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Abstract. In this paper, we study the growth of higher order linear differential equa-
tions, where some coefficients are non-trivial solutions of certain second order linear differen-
tial equations. Some conditions guaranteeing that every non-trivial solution of the equation
is of infinite order are obtained, in which the notion of accumulation rays of the zero sequence
of an entire function is used.

1. Introduction and main results

In this paper, we assume that the reader is familiar with the fundamental results
and the standard notations of the Nevanlinna’s value distribution theory of mero-
morphic functions (see [8, 10, 26]). In addition, we use the notations σ(f) and λ(f)
to denote respectively the order of growth and exponent of convergence of zeros of a
meromorphic function f(z).

Consider the second order linear differential equation:

f ′′ +A(z)f ′ +B(z)f = 0, (1)

where A(z) and B(z) ̸≡ 0 are entire functions. It is well-known that each solution of
the equation (1) is an entire function. If B(z) is transcendental and f1, f2 are two
linearly independent solutions of the equation (1), then at least one of f1, f2 must
have infinite order. Hence, most solutions of the equation (1) will have infinite order.
On the other hand, there are equations of the form (1) that possess a solution f ̸≡ 0
of finite order, for example, f(z) = e−z satisfies f

′′
+ ezf

′
+(ez − 1)f = 0. Therefore,

one may ask: What conditions on A(z) and B(z) will guarantee that every solution
f ̸≡ 0 of equation (1) has an infinite order?. There are many results in the literature
about the order of growth of solutions of (1), see for example [10,11,13,16].
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2 Growth of solutions of higher order linear differential equations

Recently, this problem was studied by using a new idea that a coefficient of (1) is
a solution of the following equation

ω′′ + P (z)ω = 0, (2)

where P (z) = anz
n + . . . + a0, an ̸= 0, (see for example [14, 15, 22]). The following

result shows that the idea is viable.

Theorem 1.1. [23] Let A(z) be a non-trivial solution of (2) and B(z) be a transcen-
dental entire function with σ(B) < 1

2 . Then every non-trivial solution of (1) is of
infinite order.

By Bank and Laine’s result [1, Theorem 1], we know that σ(A) = n+2
2 , and then

σ(A) > σ(B) in Theorem 1.1. The fact that A(z) satisfies an equation of the form
ω′′+P (z)ω = 0 makes A(z) a special function. In the particular cases when P (z) = −z
or P (z) = −zn, the solution A(z) is known as the Airy integral or generalization of
the Airy integral [6]. Another special case is the Weber-Hermite function, which is a

solution in the case P (z) = v + 1
2 − z2

4 , where v is a constant. In the case when P (z)
is an arbitrary polynomial, Hille’s classical method on asymptotic integration will
become available, the consequences are summarized in Lemma 2.2 of the Section 2.

Now a new idea is used to study the growth of solutions of (1), in which two
coefficients of equation (1) are solutions of equation (2). To that end, we recall the
concept of accumulation rays of zeros sequence of a meromorphic function f , which
can be found in [18,19,24,25].

Definition 1.2. Let g(z) be a meromorphic function in C, and let arg z = θ ∈ R be
a ray from the origin. We denote, for each ε > 0, the exponent of convergence of the
zero sequence of g(z) at the ray arg z = θ by λθ,ε(g) and by λθ(g) = limε→0+ λθ,ε(g),
where

λθ(g) = lim
ε→0+

lim sup
r→∞

log+ nθ−ε,θ+ε(r, 0, g)

log r
,

here nα,β(r, 0, g) is the number of zeros of g counting multiplicity in {z : α < arg z <
β}

⋂
{z : |z| < r}.

We call the ray arg z = θ which has the property λθ(g) = σ(g) an accumulation
ray of the zero sequence of g.

We need also to the following definition.

