⊆ {nk ∈ M : xnk
/∈ Ux} ∪M∁ ∈ J .

Hence, {xn} is J -convergent to x.
Conversely, suppose that {xn} is S-J -convergent to x, where J = ideal generated

by (K ∪ J), for any J ∈ I. Then, by Lemma 3.13, {xn} is S-IK-convergent to x. □

Theorem 3.15. Let I and K be two ideals and F ⊂ X. If there exists a sequence
{xn} in F (with distinct elements) which is S-IK-convergent to ξ ∈ X, then ξ is a
semi-limit point of F , in essence, ξ ∈ sCl(F ), the semi-closure of F .

Proof. Let U be any semi-open subset of X containing the point ξ. Since {xn} is
S-IK-convergent to ξ ∈ X, so, there exists a set M ∈ I∗ such that {n ∈ M : xn /∈
U} ∈ K. In other words, {n ∈ M : xn ∈ U} /∈ K since K is an ideal. Then choose
n0 ∈ {n ∈ M : xn ∈ U} such that xn0

̸= ξ, then xn0
∈ F ∩ (U − {ξ}) and hence,

F ∩ (U − {ξ}) ̸= ∅. This shows that ξ is a semi-limit point of F . □

Corollary 3.16. Let I and K be two ideals and consider F ⊂ X. If there exists a
sequence {xn} in F (with distinct elements) which is S-IK-convergent to ξ ∈ X, then
ξ ∈ Cl(F ).

Theorem 3.17. If F ⊂ X is a semi-closed set, then for any sequence in F which is
S-IK-convergent to a, we have a ∈ F .

Proof. Suppose F ⊂ X is a semi-closed set and {xn} is any sequence in F that is S-IK-
convergent to the element a, but a /∈ F . Since F is semi-closed, we have sCl(F ) = F
and therefore a /∈ sCl(F ). Then there exists a semi-open set U containing a such
that F ∩ U ̸= ∅. Since {xn} is S-IK-convergent to a, there exists M ∈ I∗ such that
{n ∈ M : xn /∈ U} ∈ K. Furthermore, {n ∈ M : xn ∈ U} /∈ K, which implies that
{n ∈ M : xn ∈ U} ≠ ∅. According to our hypothesis, xn ∈ F , that implies F ∩U ̸= ∅.
This is a contradiction. □

Theorem 3.18. Let f : X → Y be a semi-continuous function. If {xn} is a sequence
in X which is S-IK-convergent to ξ ∈ X, then {f(xn)} is an IK-convergent sequence
to f(ξ).

Proof. Consider a sequence {xn} in X which is S-IK-convergent to ξ ∈ X. We claim
that {f(xn)} is S-IK-convergent to f(ξ). Suppose not, that is {f(xn)} is not S-IK-
convergent to f(ξ). Then there exists a open set V ⊆ Y , containing f(ξ) and for each
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M ∈ I∗, we have {n ∈ M : f(xn) /∈ V } /∈ K. Now by Definition 2.5 (vii), there exists
U ∈ SO(X) such that ξ ∈ U and f(U) ⊂ V . Now, {n ∈ M : f(xn) /∈ V } ⊂ {n ∈ M :
xn /∈ U}. Then {n ∈ M : xn /∈ U} /∈ K, that implies {xn} is not S-IK-convergent
to ξ. That is a contradiction to our assumption. Hence, {f(xn)} is S-IK-convergent
to f(ξ). □

Theorem 3.19. Let f : X → Y be an irresolute function. If {xn} is a sequence in X
which is S-IK-convergent to ξ ∈ X, then {f(xn)} S-IK-converges to f(ξ).

Proof. The proof is similar to that of Theorem 3.18 with the use of the characterization
of an irresolute function that is shown in Definition 2.5 (vi). □

4. S-IK-cluster points and several properties

In this section we introduce the terminology of IK cluster points of a sequence for
semi-open sets in a topological space. An element p in a space X is said to be an
I∗-cluster point of a sequence {xn} if there exists M = {m1,m2, . . . ,mk, . . .} ∈ I∗

such that, that the subsequence {xmk
} has a cluster point p, more precisely, for any

open set U containing p, the set {n ∈ N : xmk
∈ U} is an infinite subset of N.

Definition 4.1. Let X be a space and {xn} be a sequence in X. A point p ∈ X is
called a S-IM-cluster point of {xn} in X if there exists M ∈ I∗ such that for any
U ∈ SO(X) containing p, we have {n ∈ M : xn ∈ U} /∈ M, where M is an ideal
convergence mode.

