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Abstract. In this paper, we define generalized φ−quasi contraction map which is more
general than strict quadratic quasi contraction map by using an altering distance function φ
and prove the existence and uniqueness of fixed points of these maps satisfying asymptotically
regular property in the setting of complete metric spaces. We extend these results to T -
orbitally complete metric spaces. Examples are provided to illustrate our results. Our results
generalize Theorem 4 of [O. Popescu, G. Stan, Some fixed point theorems for quadratic quasi
contractive mappings, Symmetry, 11 (2019)].

1. Introduction

The study and development of fixed point theory depends mainly on the generalization
of the conditions that guarantee the existence and, if possible, the uniqueness of fixed
points, as well as on the generalization of the ambient space of the operator under
consideration. Since the discovery of the Banach contraction principle, there have
been several generalizations.

In 1962 Edelstein [3] proved the following fixed point theorem.

Theorem 1.1. Let (X, d) be a compact metric space and let T : X → X be a mapping
such that d(Tx, Ty) < d(x, y) for all x, y ∈ X with x ̸= y. Then, T has a unique fixed
point.

Afterwards in 1973, Hardy and Rogers [5] extended Theorem 1.1 and proved the
following theorem.

Theorem 1.2. Let (X, d) be a compact metric space and let T : X → X be a mapping
satisfying inequality

d(Tx, Ty) < A · d(x, Tx) +B · d(y, Ty) + C · d(x, y) (1)
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for all x, y ∈ X and x ̸= y, where A,B,C are positive and A + B + C = 1. Then T
has a unique fixed point.

In 1980, Greguš [4] proved the following theorem in Banach spaces.

Theorem 1.3. Let X be a Banach space and C a closed convex subset of X. Let
T : X → X be a mapping satisfying inequality

∥Tx− Ty∥ ≤ a∥x− y∥+ b∥x− Tx∥+ c∥y − Ty∥ (2)

for all x, y ∈ C, where a, b, c are positive and a+ b+ c = 1. Then T has a unique fixed
point.

Recently in 2019, Popescu and Stan [8] introduced the notion of quadratic quasi
contraction mapping.

Definition 1.4. A mapping T : X → X of a metric space X into itself is said to be
quadratic quasi contraction map if there exists a ∈ (0, 1

2 ) such that

d2(Tx, Ty) ≤ a · d2(x, Tx) + a · d2(y, Ty) + (1− 2a) · d2(x, y) (3)

for all x, y ∈ X. T is said to be strict quadratic quasi contraction map if

d2(Tx, Ty) < a · d2(x, Tx) + a · d2(y, Ty) + (1− 2a) · d2(x, y) (4)

for all x, y ∈ X with x ̸= y.

Remark 1.5. Popescu and Stan [8] observed that if a selfmap T satisfies the inequal-
ity (1), then it satisfies (4), but its converse is not true [8, Example 1]. Therefore,
strict quadratic quasi contraction maps are more general than the maps that satisfy
the inequality (1).

Popescu and Stan [8] proved the following theorems.

Theorem 1.6 ([8, Theorem 4]). Let (X, d) be a compact metric space and let T :
X → X be a strict quadratic quasi contraction map. Then T has a unique fixed point
v ∈ X. Moreover if T is continuous, then for each x ∈ X, the sequence of iterates
{Tnx} converges to v.

Theorem 1.7 ([8, Theorem 5]). Let X be a Banach space and C be a closed convex
subset of X. Let T : C → C be a mapping satisfying the inequality:

∥Tx− Ty∥2 ≤ a∥x− Tx∥2 + a∥y − Ty∥2 + b∥x− y∥2

for all x, y ∈ C, where 0 < a < 1
2 , b = 1− 2a. Then T has a unique fixed point.

In 1967, the concept of asymptotic regularity of a selfmap at a point in the space
was introduced by Browder and Petryshyn [2].

Definition 1.8. Let (X, d) be a metric space and T : X → X be a mapping. Let
x ∈ X. If lim

n→+∞
d(Tnx, Tn+1x) = 0 then T is said to be asymptotically regular at a

point x in X. If T is asymptotically regular at every point x in X then we say that
T is asymptotically regular on X.
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In 1984, Khan, Swaleh and Sessa [6] considered contraction condition with an
altering distance function to prove the existence of fixed points in complete metric
spaces.

Definition 1.9. Let φ : R+ → R+ (R+ = [0,+∞)) be a function. If φ satisfies the
conditions
(i) φ is continuous, (ii) φ is monotonically increasing, (iii) φ(t) = 0 iff t = 0,
then φ is said to be an altering distance function or control function.