Definition 1.3. Let ω(z) be a non-trivial solution of (2), where P (z) = anz
n +

. . . + a0, an ̸= 0. We denote by p(ω) the number of rays arg z = θj which are

not accumulation rays of the zero sequence of ω(z), where θj = 2jπ−arg(an)
n+2 , j =

0, 1, . . . , n+ 1.

Recently, the authors in [17] studied equation (1) in the case where the coefficients
are non-trivial solutions of (2) and proved the following result:

Theorem 1.4. Suppose that A(z) and B(z) are two linearly independent solutions
of (2), where P (z) = anz

n + . . .+ a0, an ̸= 0. If the number of accumulation rays of
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the zero sequence of A(z) is less than n+ 2, then every non-trivial solution of (1) is
of infinite order.

The next result in [17] shows that two coefficients of (2) are non-trivial solutions
of (3) and (4) respectively

ω′′ +Q1(z)ω = 0 (3)

ω′′ +Q2(z)ω = 0, (4)

where Q1(z) = anz
n + . . .+ a0, an ̸= 0, Q2(z) = bmz

m + . . .+ b0, bm ̸= 0.

Theorem 1.5. Suppose that A(z) and B(z) are non-trivial solutions of (3) and (4)
respectively. Suppose that A(z) and B(z) satisfy one of the following conditions:

(i) m > n;

(ii) m < n;

(iii) m = n, arg an ̸= arg bm, the number of accumulation rays of the zero sequence
of A(z) is less than n+ 2;

(iv) m = n, and an = cbm, where 0 < c < 1.

Then every non-trivial solution of (1) is of infinite order.

Consider the linear differential equation

f (k) +Ak−1(z)f
(k−1) + . . .+A1(z)f

′ +A0(z)f = 0, (5)

where k ≥ 2 is an integer and Aj(z)(j = 0, . . . , k − 1) are entire functions with
A0(z) ̸≡ 0. It is well known that all solutions of (5) are entire, for the case of
polynomial coefficients, a classical result due to Wittich [21] is the following: The
coefficients A0(z), . . . , Ak−1(z) in (5) are polynomials in the complex plane if and
only if all solutions of (5) are entire functions of finite order of growth. In [3], M. Frei
extended the above result by assuming that Aj(z) is the last transcendental entire
coefficient while the coefficients Aj+1(z), . . . , Ak−1(z) are polynomials and resulting
in that (5) possesses at most j linearly independent entire solutions of finite order.
Thus it can be deduced that “most” of the solutions of (5) with at least one Ai(z)
transcendental have infinite order. On the other hand, there exist equations of the
form (5) that possess one or more non-trivial solutions of finite order. For example:
(a) f(z) = −z solves f ′′ − zezf ′ + ezf = 0, (b) f(z) = c1 sin z + c2 cos z solves
f ′′′ + ezf ′′ + f ′ + ezf = 0, where c1, c2 are arbitrary constants. The question which
arises is: what conditions on A0(z), . . . , Ak−1(z) will guarantee that every solution
f ̸≡ 0 of (5) is of infinite order? In this paper we continue to consider this question.
We will prove the following two results which extend the above results:

Theorem 1.6. Let k ≥ 2 be an integer and let A0(z), A1(z), . . . , Ak−1(z) be entire
functions. Suppose that there exists s ∈ {1, . . . , k− 1} such that A0(z) and As(z) are
two linearly independent solutions of (2), and for j ̸= 0, s, σ(Aj) < σ(A0). If the
number of accumulation rays of the zero sequence of As(z) is less than n + 2, then
every non-trivial solution of (5) is of infinite order.
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Theorem 1.7. Let k ≥ 2 be an integer and let A0(z), A1(z), . . . , Ak−1(z) be entire
functions. Suppose that there exist s, d ∈ {1, . . . , k−1} such that As(z) and Ad(z) are
two linearly independent solutions of (3) and A0(z) is a non-trivial solution of (4)
such that max{σ(Aj) : j ̸= 0, s, d} < σ(A0) . Suppose that A0(z) and As(z) satisfy
one of the following conditions:
(i) m > n;

(ii) m < n;

(iii) m = n, arg an ̸= arg bm, the number of accumulation rays of the zero sequence
of As(z) is less than n+ 2;

(iv) m = n, an = cbm, where 0 < c < 1.
Then every transcendental solution of (5) is of infinite order.

