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Abbas Zivari-Kazempour

Abstract. In this paper, we introduce the notion of almost n-multiplier on Banach
algebras. This new notion generalizes the concept of n-multiplier introduced and studied in
[J. Laali, M. Fozouni, n-multipliers and their relations with n-homomorphisms, Vietnam J.
Math., 45 (2017), 451-457]. We gave some general results and the continuity of such maps
with some examples for this new notion on Banach algebras. In particular, we generalize the
celebrated theorem of Johnson to (left) n-multipliers on Banach algebras.

1. Introduction and preliminaries

The concept of a multiplier first appears in harmonic analysis. This notion has been
employed in several important areas in harmonic analysis and Banach algebras. For
instance, in the investigation of homomorphisms of group algebras, the study of Ba-
nach modules, general theory of Banach algebras, and so on, see [8].

Let A be a Banach algebra. A mapping T : A −→ A is called a left multiplier(
right multiplier

)
if for all a, b ∈ A,

T (ab) = T (a)b,
(
T (ab) = aT (b)

)
,

and T is called a multiplier, if aT (b) = T (a)b, for every a, b ∈ A.
We note that a number of authors use the term “centralizer” instead of “multi-

plier”. This is true, for example, of Johnson [5,6], and Wendel [9]. However multiplier
seems to be the older and more common term and for this reason we prefer it to that
of centralizer.

The general theory of multipliers (centralizers) on Banach algebras has been devel-
oped by Johnson [5]. One may refer to the monograph [8] for the theory of multipliers.

Definition 1.1. Let A be a Banach algebra and T : A −→ A be a map. Then T is
called a right n-multiplier

(
left n-multiplier

)
if

T (a1a2 · · · an) = a1T (a2 · · · an),
(
T (a1a2 · · · an) = T (a1 · · · an−1)an

)
,
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2 Almost n-multipliers on Banach algebras

for all a1, a2, · · ·, an ∈ A, and it is called n-multiplier if a1T (a2· · ·an) = T (a1· · ·an−1)an,
for every a1, a2, · · ·, an ∈ A.

The notion of n-multiplier was introduced and studied by Laali and Fozouni [7],
and some interesting results related to these maps were obtained by these authors.
Following [7], let Muln(A) be the set of all n-multipliers of Banach algebra A. For
the case n = 2, this concept coincide with the classical definition of multipliers. Note
that in [7], n-multipliers is assumed to be linear and bounded, but we consider no
assumptions of linearity or continuity. The approximate θ-multipliers on Banach
algebras can be found in [11], and the pseudo version of n-multipliers was introduced
in [12]. For results concerning multipliers on algebras, we refer the reader to [4,10–12]
and the references therein.

In this paper, we introduce the notion of almost n-multiplier on Banach algebras.
We gave some general results and investigate the continuity of such maps with some
examples. In particular, we generalize the celebrated theorem of Johnson to (left)
n-multipliers on Banach algebras.

2. Continuity of almost n-multipliers

We first introduce the concept of almost n-multiplier on Banach algebras with some
examples to illustrate this new notion.

Definition 2.1. Let A be a Banach algebra. A map T : A −→ A is called almost
right n-multiplier, if there exists ε ⩾ 0 such that for every a1, a2, · · · , an ∈ A,

∥T (a1a2 · · · an)− a1T (a2 · · · an)∥ ⩽ ε∥a1∥ · · · ∥an∥.
The almost left n-multiplier and almost n-multiplier can be defined analogously.

The set of all almost n-multipliers on Banach algebra A is denoted by AMuln(A).
Note that Muln(A) ⊆ AMuln(A) and Muln(A) ̸= {0}, because Muln(A) contains
the identity operator. The case n = 2 is simply called almost multiplier. If T is both
left and right n-multiplier, then T is an n-multiplier, but the converse is not true in
general. The next example confirm this fact.

Example 2.2. Let

A =



0 a x y
0 0 a z
0 0 0 a
0 0 0 0

 : a, x, y, z ∈ R

 ,

with the usual matrix operations. Then A is a Banach algebra with respect to the
l1-norm, that is, the sum of all absolute values of entries. Define T : A −→ A via

T



0 a x y
0 0 a z
0 0 0 a
0 0 0 0


 =


0 a x 0
0 0 a z
0 0 0 a
0 0 0 0

 .
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For all u, v, w ∈ A, T (uvw) = 0, and uT (vw) = T (uv)w. Therefore T is a 3-multiplier,
but it not right (left) 3-multiplier.

We recall that a Banach algebra A is called without order, if for all x ∈ A, xA = {0}
[Ax = {0}] implies x = 0.

For without order Banach algebraA, every n-multiplier is left and right n-multiplier.
Indeed, let a1T (a2 · · · an) = T (a1 · · · an−1)an, for all a1, a2, · · · , an ∈ A. Then for
each x ∈ A, x

(
T (a1 · · · an)

)
= T (xa1 · · · an−2)an−1an =

(
xT (a1 · · · an−1)

)
an =

x
(
T (a1 · · · an−1)

)
an. Since A is without order, we get T (a1 · · · an) = T (a1 · · · an−1)an,

for all a1, a2, · · · , an ∈ A. So T is a left n-multiplier. Similarly, T is a right n-
multiplier.