We denote the class of all altering distance functions by Φ.
For more details on altering distance functions and results based on altering dis-

tance functions, we refer to [7, 10,11].
Motivated by the work of Popescu and Stan [8], as well as Khan, Swaleh and

Sessa [6], in Section 2 we define generalized φ-quasi contraction maps using an altering
distance function φ and prove the existence and uniqueness of fixed points of these
maps under asymptotically regular property in complete metric spaces. In Section 3
we extend our results to T -orbitally complete metric spaces. In Section 4 we provide
examples to illustrate our results. Our results extend and generalize Theorem 1.6 and
Theorem 1.7 to complete metric spaces.

2. Fixed points of generalized φ-quasi contraction maps

In the following, we define generalized φ-quasi contraction map.

Definition 2.1. Let (X, d) be a metric space and T : X → X be a mapping. Assume
that there exist φ ∈ Φ and a ∈ (0, 1

2 ) and a nonnegative real number r ∈ (0, a) such
that

φ(d(Tx, Ty)) ≤ a[φ(d(x, Tx)) + φ(d(y, Ty))]

+ (1− 2a)φ(d(x, y)) + r[φ(d(x, Ty)) + φ(d(y, Tx))] (5)

for all x, y ∈ X. Then we say that T is a generalized φ-quasi contraction map.

We note that if φ(t) = t2, t ≥ 0, r = 0 then T is a quadratic quasi contraction.

Remark 2.2. The class of generalized φ-quasi contraction maps are more general
than strict quadratic quasi contraction maps (see Example 4.2).

Lemma 2.3 ([1, 9]). Suppose (X, d) is a metric space. Let {xn} be a sequence in X
such that d(xn, xn+1) → 0 as n → +∞. If {xn} is not a Cauchy sequence then there
exist ϵ > 0 and sequences of positive integers {mk} and {nk} with mk > nk > k such
that d(xmk

, xnk
) ≥ ϵ, d(xmk−1, xnk

) < ϵ and
(i) lim

k→+∞
d(xmk

, xnk
) = ϵ (ii) lim

k→+∞
d(xmk−1, xnk

) = ϵ,

(iii) lim
k→+∞

d(xmk−1, xnk+1) = ϵ, (iv) lim
k→+∞

d(xmk−1, xnk−1) = ϵ.
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Theorem 2.4. Let (X, d) be a complete metric space. Let T : X → X be a generalized
φ-quasi contraction map. If T is asymptotically regular at some point x0 in X then
T has a unique fixed point in X.

Proof. Let T : X → X be asymptotically regular at a point x0 in X. Let us consider
the sequence {Tnx0}.

Let m,n ∈ N and m > n. Now from the inequality (5) and by using the triangle
inequality, we have

φ(d(Tmx0, T
nx0)) = φ(d(T (Tm−1x0), T (T

n−1x0)))

≤ a[φ(d(Tm−1x0, T
mx0))+φ(d(Tn−1x0, T

nx0))]+(1−2a)φ(d(Tm−1x0, T
n−1x0))

+r[φ(d(Tm−1x0, T
nx0))+φ(d(Tn−1x0, T

mx0))]

≤ a[φ(d(Tm−1x0, T
mx0))+φ(d(Tn−1x0, T

nx0))]+(1−2a)φ(d(Tm−1x0, T
mx0)

+d(Tmx0, T
nx0)+d(Tnx0, T

n−1x0))

+r[φ(d(Tm−1x0, T
mx0)+d(Tmx0, T

nx0))+φ(d(Tn−1x0, T
nx0)+d(Tnx0, T

mx0))].

On letting m,n → +∞, we get

lim
m,n→+∞

φ(d(Tmx0, T
nx0)) ≤

a[ lim
m→+∞

φ(d(Tm−1x0, T
mx0))+ lim

n→+∞
φ(d(Tn−1x0, T

nx0))]

+(1−2a)[ lim
m,n→+∞

φ(d(Tm−1x0, T
mx0)+d(Tmx0, T

nx0)+d(Tnx0, T
n−1x0))]

+r[ lim
m,n→+∞

φ(d(Tm−1x0, T
mx0)+d(Tmx0, T

nx0))

+ lim
m,n→+∞

φ(d(Tn−1x0, T
nx0)+d(Tnx0, T

mx0))].