2. Auxiliary results

Lemma 2.1 ([5]). Let f be a transcendental meromorphic function of finite order σ(f),
Let ε > 0 be a given real constant and let k and j be two integers such that k > j ⩾ 0.
Then the following statements hold.
(i) There exists a set E1 ⊂ [0, 2π) that has linear measure zero, such that if ψ ∈
[0, 2π) − E1, then there is a constant R0 = R0(ψ) > 1 such that for all z satisfying
arg z = ψ0 and |z| ≥ R0, ∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(σ(f)−1+ε). (6)

(ii) There exists a set E2 ⊂ (1,∞) that has finite logarithmic measure, such that for
all z satisfying |z| /∈ E2 ∪ [0, 1], the inequality (6) holds.

Asymptotic properties of solutions of ω′′ + P (z)ω = 0 play an important role in
proving our results, where P (z) is a non constant-polynomial. Next some notation
are stated. Let α < β be such that β − α < 2π, and let r > 0. Denote

S(α, β) = {z : α < arg z < β}
S(α, β, r) = {z : α < arg z < β} ∩ {z : |z| < r}

Let F̄ denote the closure of F . Let A be an entire function of order σ(A) ∈ (0,∞).
For simplicity, set σ = σ(A) and S = S(α, β). We say that A blows up exponen-

tially in S̄ if for any θ ∈ (α, β) the relation

lim
r→∞

log log |A(reiθ)|
log r

= σ

holds. We also say that A decays to zero exponentially in S̄ if for any θ ∈ (α, β), the
next relation holds

lim
r→∞

log log |A(reiθ)|−1

log r
= σ.
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Lemma 2.2 ([7, 9, 20]). Let A be a non-trivial solution of ω′′ + P (z)ω = 0, where

P (z) = anz
n + . . . + a0, an ̸= 0. Set θj = 2jπ−arg(an)

n+2 and Sj = S(θj , θj+1), where
j = 0, 1, . . . , n+ 1 and θn+2 = θ0 + 2π. Then A has the following properties:

(i) In each sector Sj, A either blows up or decays to zero exponentially.

(ii) If, for some j, A decays to zero in Sj, then it must blow up in Sj−1 and Sj+1.
However it is possible for A to below up in many adjacent sectors.

(iii) If A decays to to zero in Sj, then A has at most finitely many zeros in any closed
sub-sector within Sj−1 ∪ S̄j ∪ Sj+1.

(iv) If A blows up in Sj−1 and Sj then for each ε > 0, A has infinitely many zeros
in each sector S̄(θj − ε, θj + ε) and furthermore, as r → ∞,

n(S̄(θj − ε, θj + ε, r), 0, A) = (1 + o(1))
2
√
|an|

π(n+ 2)
r

n+2
2 ,

where n(S̄(θj − ε, θj + ε, r), 0, A) is the number of zeros of A in the region S̄(θj −
ε, θj + ε, r) counting multiplicity.

Lemma 2.3 ([4]). Let A be defined as in Lemma 2.2. Then the following equality
holds:

logM(r,A) = (1 + o(1))
2
√

|an|
(n+ 2)

r
n+2
2 , as r → ∞

Lemma 2.4 ([12]). Let θ1 < θ2 be given to fix a sector S(0) : θ1 ≤ arg z ≤ θ2, let k ≥ 2
be a natural number, and let δ > 0 be any real number such that kδ < 1. Suppose that
A0(z), . . . , Ak−1(z) with A0(z) ̸≡ 0 are entire functions such that for real constants
α > 0, β > 0, we have, for any some s = 1, . . . , k − 1, |As(z)| ≥ exp((1 + δ)α|z|β),
|Aj(z)| ≤ exp(δα|z|β) for all j = 0, . . . , s − 1, s + 1, . . . , k − 1 whenever |z| = r ≥ rδ
in the sector S(0).