The same is true for almost version. That is, each left and right almost n-multiplier
is an almost n-multiplier, but the converse may not holds, in general. The following
example illustrates this fact.

Example 2.3. Let X be the normed algebra of all polynomials defined on [0, 1], and
let φ : X −→ X be a linear unbounded function. Let

A =


0 f g
0 0 h
0 0 0

 : f, g, h ∈ X

 ,

and define T : A −→ A by

T

0 f g
0 0 h
0 0 0

 =

0 φ(f) 0
0 0 φ(h)
0 0 0

 .

Then for all u, v ∈ A, T (uv) = 0 and uT (v) = T (u)v. Thus, T is a multiplier and
hence it is almost multiplier. On the other hand, let

u =

0 1 0
0 0 0
0 0 0

 , v =

0 0 0
0 0 h
0 0 0

 .

Then ∥T (uv) − uT (v)∥ = ∥φ(h)∥, which yields that T is not almost left (right)
multiplier, because φ is unbounded.

Recall that a bounded approximate identity for A is a bounded net (eα)α∈I in A
such that aeα −→ a and eαa −→ a, for all a ∈ A. For example, it is known that the
group algebra L1(G), for a locally compact group G, and C∗-algebras have a bounded
approximate identity bounded by one, see [3].

Clearly, every multiplier is an n-multiplier. As our first general result, with the
extra condition, we show that the same is true for an almost n-multiplier.

Theorem 2.4. Let A be a Banach algebra with a bounded approximate identity, and
let T ∈ AMul2(A). Then T is an almost n-multiplier.

Proof. For all x, a1, a2, · · · , an ∈ A we have

∥xT (a1 · · · an−1)an − T (x)a1 · · · an∥ =∥
(
xT (a1 · · · an−1)− T (x)a1 · · · an−1

)
an∥
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⩽∥xT (a1 · · · an−1)− T (x)a1 · · · an−1∥∥an∥
⩽ε∥x∥∥a1 · · · an−1∥∥an∥ ⩽ ε∥x∥∥a1∥ · · · ∥an∥.

Therefore

∥xT (a1 · · · an)− xT (a1 · · · an−1)an∥ ⩽∥xT (a1 · · · an)− T (x)a1 · · · an∥
+ ∥T (x)a1 · · · an − xT (a1 · · · an−1)an∥

⩽2ε∥x∥∥a1∥ · · · ∥an∥.
Let (eα)α∈I be a bounded approximate identity in A with bound c. Replacing
x by (eα)α∈I and letting α −→ ∞, we get ∥T (a1 · · · an) − T (a1 · · · an−1)an∥ ⩽
2εc∥a1∥ · · · ∥an∥. Consequently, T is an almost left n-multiplier. Similarly, T is an
almost right n-multiplier and hence it is an almost n-multiplier. □

Corollary 2.5. Let A be a C∗-algebra. Then every almost multiplier T : A −→ A
is an almost n-multiplier.

Corollary 2.6. Suppose that A is a unital Banach algebra, and T ∈ AMuln(A).
Then T is an almost left and right n-multiplier.

Proof. Let eA be the unit of A. Then for all a, b ∈ A,

∥aT (b)− T (a)b∥ = ∥aT (eA · · · eAb)− T (aeA · · · eA)b∥ ⩽ ε∥a∥∥b∥.
Thus, T is an almost multiplier, and hence the result follows from Theorem 2.4. □

The following theorem is a well-known result, due to Johnson, concerning the
automatic continuity of multiplier.

Theorem 2.7 ([6, Corollary]). Let A be a Banach algebra with a left approximate
identity. Then every left multiplier T on A is linear and continuous.

Note that every Banach algebra equipped with a left approximate identity is with-
out order. However, we have the next version of Theorem 2.7.

Theorem 2.8 ([8, Theorem 1.1.1]). Let A be a without order Banach algebra. Then
every multiplier T on A is linear and continuous.

The following famous result is due to Cohen [2, Theorem 1] and its proof is also
adapted by Johnson in [6], see also [1, § 11].

Theorem 2.9. If A is a Banach algebra with a left approximate identity and {xm}
is a sequence of elements of A with xm −→ 0 as m −→ ∞, then there exists z ∈ A
and a sequence ym in A with ym −→ 0 such that xm = zym.

We now generalize Theorem 2.7 for n-multipliers on Banach algebras.