Since φ is continuous, it follows that

φ( lim
m,n→+∞

d(Tmx0, T
nx0)) ≤ a[φ( lim

m→+∞
d(Tm−1x0, T

mx0))+φ( lim
n→+∞

d(Tn−1x0, T
nx0))]

+(1−2a)φ( lim
m→+∞

d(Tm−1x0, T
mx0)+ lim

m,n→+∞
d(Tmx0, T

nx0)

+ lim
n→+∞

d(Tnx0, T
n−1x0))+r[φ( lim

m→+∞
d(Tm−1x0, T

mx0)+ lim
m,n→+∞

d(Tmx0, T
nx0))

+φ( lim
n→+∞

d(Tn−1x0, T
nx0)+ lim

m,n→+∞
d(Tnx0, T

mx0))].

Now by using the asymptotically regularity of T , we obtain

φ( lim
m,n→+∞

d(Tmx0, T
nx0))

≤ (1− 2a)φ( lim
m,n→+∞

d(Tmx0, T
nx0)) + 2rφ( lim

m,n→+∞
d(Tmx0, T

nx0))

= ((1− 2a) + 2r)φ( lim
m,n→+∞

d(Tmx0, T
nx0)),

(1− ((1− 2a) + 2r))φ( lim
m,n→+∞

d(Tmx0, T
nx0)) ≤ 0,

i.e. 2(a− r)φ( lim
m,n→+∞

d(Tmx0, T
nx0)) ≤ 0.

This implies that φ(limm,n→+∞ d(Tmx0, T
nx0)) = 0, since a − r > 0. Therefore,
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limm,n→+∞ d(Tmx0, T
nx0) = 0 and thus {Tnx0} is Cauchy. Since X is complete,

there exists a point u in X such that limn→+∞ Tnx0 = u.
We now consider

φ(d(Tnx0, Tu)) ≤ a[φ(d(Tn−1x0, T
nx0)) + φ(d(u, Tu))] + (1− 2a)φ(d(Tn−1x0, u))

+ r[φ(d(Tn−1x0, Tu)) + φ(d(Tnx0, u))]

≤ a[φ(d(Tn−1x0, T
nx0)) + φ(d(u, Tu))] + (1− 2a)φ(d(Tn−1x0, u))

+ r[φ(d(Tn−1x0, u) + d(u, Tu)) + φ(d(Tnx0, u))].

On letting n → +∞, we have

lim
n→+∞

φ(d(Tnx0, Tu)) ≤ a[ lim
n→+∞

φ(d(Tn−1x0, T
nx0))+φ(d(u, Tu))]

+(1−2a) lim
n→+∞

φ(d(Tn−1x0, u))

+r[ lim
n→+∞

φ(d(Tn−1x0, u)+d(u, Tu))+ lim
n→+∞

φ(d(Tnx0, u))].

Since φ is continuous, we have

φ( lim
n→+∞

d(Tnx0, Tu)) ≤ a[φ( lim
n→+∞

d(Tn−1x0, T
nx0))+φ(d(u, Tu))]

+(1−2a)φ( lim
n→+∞

d(Tn−1x0, u))

+r[φ( lim
n→+∞

d(Tn−1x0, u)+d(u, Tu))+φ( lim
n→+∞

d(Tnx0, u))]

and hence

φ(d(u, Tu)) ≤ aφ(d(u, Tu))+rφ(d(u, Tu)),

so that φ(d(u, Tu)) ≤ 0 (since (a+r) < 1). Therefore φ(d(u, Tu)) = 0, which implies
that d(u, Tu) = 0. Therefore Tu = u and u is a fixed point of T . Suppose that v is
another fixed point of T . Then

φ(d(u, v)) = φ(d(Tu, Tv))

≤ a[φ(d(u, Tu))+φ(d(v, Tv))]+(1−2a)φ(d(u, v))+r[φ(d(u, Tv))+φ(d(v, Tu))]

= a[φ(d(u, u))+φ(d(v, v))]+(1−2a)φ(d(u, v))+r[φ(d(u, v))+φ(d(v, u))]

= ((1−2a)+2r)φ(d(u, v)).

This implies that

(1− ((1− 2a) + 2r))φ(d(u, v)) ≤ 0, i.e. 2(a− r)φ(d(u, v)) ≤ 0.

Since r < a, we have φ(d(u, v)) ≤ 0, so that φ(d(u, v)) = 0 and d(u, v) = 0. Therefore
v = u and u is the unique fixed point of T . □

Theorem 2.5. Let (X, d) be a metric space and T , a mapping of X into itself. As-
sume that
(i) T is a generalized φ-quasi contraction map.