Given ε > 0 small enough, if f is a transcendental solution of finite order σ <∞
of the linear differential equation (5). Then the following conditions hold:

(i) There exists t ∈ {0, . . . , s− 1} and a complex constant bt ̸= 0 such that f (t) → bt
as z → ∞ in the sector S(ε) : θ1 + ε ≤ arg z ≤ θ2 − ε. More precisely, |f (t)(z)− bt| ≤
exp(−(1− kδ)α|z|β) in S(ε), provided |z| is large enough.

(ii) For each integer q ≥ t + 1, |f (q)(z)| ≤ exp(−(1 − kδ)α|z|β) in S(3ε), for all |z|
large enough.

Lemma 2.5 ([12]). Suppose that f(z) is an entire function, and that |f (k)(z)| is un-
bounded on a ray arg z = θ. Then there exists a sequence zn = rne

iθ tending to
infinity such that f (k)(z) → ∞ and that∣∣∣ f (i)(zn)

f (k)(zn)

∣∣∣ ≤ 1

(k − i)!
(1 + o(1))|z|k−i

provided i < k.
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3. Proofs of theorems

Proof (Proof of Theorem 1.6). Suppose on the contrary to the assertion that there
exists a non-trivial solution f of (5) with σ(f) < ∞, we aim for a contradiction.

Using Lemma 2.2 and the condition of Theorem 1.6, set θj = 2jπ−arg(an)
n+2 and Sj =

{z : θj < arg z < θj+1}, j = 0, . . . , n+ 1, θn+2 = θ0 + 2π.

By the condition of Theorem 1.6 and the definition of accumulation rays of the
zero sequence of meromorphic functions, we know that p(As) ≥ 2. It follows from
Lemma 2.2 that there exists at least one sector of the n+2 sectors, such that As decays
to zero exponentially, without loss of generality, say Sj0 = {z : θj0 < arg z < θj0+1},
0 ≤ j0 ≤ n+ 1. That is for any θ ∈ (θj0 , θj0+1)

lim
r→∞

log log 1
|As(reiθ)|

log r
=
n+ 2

2
. (7)

Next we claim that it is impossible that both As and A0 decay to zero exponentially
in a common sector. To prove our claim, without loss of generality, we suppose that
As and A0 decay to zero exponentially in S0. Set h = As

A0
. It follows from [4, Lemma

3], that as r → ∞,

N(r,
1

h− b
) = (1 + o(1))T (r, h) = (1 + o(1))

2
√

|an|
πα

rα,

holds for any b ∈ C, with at most finitely many exceptions, where α = n+2
2 . Set

ω = As− bA0. It is easy to see that ω is a solution of (2). It follows from [4, Theorem
3], that

N(r,
1

h− b
) = N(r,

1

ω
) = (1 + o(1))

2α− p(ω)

πα2

√
|an|rα

as r → ∞. Combining the two equalities mentioned above, we get p(ω) = 0. This
implies that ω blows up exponentially in every sector Sj , j = 0, 1, . . . , n + 1. This
contradicts the assumption that ω decays to zero exponentially in S0, Hence A0 blows
up exponentially in Sj0 , that is, for any θ ∈ (θj0 , θj0+1),

lim
r→∞

log log |A0(re
iθ)|

log r
=
n+ 2

2
. (8)

By Lemma 2.1, there exists a set E1 ⊂ [0, 2π) that has linear measure zero, such that
if ψ0 ∈ [0, 2π) − E1, then there is a constant R0 = R0(ψ) > 1 such that for all z
satisfying arg z = ψ0 and |z| ≥ R0,∣∣∣f (i)(z)

f(z)

∣∣∣ ≤ |z|kσ(f), i = 1, . . . , k. (9)

Let ε ∈ (0, σ(A0)/2) be a given constant. Since σ(Ai) < σ(A0) for all i ̸= 0, s and
0 ≤ i ≤ k − 1, then there exists an R1 > 1 such that

|Ai(z)| < exp(r
n+2
2 −2ε), (10)

for all |z| = r > R1.