If M = K and M = K∗, then Definition 4.1 refers to the definitions of S-IK-
cluster point and S-IK∗

-cluster point of a sequence correspondingly. It is doubtless
that each S-IK-limit of a sequence is a S-IK-cluster point, but the converse is not
always true. But if the ideal K is a maximal ideal (for any A ⊂ N it implies that
A ∈ K or A∁ ∈ K ), then the converse is also true i.e. S-IK-limit and S-IK-cluster
point of a sequence coincide.

Remark 4.2. Let X be a space and {xn} be a sequence in X. Then
1. If I = K, then S-IK-cluster points of {xn} coincide with that of S-I-cluster points.
2. If K = Fin, then S-IK-cluster points of {xn} are also S-I-cluster points.

We denote the collection of all S-IK-cluster points of a sequence x = {xn} in a
space by sCx(IK). Consequently, from Definition 4.1, it straightaway follows that
sCx(IK) ⊆ sCx(K).

Lemma 4.3. sCx(I ∪ K) ⊆ sCx(IK), for two ideals I and K such that I ∪ K is an
ideal.

Proof. Let y be not a S-IK-cluster point of x = {xn}. Then for all M ∈ I∗ there
exists U ∈ SO(X) containing y such that {n ∈ M : xn ∈ U} ∈ K. Hence, {n ∈ N :
xn ∈ U} ⊆ {n ∈ M : xn ∈ U} ∪ M∁ ∈ I ∪ K. Hence, y is not a S-(I ∪ K)-cluster
point of x. □
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Theorem 4.4. Let I, K, I1, I2, K1 and K2 be ideals on N. Suppose that x = {xn},
y = {yn} are two sequences in a space X. Then
(i) If K1 ⊂ K2, then sCx(IK2) ⊆ sCx(IK1),

(ii) If I1 ⊂ I2, then sCx(I1K) ⊆ sCx(I2K)
(iii) and if {n ∈ N : xn ̸= yn} ∈ K, then sCx(IK) = sCy(IK).

Proof. The proof of (i) and (ii) follows directly from the Definition 4.1.
(iii) Consider, N = {n ∈ N : xn ̸= yn} ∈ K. Suppose that a ∈ sCx(IK), then there

exists M ∈ I∗ such that for each Ua ∈ SO(X), we have {n ∈ M : xn ∈ Ua} /∈ K. We
negate the possibility of M ∩ N = ∅, as in that case the result follows immediately.
Again, M ∩N ∈ K and

{n ∈ M : yn ∈ Ua} = {n ∈ M ∩N : yn ∈ Ua} ∪ {n ∈ M \N : xn ∈ U}.
However, {n ∈ M ∩ N : yn ∈ U} ∈ K. Thus, {n ∈ M : yn ∈ Ua} /∈ K. Thus,
a ∈ sCy(IK). Since the sequences x, y are taken arbitrarily, hence sCx(IK) =
sCy(IK). □

Recall that an element p ∈ X is a semi-ω-accumulation point [5] of A ⊂ X if for
every semi-open set U containing p, U ∩A is an infinite set.

Theorem 4.5. Let X be a space and I, K be two ideals. If every sequence {xn} in X
has a S-IK-cluster point, then every infinite subset of X has a semi-ω-accumulation
point.

Proof. Let F (infinite) ⊂ X, then there exists a sequence {xn} of distinct points in F .
Suppose that every sequence in X has a S-IK-cluster point. Let a be a S-IK-cluster
point of {xn}. Then, for U ∈ SO(X) containing a, we have {n ∈ M : xn ∈ U} /∈ K.
Since as per assumption, Fin ⊂ K then the set {n ∈ M : xn ∈ U} is infinite. Since
xn ∈ F , U ∩ F is a infinite set. Hence a is semi-ω-accumulation point of F . □

Corollary 4.6. Let X be a space. If every sequence {xn} has a S-IK-cluster point,
then every infinite subset of X has a ω-accumulation point.

Recall that a space X is semi-compact [13] if every semi-open cover of X possesses
a finite subcover. Similarly, X is said to be semi-Lindelöf if every semi-open cover of
X possesses a countable subcover.

Theorem 4.7. If X is a semi-Lindelöf space and each sequence in X has an S-IK-
cluster point, then X is a semi-compact space.