(ii) T is asymptotically regular at a point x in X and

(iii) the sequence of iterates {Tnx} has a subsequence {Tnkx} such that {Tnkx} con-
verges to a point z in X,
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then z is the unique fixed point of T and {Tnx} also converges to z.

Proof. Let T be asymptotically regular at x in X and consider the sequence {Tnx}.
Suppose that {Tnkx} is a subsequence of {Tnx} such that limk→+∞ Tnkx = z

and Tz ̸= z. By inequality (5), we have

φ(d(Tnkx, Tz)) = φ(d(T (Tnk−1x), T z))

≤ a[φ(d(Tnk−1x, Tnkx)) + φ(d(z, Tz))] + (1− 2a)φ(d(Tnk−1x, z))

+ r[φ(d(Tnk−1x, Tz)) + φ(d(z, Tnkx))]

≤ a[φ(d(Tnk−1x, Tnkx)) + φ(d(z, Tz))] + (1− 2a)φ(d(Tnk−1x, Tnkx) + d(Tnkx, z))

+ r[φ(d(Tnk−1x, Tnkx) + d(Tnkx, z) + d(z, Tz)) + φ(d(z, Tnkx))].

On letting k → +∞, and using the continuity of φ, it follows that

φ( lim
k→+∞

d(Tnkx, Tz)) ≤ a[φ( lim
k→+∞

d(Tnk−1x, Tnkx)) + φ(d(z, Tz))]

+ (1− 2a)φ( lim
k→+∞

d(Tnk−1x, Tnkx) + lim
k→+∞

d(Tnkx, z))

+ r[φ( lim
k→+∞

d(Tnk−1x, Tnkx) + lim
k→+∞

d(Tnkx, z) + d(z, Tz))

+ φ( lim
k→+∞

d(z, Tnkx))].

Since T is asymptotically regular:

φ(d(z, Tz)) ≤ aφ(d(z, Tz)) + rφ(d(z, Tz)) = (a+ r)φ(d(z, Tz))

Since a + r < 1, φ(d(z, Tz)) ≤ 0 so that φ(d(z, Tz)) = 0. Therefore Tz = z and z is
a fixed point of T .

Uniqueness of fixed point follows trivially by applying the inequality (5).

We now show that {Tnx} is Cauchy. Suppose that the sequence {Tnx} is not
Cauchy. Then from Lemma 2.3, there exist ϵ>0 and subsequences of positive in-
tegers {m(k)} and {n(k)} with m(k)>n(k)>k such that d(Tm(k)x, Tn(k)x)≥ϵ and
d(Tm(k)−1x, Tn(k)x)>ϵ and we have limk→+∞d(Tm(k), Tn(k))=ϵ, limk→+∞d(Tm(k)−1x,
Tn(k)x)=ϵ and limk→+∞d(Tm(k)−1x, Tn(k)−1x)=ϵ. We now consider

φ(ϵ) ≤ φ(d(Tm(k)x, Tn(k)x)) = φ(d(T (Tm(k)−1x), T (Tn(k)−1x)))

≤ a[φ(d(Tm(k)−1x, Tm(k)x)) + φ(d(Tn(k)−1x, Tn(k)x))]

+ (1− 2a)φ(d(Tm(k)−1x, Tn(k)−1x)) + r[φ(d(Tm(k)−1x, Tn(k)x))

+ φ(d(Tn(k)−1x, Tm(k)x))]

≤ a[φ(d(Tm(k)−1x, Tm(k)x)) + φ(d(Tn(k)−1x, Tn(k)x))]

+ (1− 2a)φ(d(Tm(k)−1x, Tn(k)−1x)) + r[φ(d(Tm(k)−1x, Tm(k)x)

+ d(Tm(k)x, Tn(k)x)) + φ(d(Tn(k)−1x, Tn(k)x) + d(Tn(k)x, Tm(k)x))].

On letting k → +∞, we have

φ(ϵ) ≤ a[φ( lim
k→+∞

d(Tm(k)−1x, Tm(k)x)) + φ( lim
k→+∞

d(Tn(k)−1x, Tn(k)x))]
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+ (1− 2a)φ( lim
k→+∞

d(Tm(k)−1x, Tn(k)−1x)) + r[φ( lim
k→+∞

d(Tm(k)−1x, Tm(k)x)

+ lim
k→+∞

d(Tm(k)x, Tn(k)x)) + φ( lim
k→+∞

d(Tn(k)−1x, Tn(k)x)

+ lim
k→+∞

d(Tn(k)x, Tm(k)x))].