Thus, there exists a sequence of points zl = rle
iθ, where rl → +∞ as l → +∞ and
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θ ∈ (θj0 , θj0+1) − E1, such that (7), (8) and (9), (10) hold. Combining (7)-(9), (10)
and (5), for any l > l0,

exp(r
n+2
2 −ε

l ) ≤ |A0(rle
iθ)|

≤
∣∣∣f (k)(rleiθ)
f(rleiθ)

∣∣∣+ k−1∑
j=1

|Aj(rle
iθ)|

∣∣∣f (j)(rleiθ)
f(rleiθ)

∣∣∣
≤ r

kσ(f)
l

(
1 +

1

exp
(
r

n+2
2 −ε

l

) + (k − 2) exp
(
r

n+2
2 −2ε

l

))
.

Obviously, that is a contradiction for sufficiently large l and for any given ε > 0.
Hence, the conclusion of Theorem 1.6 holds. □

Proof (Proof of Theorem 1.7). Suppose the contrary to the assertion, that there exists
a transcendental solution f of (5) with σ(f) <∞, we aim for contradiction. It follows
from [1] that σ(As) =

n+2
2 and σ(A0) =

m+2
2 .

1) Suppose that the condition (i) holds. Then max{σ(Ai) : i = 1, . . . , k−1} < σ(A0).
Therefore, the conclusion of Theorem 1.7 is deduced from [2].

2) Suppose that the condition (ii) holds. Set

FA0 =
{
θ ∈ [0, 2π) : θ =

2jπ − arg(bm)

m+ 2

}
, j = 0, 1, . . . ,m+ 1,

and FAs =
{
θ ∈ [0, 2π) : θ =

2jπ − arg(an)

n+ 2

}
, j = 0, 1, . . . , n+ 1.

By Lemma 2.1, there exists a set F ⊂ [0, 2π) that has linear measure zero, such that
if ψ0 ∈ [0, 2π) − F , then there is a constant R0 = R0(ψ) > 1 such that for all z
satisfying arg z = ψ0 and |z| ≥ R0, (9) holds. Set E = F ∪ FA0

∪ FAs
. Then for any

θ ∈ [0, 2π)− E, A0, As have four possible growth types on the ray arg z = θ :

(a) As(re
iθ) satisfies

lim
r→∞

log log |As(re
iθ)|−1

log r
=
n+ 2

2
(11)

and A0(re
iθ) satisfies

lim
r→∞

log log |A0(re
iθ)|

log r
=
m+ 2

2
(12)

(b) As(re
iθ) satisfies (11) and A0(re

iθ) satisfies

lim
r→∞

log log |A0(re
iθ)|−1

log r
=
m+ 2

2
(13)

(c) As(re
iθ) satisfies

lim
r→∞

log log |As(re
iθ)|

log r
=
n+ 2

2
(14)

and A0(re
iθ) satisfies (12).

(d) As(re
iθ) satisfies (14) and A0(re

iθ) satisfies (13).
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(a’) If As(re
iθ) and A0(re

iθ) satisfy the growth type (a), then using similar reasoning
as in the proof of Theorem 1.6, we get a contradiction.

(b’) Suppose that As(re
iθ) and A0(re

iθ) satisfy the growth type (b). Suppose that
|f (d)(z)| is unbounded on the ray arg z = θ. Using Lemma 2.5, there exists an infinite
sequence of points zl = rle

iθ tending to infinity such that f (d)(zl) → ∞ and∣∣∣ f (i)(zl)
f (d)(zl)

∣∣∣ ≤ 1

(d− i)!
(1 + o(1))|zl|d−i, i = 0, 1, . . . , d− 1 (15)

as l → ∞.