Proof. Suppose thatX is a semi-Lindelöf space and that eachX-valued sequence has a
S-IK-cluster point. Let S = {Sλ : λ ∈ Λ} be a semi-open cover of X. So, there exists
a countable subcover S ′

= {S1, S2, . . . , Sm, . . .}. If possible, consider the sequence
U = {Um} such that U1 = S1 and for each m > 1, let Um = Sm, where Sm is the first
member of the sequence of U ’s such that Sm ⊈ U1 ∪ U2 ∪ . . . ∪ Um−1. Assuming the
axiom of choice, consider a sequence x = {xm} such that x1 ∈ U1 and for each m > 1,
let xm ∈ Um−(U1∪U2∪. . .∪Um−1). Now by our hypothesis, {xm} has a S-IK-cluster
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point, say l. Then, there exists j such that l ∈ Uj . Consequently, there exists a set
M ∈ I∗ such that {n ∈ M : xn ∈ Uj} /∈ K. So, the set {n ∈ M : xn ∈ Uj} must be
a infinite subset of N. Thus, there exists k > j such that k ∈ {n ∈ M : xn ∈ Uj};
that is xk ∈ Uj , which is a contradiction. Subsequently, there must exists m0 ∈ N
such that the process of induction for {Um} is impossible to continue after m = m0.
Therefore, {U1, U2, . . . , Um0} is a finite subcover of X for given cover S. □

Corollary 4.8. If X is a semi-Lindeloff space and each X-valued sequence has an
S-IK-cluster point, then X is a compact space.

5. Some characterizations

Considering that semi-closed subsets of a semi-compact space is again semi-compact
[13], we compare the collection of semi-limits of a sequence and that of semi-cluster
points of a sequence in a topological space.

Theorem 5.1. Let I and K be two ideals satisfying ideality condition and K be a
semi-compact subset of a space X. For any sequence {xn} in X, if {n ∈ N : xn ∈
K} /∈ (I ∪ K), then K ∩ sCx(IK) ̸= ∅.

Proof. If possible, consider K ∩ sCx(IK) ̸= ∅. Then for each c ∈ K, there exists a set
Mc ∈ I∗ such that for any Uc ∈ SO(X) containing c, we have Rc = {n ∈ Mc : xn ∈
Uc} ∈ K. Now, K ⊂

⋃
c∈K

Uc, hence the semi open cover {Uc : c ∈ K} contains a finite

subcover Uc1 , Uc2 , . . . , Uck . Consider M = M1∩M2∩ . . .∩Mk ∈ I∗ such that for each
c ∈ K, we have Rc = {n ∈ M : xn ∈ Uc} ∈ K. So, {n ∈ M : xn ∈ K} ⊂ Rc1 ∪ Rc2 ∪
. . .∪Rck . Now, right hand side of the above set inequality belongs to K, that implies
{n ∈ M : xn ∈ K} ∈ K. But, {n ∈ N : xn ∈ K} ⊂ {n ∈ M : xn ∈ K}∪M∁ ∈ (I ∪K).
This is a contradiction. □

Theorem 5.2. Let X be a semi-compact space. Suppose that {xn} is a sequence in X
such that sCx(IK) = {l}. Then S-IK-limxn = l. Further, if the ideal K is a P -ideal,
then S-IK∗

-limxn = l.

Proof. Consider a semi-open set Ul containing l. Then X ′ = X \ Ul is a semi-closed
subset of X. Now, for each z ∈ X ′ =⇒ z /∈ sCx(IK). So, for all M ∈ I∗, there
exists Uz ∈ SO(X) containing z such that {n ∈ M : xn ∈ Uz} ∈ K. Now, the
semi-open cover {Uz}z∈X′ of X ′ has a finite subcover, say {Uz1 , Uz2 , . . . , Uzk}. Then⋃
i≤k

{n ∈ M : xn ∈ Uzi} ∈ K. That implies {n ∈ M : xn ∈ Ul} ∈ K∗. Therefore,

S-IK-limxn = l. □

The following result on the collection sCx(IK) and sL(IK) (the collection of semi-
limits of a sequence) summarise the Theorem 5.1 and Theorem 5.2.

Theorem 5.3. Suppose that {xn} is a sequence in X such that {n ∈ N : xn ∈
K} /∈ (I ∪ K), for any semi-compact K ⊂ X. Then S-IK-limxn = l if and only if
sCx(IK) = {l}.
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In this segment, the existence problem mentioned in earlier sections is discussed
further and the following results are obtained. Here we discuss the existence of the
ideal J for a given S-IK-clustered sequence such that their corresponding semi-cluster
point sets coincides.

Lemma 5.4. Let I, K be two ideals on N satisfying ideality condition. Let x = xn be
a sequence in X. If J = ideal generated by (K∪J), for any J ∈ I. Then a ∈ sCx(J )
implies a ∈ sCx(IK).