Since T is asymptotically regular φ(ϵ) ≤ (1− 2a)φ(ϵ) + 2rφ(ϵ) = ((1− 2a) + 2r)φ(ϵ),
i.e. 2(a − r)φ(ϵ) ≤ 0, and so φ(ϵ) ≤ 0, which is a contradiction. Therefore {Tnx} is
Cauchy.

Now, by our assumption (ii), it follows that the sequence {Tnx} converges to z
in X. Hence the theorem follows. □

Remark 2.6. Since every strictly quadratic quasi contraction map is a generalized
φ-quasi contraction map with φ(t) = t2, t ≥ 0, it follows that Theorem 1.6 follows as
a corollary of Theorem 2.4, which in turn follows from Remark 1.5 that Theorem 1.2
also follows as a corollary of Theorem 2.4 in the context of complete metric spaces.

3. Fixed points in orbitally complete metric spaces

Let (X, d) be a metric space and T : X → X. For x0 ∈ X,O(x0) = {Tnx0/n =
0, 1, 2, . . .} is called the orbit of x0, where T 0 = I, I the identity map of X.

A metric space X is said to be T -orbitally complete if every Cauchy sequence
which is contained in O(x) for all x in X converges to a point of X.

Every complete metric space is T -orbitally complete for any T , but every T -
orbitally complete metric space need not be a complete metric space. For more
details, we refer to [12].

In the following, we prove the existence of fixed points of generalized φ-quasi
contraction maps in T -orbitally complete metric spaces.

Theorem 3.1. Let (X, d) be a T -orbitally complete metric space. Assume that T is
asymptotically regular at some point x0 in X. If there exist a function φx0 ∈ Φ, a ∈
(0, 1

2 ) and r ∈ (0, a) such that

φx0(d(Tx, Ty)) ≤ aφx0(d(x, Tx)) + aφx0(d(y, Ty)) + (1− 2a)φx0(d(x, y))

+ r[φx0(d(x, Ty)) + φx0(d(y, Tx))] (6)

for all x, y ∈ O(x0). Then the sequence {Tnx0} is Cauchy in X, limn→+∞ Tnx0 = z,
z ∈ X and z is a fixed point of T . Further, z is unique in the sense that O(x0)
contains one and only one fixed point of T .

Proof. If we proceed as in the proof of Theorem 2.4, it follows that {Tnx0} is Cauchy.
Since X is T -orbitally complete, we have that there exists z in X such that z =
limn→+∞ Tnx0, and z ∈ O(x0). Now it follows again as in the proof of Theorem 2.4
that z is a fixed point of T , and this z is unique in O(x0). □
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Corollary 3.2. Let (X, d) be a T -orbitally complete metric space. Assume that T
is asymptotically regular at some point x0 in X. If there exist a function φx0

∈ Φ, a ∈
(0, 1

2 ) such that

φx0
(d(Tx, Ty)) ≤ aφx0

(d(x, Tx)) + aφx0
(d(y, Ty)) + (1− 2a)φx0

(d(x, y)) (7)

for all x, y ∈ O(x0). Then the sequence {Tnx0} is Cauchy in X, limn→+∞ Tnx0 =
z, z ∈ X and z is a fixed point of T . Further, z is unique in the sense that O(x0)
contains one and only one fixed point of T .

Proof. Since the inequality (7) implies the inequality (6), the conclusion of this corol-
lary follows from Theorem 3.1. □

4. Examples

The following examples are given in support of our results.

Example 4.1. Let X = [−1,+∞) with the usual metric. We define T : X → X by

Tx =

{
1
3 , −1 ≤ x ≤ 1

2

0, 1
2 < x < +∞

with φ(t) = t2, t ≥ 0. We choose a = 5
11 and r = 4

11 . Note

that 0 < r < a < 1
2 . In the following we show that T satisfies the inequality (5).

Case i) Let x, y ∈ [−1, 1
2 ]. Then φ(d(Tx, Ty)) = 0. Therefore the inequality (5) holds

trivially.

Case ii) Let x, y ∈ ( 12 ,+∞). Then φ(d(Tx, Ty)) = 0. Therefore the inequality (5)
holds trivially.