It follows from the proof of Theorem 1.6 that Ad(z) blows up exponentially in E,
that is on the ray arg z = θ, we have

lim
r→∞

log log |Ad(re
iθ)|

log r
=
n+ 2

2
.

It follows from (5), (9), (10) and (15) that

exp{r
n+2
2 −ε

l } ≤ |Ad(rle
iθ)|

≤
∣∣∣f (k)(zl)
f(zl)

∣∣∣∣∣∣ f(zl)

f (d)(zl)

∣∣∣+ |Ak−1(rle
iθ)|

∣∣∣f (k−1)(zl)

f(zl)

∣∣∣∣∣∣ f(zl)

f (d)(zl)

∣∣∣
+ . . .+ |As(rle

iθ)|
∣∣∣f (s)(zl)
f(zl)

∣∣∣∣∣∣ f(zl)

f (d)(zl)

∣∣∣+ . . .+ |A0(rle
iθ)|

∣∣∣ f(zl)

f (d)(zl)

∣∣∣
≤M1r

d+kσ(f)
l

(
1+

1

exp{rσ(A0)−ε
l }

+
1

exp{r
n+2
2 −ε

l }
+(k − 3) exp{r

n+2
2 −2ε

l }
)
,

where M1 > 0 is a constant. That is a contradiction for sufficiently large l and for

ε ∈
(
0, σ(Ad)

2

)
. Hence |f (d)(z)| must be bounded in the whole complex plane by

Phragmén-Lindelöf principle.

(c’) Suppose that As(re
iθ) and A0(re

iθ) satisfy the growth type (c). From Bank and
Laine’s results [1, Theorem 1], we get σ(As) =

n+2
2 > m+2

2 = σ(A0), there exists a

real number γ > 0 such that σ(As) =
n+2
2 > m+2+γ

2 > m+2
2 = σ(A0). Then for any

given ε ∈ (0, π
8σ(As)

) and η ∈ (0, σ(As)−σ(A0)
4 ), we have

|As(z)| ≥ exp
{
(1 + δ)α|z|

n+2
2 −η

}
and |A0(z)| ≤ exp

{
|z|σ(A0)+η

}
≤ exp

{
|z|

n+2
2 −2η

}
≤ exp

{
δα|z|

n+2
2 −η

}
as z → ∞ in S̄( ε2 ) = {z : θ− ε

2 < arg z < θ+ ε
2}, where α and δ are positive constants

satisfying δk < 1.

On the other hand, it follows from the proof of Theorem 1.6 that Ad(z) decays to
zero exponentially, that is for the arg z = θ, we have

lim
r→∞

log log 1
|Ad(reiθ)|

log r
=
n+ 2

2
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Hence

|Ad(re
iθ)| ≤ 1

exp
{
|z|n+2

2 −ε
} ≤ exp

{
δα|z|

n+2
2 −ε

}
we have also

|Ai(z)| ≤ exp
{
|z|σ(A0)+η

}
≤ exp

{
|z|

n+2
2 −2η

}
≤ exp

{
δα|z|

n+2
2 −ε

}
, i ̸= 0, s, d

By Lemma 2.4 , there exists t ∈ {1, 2, . . . , s− 1} and bt ̸= 0 such that

|f (t)(z)− bt| ≤ exp
{
− (1− kδ)α|z|

n+2
2 −η

}
as z → ∞ in S̄(ε). For each integer i ≥ t+ 1,

|f (i)(z)| ≤ exp
{
− (1− kδ)α|z|

n+2
2 −η

}
as z → ∞ in ¯S =( 3ε2 ). Hence |f (s)(z)| must be bounded in the whole complex plane
by Phragmén-Lindelöf principle.