Proof. Contrapositively, let a /∈ sCx(IK). Then there exists at least an open set
V ∈ SO(X) containing a for which, for all M ∈ I∗ we have {n ∈ M : xn ∈ V } ∈ K.
Particularly, for Mj = J∁ ∈ I∗, we have {n ∈ N : xn ∈ V } ⊆ {n ∈ Mj : xn ∈
V } ∪Mj

∁. That implies {n ∈ N : xn ∈ V } ∈ (K ∪ J). Hence, a /∈ sCx(J ). □

Theorem 5.5. Let X be a Hausdorff space and x = {xn} be a sequence in X. Then
there exists an ideal J such that a ∈ sCx(J ) if and only if a ∈ sCx(IK) provided
I ∪ K is an ideal.

Proof. Consider, a /∈ sCx(J ), where J is the ideal generated by K∪J , for any J ∈ I,
provided (I∪K) is an ideal. We claim that a /∈ sCx(IK). So, there exists Ua ∈ SO(X)
containing a such that {n ∈ N : xn ∈ Ua} ∈ J . Let J = M∁. Thus,

{n ∈ M : xn ∈ Ua} ⊆ {n ∈ N : xn ∈ Ua} \M∁.

Therefore, {n ∈ M : xn ∈ Ua} ⊆ (K∪J)\J ∈ K, for any M ∈ I∗. Thus a /∈ sCx(IK).
Converse part of the proof is immediate by Lemma 3.13. □

For a non Hausdorff space, does there exist an ideal J for a given S-IK-
clustered sequence such that their corresponding set of semi-cluster points
coincides?

Here we characterize the collection of semi-cluster points of a sequence as a known
subsets in a topological space. Recall that a subset D of a topological space X is said
to be dense in X if for any open set U , U ∩D ̸= ∅. In an arbitrary space, the notion
of dense set for semi-open sets is equivalent to that of open sets.

Theorem 5.6 ([12, Theorem 2.4]). Let X be a space and D ⊂ X. Then D is dense
in X if and only if U ∩D ̸= ∅ for every U ∈ SO(X).

Definition 5.7. Let X be an arbitrary space. We say that X is a semi-closed hered-
itarily separable space if every semi-closed subsets of X is separable.

Theorem 5.8. Let I, K be two ideals on N and X be a space. Then
(i) For x = {xn}n∈N, a sequence in X; sCx(IK) is a semi-closed set.

(ii) If X is semi-closed hereditarily separable and there exists a disjoint sequence of
sets {Dn} such that Dn ⊂ N, Dn /∈ I,K for all n, then for every non empty semi-
closed subset F of X, there exists a sequence x in X such that F = sCx(IK) provided
I ∪ K is an ideal.
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Proof. Consider the sequence x = {xn} in X and let I, K be the two ideals on N.
(i) Let y ∈ sCl(Cx(IK)); the semi-closure of Cx(IK). Let U be a semi-open set

containing y. It is clear that U ∩ Cx(IK) ̸= ∅. Let q ∈ U ∩ Cx(IK) i.e., q ∈ U and
q ∈ Cx(IK). Now there exists a set M ∈ I∗ such that {n ∈ M : yn ∈ U} /∈ K. Thus,
y ∈ Cx(IK).

(ii) F is separable as a semi-closed subset of X. Then by Definition 2.3 of [15] and
Theorem 5.6, there exists a countable set S = {s1, s2, . . .} ⊂ F such that sCl(S) = F .
Consider xn = si for n ∈ Di. Then, we have a subsequence {kn} of the sequence
{n}. Now, consider the sequence x = {xnk

} and let y ∈ sCx(K) (taking y ̸= si
otherwise if y = si for some i, then y is eventually (except finite elements) in F ).
We claim that sCx(IK) ⊂ F . Let U be any semi-open set containing y. Then
{n : xnk

∈ U} /∈ K ( ̸= ∅). So, si ∈ U for some i. Therefore, F ∩ U is non empty.
So y is a semi-limit point of F and semi-closedness of F implies y ∈ F . Hence
sCx(K) ⊂ F . Further sCx(IK) ⊆ sCx(K) ⊂ F . For the converse argument, consider
a ∈ F and U be a semi-open set containing a, then there exists si ∈ S such that
si ∈ U . Then {n : xnk

∈ U} ⊃ Di (/∈ K, I). Thus {n : xnk
∈ U} /∈ (I ∪ K) i.e.,

a ∈ sCx(I ∪ K). Again, by Lemma 4.3, sCf (I ∪ K) ⊆ sCf (IK). Thus, we get the
reverse implication. □

Remark 5.9. Theorem 5.8 extends [8, Theorem 10] to semi-open sets, it follows by
letting I, K coincide and using open sets instead of semi-open sets in the above
theorem.
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