Case iii) Let x ∈ [−1, 1
2 ] and y ∈ ( 12 ,+∞), we have φ(d(Tx, Ty)) = φ(| 13 − 0|) =

φ( 13 ) =
1
9 and

a[φ(d(x, Tx)) + φ(d(y, Ty))] + (1− 2a)φ(d(x, y)) + r[φ(d(x, Ty)) + φ(d(y, Tx))]

=
5

11
φ(|x− 1

3
|) + 5

11
φ(|y|) + 1

11
φ(|y − x|) + 4

11
[φ(|x|) + φ(y − 1

3
)]

=
5

11
(x− 1

3
)2 +

5

11
y2 +

1

11
(y − x)2 +

4

11
[x2 + (y − 1

3
)2]

≥ 5

11
(x− 1

3
)2 +

5

11
· 1
4
+

1

11
(
1

2
− x)2 +

4

11
[x2 + (

1

2
− 1

3
)2]

=
5

11
(x− 1

3
)2 +

5

44
+

1

11
(
1

2
− x)2 +

4

11
[x2 +

1

36
] ≥ 5

44
+

1

99
>

1

9
= φ(d(Tx, Ty)).

Case iv) Let x ∈ ( 12 ,+∞) and y ∈ [−1, 1
2 ]. In this case, φ(d(Tx, Ty)) = φ(|0− 1

3 |) =
φ( 13 ) =

1
9 and

a[φ(d(x, Tx)) + φ(d(y, Ty))] + (1− 2a)φ(d(x, y)) + r[φ(d(x, Ty)) + φ(d(y, Tx))]

=
5

11
φ(|x|) + 5

11
φ(|y − 1

3
|) + 1

11
φ(|x− y|) + 4

11
[φ(|x− 1

3
|) + φ(y − 0)]

=
5

11
x2 +

5

11
(y − 1

3
)2 +

1

11
(x− y)2 +

4

11
[(x− 1

3
)2 + y2]
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≥ 5

11
· 1
4
+

5

11
(y − 1

3
)2 +

1

11
(
1

2
− y)2 +

4

11
[(
1

2
− 1

3
)2 + y2]

=
5

44
+

5

11
(y − 1

3
)2 +

1

11
(
1

2
− y)2 +

4

11
[
1

36
+ y2] ≥ 5

44
+

1

99
>

1

9
= φ(d(Tx, Ty)).

Therefore from Case i) to Case iv), it follows that T satisfies the inequality (5). Also,
it is easy to see that T is asymptotically regular on X. Hence T satisfies all the
hypotheses of Theorem 2.4 and 1

3 is the unique fixed point of T .

Example 4.2. Let X = [0, 1] with the usual metric. We define T : X → X by

Tx =


1 if x = 0
1
2 if x ∈ (0, 1)

0 if x = 1

with φ(t) = t2, t ≥ 0. We choose a = 1
4 and r = 1

5 . Note that

0 < r < a < 1
2 . We now show that T satisfies the inequality (5).

Case i) x = 0, y ∈ (0, 1). Then φ(Tx, Ty) = φ(|1− 1
2 |) = (12 )

2 = 1
4 and

a[φ(d(x, Tx)) + φ(d(y, Ty))] + (1− 2a)φ(d(x, y)) + r[φ(d(x, Ty)) + φ(d(y, Tx))]

=
1

4
φ(|0− 1|) + 1

4
φ(|y − 1

2
|) + 1

2
φ(|0− y|) + 1

5
[φ(|0− 1

2
|) + φ(|y − 1|)]

=
1

4
· 1 + 1

4
(y − 1

2
)2 +

1

2
y2 +

1

5
[(
1

2
)2 + (y − 1)2] ≥ 1

4
+

1

20
>

1

4
= φ(d(Tx, Ty)).

Case ii) x = 1, y ∈ (0, 1). Then φ(d(Tx, Ty)) = φ(|0− 1
2 |) = ( 12 )

2 = 1
4 and

a[φ(d(x, Tx)) + φ(d(y, Ty))] + (1− 2a)φ(d(x, y)) + r[φ(d(x, Ty)) + φ(d(y, Tx))]

=
1

4
φ(|1− 0|) + 1

4
φ(|y − 1

2
|) + 1

2
φ(|1− y|) + 1

5
[φ(|1− 1

2
|) + φ(|y − 0|)]

=
1

4
+

1

4
(y − 1

2
)2 +

1

2
(1− y)2 +

1

5
[(
1

2
)2 + y2] ≥ 1

4
+

1

20
>

1

4
= φ(d(Tx, Ty)).