(d’) Suppose that As(re
iθ) and A0(re

iθ) satisfy the growth type (d)). Suppose that
|f (s)(z)| is unbounded on the ray arg z = θ. Using Lemma 2.5, there exists an infinite
sequence of points zl = rle

iθ tending to infinity such that f (s)(zl) → ∞ and∣∣∣ f (i)(zl)
f (s)(zl)

∣∣∣ ≤ 1

(s− i)!
(1 + o(1))|zl|s−i, i = 0, 1, . . . , s− 1 (16)

as l → ∞.

It follows from the proof of Theorem 1.6 that Ad(z) decays to zero exponentially,
that is on the ray arg z = θ, we have

lim
r→∞

log log |Ad(z)|−1

log r
=
n+ 2

2
.

It follows from (5), (9), (10) and (16) that

exp{r
n+2
2 −ε

l } ≤ |As(rle
iθ)|

≤
∣∣∣f (k)(zl)
f(zl)

∣∣∣∣∣∣ f(zl)

f (s)(zl)

∣∣∣+ |Ak−1(rle
iθ)|

∣∣∣f (k−1)(zl)

f(zl)

∣∣∣∣∣∣ f(zl)

f (s)(zl)

∣∣∣
+ . . .+ |As(rle

iθ)|
∣∣∣f (d)(zl)
f(zl)

∣∣∣∣∣∣ f(zl)

f (s)(zl)

∣∣∣+ . . .+ |A0(rle
iθ)|

∣∣∣ f(zl)

f (s)(zl)

∣∣∣
≤M2r

s+kσ(f)
l

(
1+

1

exp{rσ(A0)−ε
l }

+
1

exp{r
n+2
2 −ε

l }
+(k − 3) exp{r

n+2
2 −2ε

l }
)

as l → +∞, where M2 is a positive constant.

Obviously, this is a contradiction for sufficiently large l and for ε ∈ (0, σ(As)
2 ).

Hence |f (s)(z)| must be bounded in the whole complex plane by Phragmén-Lindelöf
principle. Combining the case of (b’)-(d’), by the Liouville Theorem, f has to be a
polynomial. This is contradicts with the fact that f is transcendental.

3) Suppose that the condition (iii) holds. This implies that the set of accumulation
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rays of the zero sequence of As(z) and A0(z) are not the same. Then there exists a
sector S(α, β) = {z : α < arg z < β}, such that for any θ ∈ (α, β) (7) and (8) hold.
Then using similar reasoning as in the proof of Theorem 1.6, we get a contradiction,
and then the conclusion is obtained.

4) Suppose that the condition (iv) holds. By Lemma 2.1, there exists a set E2 ⊂
(1,+∞) that has finite logarithmic measure, such that for all z satisfying |z| /∈ [0, 1]∪
E2, (9) holds.

Since As(z) and A0(z) are non-trivial solutions of (2) and (3), respectively, by
Lemma 2.3, as r → ∞, the following equalities hold,

logM(r,As) = (1 + o(1))

√
|an|
α

rα and logM(r,A0) = (1 + o(1))

√
|bm|
α

rα, (17)

where α = n+2
2 , we choose a sequence of points {zl} tending to infinity, |zl| = rl ∈

(1,+∞)− E2, such that

|A0(zl)| =M(rl, A0). (18)

Combining (5), (9), (17),(18), as l → ∞, we get

exp
{
(1 + o(1))

√
|bm|
α

rα
}
=M(rl, A0) = |A0(zl)| ≤ |zl|kσ(f)

(
1 +

k−1∑
j=1

|Aj(zl)|
)

≤ |zl|kσ(f)
(
1 + (k − 2) exp

{
rα−ε
l

}
+ exp

{
(1 + o(1))

√
|an|
α

rαl

})
.

This is a contradiction. The conclusion of Theorem 1.7 holds. □
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