Case iii) x ∈ (0, 1), y = 0. Then φ(d(Tx, Ty)) = φ(| 12 − 1|) = φ( 12 ) = (12 )
2 = 1

4 and

a[φ(d(x, Tx)) + φ(d(y, Ty))] + (1− 2a)φ(d(x, y)) + r[φ(d(x, Ty)) + φ(d(y, Tx))]

=
1

4
φ(|x− 1

2
|) + 1

4
φ(|0− 1|) + 1

2
φ(|x− 0|) + 1

5
[φ(|x− 1|) + φ(|0− 1

2
|)]

=
1

4
(x− 1

2
)2 +

1

4
+

1

2
x2 +

1

5
[(x− 1)2 + (

1

2
)2] ≥ 1

4
+

1

20
>

1

4
= φ(d(Tx, Ty)).

Case iv) x ∈ (0, 1), y = 1. Then φ(d(Tx, Ty)) = φ(| 12 − 0|) = (12 )
2 = 1

4 and

a[φ(d(x, Tx)) + φ(d(y, Ty))] + (1− 2a)φ(d(x, y)) + r[φ(d(x, Ty)) + φ(d(y, Tx))]

=
1

4
φ(|x− 1

2
|) + 1

4
φ(|1− 0|) + 1

2
φ(|x− 1|) + 1

5
[φ(|x− 0|) + φ(|1− 1

2
|)]

=
1

4
(x− 1

2
)2 +

1

4
+

1

2
(x− 1)2 +

1

5
[x2 + (

1

2
)2] ≥ 1

4
+

1

20
>

1

4
= φ(d(Tx, Ty)).

Case v) x, y ∈ (0, 1). Then φ(d(Tx, Ty)) = 0. Therefore the inequality (5) holds
trivially.
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Case vi) x = 0, y = 1. Then φ(d(Tx, Ty)) = φ(|1− 0|) = 1 and

a[φ(d(x, Tx)) + φ(d(y, Ty))] + (1− 2a)φ(d(x, y)) + r[φ(d(x, Ty)) + φ(d(y, Tx))]

=
1

4
φ(|0− 1|) + 1

4
φ(|1− 0|) + 1

2
φ(|0− 1|) + 1

5
[φ(0) + φ(0)]

=
1

4
+

1

4
+

1

2
+

1

5
(0) = 1 = φ(d(Tx, Ty)).

Case vii) x = 1, y = 0. Then φ(d(Tx, Ty)) = φ(|0− 1|) = 1 and

a[φ(d(x, Tx)) + φ(d(y, Ty))] + (1− 2a)φ(d(x, y)) + r[φ(d(x, Ty)) + φ(d(y, Tx))]

=
1

4
φ(|1− 0|) + 1

4
φ(|0− 1|) + 1

2
φ(|1− 0|) + 1

5
[φ(0) + φ(0)]

=
1

4
+

1

4
+

1

2
+

1

5
(0) = 1 = φ(d(Tx, Ty)).

From all the above cases, we have T satisfies the inequality (5) and hence T is a
generalized φ-quasi contraction map. Clearly T is asymptotically regular at any
point of (0, 1). Thus T satisfies all the hypotheses of Theorem 2.4 and 1

2 is the unique
fixed point of T .

Here, we observe that T is not a strict quadratic quasi contraction map. For, we
choose x = 0 and y = 1. In this case,

d(T0, T1) = 1 ≮ a · d2(0, T0) + a · d2(1, T1) + (1− 2a) · d2(0, 1)
= a · 1 + a · 1 + (1− 2a) · 1 = 1

for any a ∈ (0, 1
2 ). Hence, the class of generalized φ-quasi contration maps are more

general than the class of strict quadratic quasi contraction maps (Remark 2.2).
Now, from Remark 2.6, it follows that Theorem 2.4 is a generalization of Theo-

rem 1.6, which in turn, Theorem 2.4 is also a generalization of Theorem 1.2.

Remark 4.3. If we drop the assumption “T is asymptotically regular at some fixed
point x of X” in Theorem 2.4 then the conclusion of Theorem 2.4 may not hold.

Example 4.4. Let X = {0, 1} with the usual metric. We define T : X → X by

Tx =

{
0 if x = 1

1 if x = 0
with φ(t) = t2, t ≥ 0. For x = 1 and y = 0, we have φ(d(Tx, Ty))

= φ(|0− 1|) = 1 and

a[φ(d(x, Tx)) + φ(d(y, Ty))] + (1− 2a)φ(d(x, y)) + r[φ(d(x, Ty)) + φ(d(y, Tx))]

= a · 1 + a · 1 + (1− 2a) · 1 + r · 0 = 1 = φ(d(Tx, Ty)).

Therefore T is a generalized φ-quasi contraction map. But T is not asymptotically
regular at any point x ∈ X and T has no fixed points. This phenomenon indicates
the importance of asymptotic regularity of T in our results.

Example 4.5. Let X = [0,+∞) with the usual metric. We define T : X → X defined

by T (0) = 1, T (1) = 1 + 1
2 , T (

∑n
i=0 2

−i) =
∑n+1

i=0 2−i, T (2) = 2 with φx0
(t) = t2.

Clearly T is asymptotically regular at x0 = 0. We now consider the orbit of x0 = 0,
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i.e. O(0) = {
∑n

i=0 2
−i : n = 0, 1, 2, . . .}∪{0}, and O(0) = O(0)∪{2}. Here, it is easy

to see that the space X is T -orbitally complete.
In the following, we verify the inequality (7) by choosing a = 1

4 .
Case i) x = 0, y = 1. Then

φx0
(d(Tx, Ty)) = φx0

(d(1, 1 +
1

2
)) = φx0

(|1− 1− 1

2
|) = φx0

(| − 1

2
|) = (

1

2
)2

=
1

4
≤ 1

2
· 1 = (1− 2a)φx0

(d(x, y)).

Case ii) x = 0, y =
∑n

i=0 2
−i. In this case,

φx0(d(Tx, Ty)) = φx0(|1−
n+1∑
i=0

2−i|) = (

n+1∑
i=1

2−i)2

= (
1

2
+

1

22
+

1

23
+ . . .+

1

2n+1
)2 =

1

4
(1 +

1

2
+

1

22
+ . . .+

1

2n
)2

≤ 1

2
(1 +

1

2
+

1

22
+ . . .+

1

2n
)2 = (1− 2a)φx0

(d(x, y)).

Case iii) x = 1, y =
∑n

i=0 2
−i. Then

φx0(d(Tx, Ty)) = φx0(|1 +
1

2
−

n+1∑
n=0

2−i|) = (

n+1∑
i=2

2−i)2

= (
1

22
+

1

23
+ . . .+

1

2n+1
)2 =

1

4
(
1

2
+

1

22
+ . . .+

1

2n
)2

≤ 1

2
(
1

2
+

1

22
+ . . .+

1

2n
)2 = (1− 2a)φx0(d(x, y)).

Case iv) x = 2, y = 0. Then

φx0
(d(Tx, Ty)) = φx0

(|2− 1|) = 1 ≤ 2 =
1

2
· 4 = (1− 2a)φx0

(d(x, y)).

Case v) x = 2, y = 1. Then

φx0
(d(Tx, Ty)) = φx0

(|2− 1− 1

2
|) = φx0

(
1

2
) = (

1

2
)2

=
1

4
≤ 1

2
=

1

2
· 1 = (1− 2a)φx0

(d(x, y)).

Case vi) x = 2, y =
∑n

i=0 2
−i. Then

φx0(d(Tx, Ty)) = φx0(|2−
n+1∑
i=0

2−1|) = (2−
n+1∑
i=0

2−i)2 = (1−
n+1∑
i=1

2−i)2

=
1

4
(

+∞∑
i=n+1

2−i)2 ≤ 1

2
(

+∞∑
i=n+1

2−i)2 ≤ (1− 2a)φx0
(d(x, y)).

Case vii) x =
∑n

i=0 2
−i, y =

∑m
i=0 2

−i. Let m > n

φx0
(d(Tx, Ty)) = φx0

(|
n+1∑
i=0

2−i −
m+1∑
i=0

2−i|) = φx0
(

m+1∑
i=n+2

2−i) =
1

4
(

m∑
i=n+1

2−i)2
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≤ 1

2
(

m∑
i=n+1

2−i)2 = (1− 2a)φx0
(d(x, y)).

Therefore from all the above possible cases, it follows that T satisfies the inequality

φx0
(d(Tx, Ty)) ≤ (1− 2a)φx0

(d(x, y))

≤ aφx0
(d(x, Tx)) + aφx0

(d(y, Ty)) + (1− 2a)φx0
(d(x, y))

for all x, y ∈ O(x0). Hence the inequality (7) holds with a = 1
4 . Therefore T satisfies

all the hypotheses of Corollary 3.2 and 2 is the unique fixed point of T in the closure
of the orbit of 0, i.e. O(0) and limn→+∞ Tn0 = 2.
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