Theorem 2.10. Let A be a Banach algebra with a left approximate identity. Then
every left n-multiplier T on A is linear and continuous.
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Proof. Let x1, x2 ∈ A be arbitrary and let µ1, µ2 ∈ C. Then by preceding theorem,
one can find y1, y2, z ∈ A such that x1 = zy1 and x2 = zy2. Since z ∈ A, again we
get z = a1a2 · · · an−1, for some a1, · · · , an−1 ∈ A. Thus, T is linear:

T (µ1x1 + µ2x2) =T (z(µ1y1 + µ2y2)) = T
(
a1a2 · · · an−1(µ1y1 + µ2y2)

)
=T (a1a2 · · · an−1)(µ1y1 + µ2y2)

=T (a1a2 · · · an−1)µ1y1 + T (a1a2· · ·an−1)µ2y2

=µ1T (a1a2 · · · an−1y1) + µ2T (a1a2 · · · an−1y2)

=µ1T (zy1) + µ2T (zy2) = µ1T (x1) + µ2T (x2).

Now, let xm ∈ A and xm −→ 0. Then xm = zym, where ym −→ 0 and z =
a1a2 · · · an−1, for some a1, · · · , an−1 ∈ A. So T (xm) = T (zym) = T (a1a2 · · · an−1ym) =
T (a1a2 · · · an−1)ym −→ 0, as m −→ ∞. Consequently, T is continuous. □

From above theorem we obtain the next result.

Corollary 2.11. Let A be a Banach algebra with a left approximate identity. Then
every n-multiplier T on A is linear and continuous.

The Jacobson radical J(A) of A is the intersection of the maximal modular left
ideals of A. An algebra A is called semisimple whenever J(A) = {0}.

The spectral radius of a ∈ A is ρA(a) = limn→∞ ∥an∥ 1
n . The element a ∈ A is

quasi-nilpotent if ρA(a) = 0. The set of quasi-nilpotent elements in A is denoted by
D(A).

For Banach algebra A, the spectral radius ρA is always continuous at zero, but it
may be discontinuous at other points. If A is commutative, then ρA is continuous at
all points of A.

Let X and Y be Banach spaces and let T : X −→ Y be a linear map. The
separating space S(T ) of T is defined by

S(T ) = {y ∈ Y : there exists (xn) ∈ X s.t. xn −→ 0 and T (xn) −→ y}.
By [3, Proposition 5.1.2], the separating space S(T ) is a closed linear subspace of Y ,
and T is continuous if and only if S(T ) = {0}.

Proposition 2.12. Let A be a unital Banach algebra, and T : A −→ A be a linear
almost right (left) n-multiplier. Then S(T ) is a closed left (right) ideal of A.

Proof. It is enough to prove that S(T ) is an ideal of A. Let a ∈ A and b ∈ S(T ).
Then there exists a sequence (am) in A such that am −→ 0 and T (am) −→ b. Hence

∥T (aam)− ab∥ =∥T (aameA · · · eA)− ab∥
⩽∥T (aameA · · · eA)− aT (ameA · · · eA)∥+ ∥aT (ameA · · · eA)− ab∥
⩽ε∥a∥∥am∥+ ∥a∥∥T (am)− b∥ −→ 0,

as m −→ ∞. Thus, T (aam) −→ ab and since aam −→ 0, we get ab ∈ S(T ).
Consequently, S(T ) is a closed left ideal of A. □
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Theorem 2.13. Let A be a unital Banach algebra, T : A −→ A be a linear almost
right n-multiplier such that ρA(T (a)) ⩽ ρA(a), for all a ∈ A. If ρA is continuous
on S(T ), then S(T ) ⊆ D(A). Suppose, further, that A is semisimple. Then T is
automatically continuous.

Proof. Let b be arbitrary element of S(T ). Then there exists a sequence (am) in
A such that am −→ 0 and T (am) −→ b. It follows from the continuity of ρA on
S(T ) that ρA(T (am)) −→ ρA(b). On the other hand, ρA(T (am)) ⩽ ρA(am) −→ 0.
Therefore ρA(b) = 0, and hence S(T ) ⊆ D(A). By Proposition 2.12, S(T ) is a closed
left ideal in A. Hence S(T ) ⊆ J(A) by [3, Proposition 1.5.32]. If A is semisimple,
then S(T ) = {0} and hence T is continuous. □

As a consequence of Theorem 2.13 and Corollary 2.6, we get the next result.

Corollary 2.14. Let A be a unital Banach algebra and T ∈ AMuln(A) be a linear
map such that ρA(T (a)) ⩽ ρA(a), for all a ∈ A. If A is commutative and semisimple,
then T is automatically continuous.

3. Continuity on uniform Banach algebras

The next example provided that we cannot assert that almost n-multipliers of A are
always n-multipliers.

Example 3.1. Let

A =



0 a x t
0 0 b y
0 0 0 c
0 0 0 0

 : a, b, c, x, y ∈ R

 ,

with the usual matrix operations and l1-norm. Define T : A −→ A via

T



0 a x t
0 0 b y
0 0 0 c
0 0 0 0


 =


0 a y 0
0 0 b x
0 0 0 c
0 0 0 0

 .

Then, for all u, v, w ∈ A, we have T (uvw) = 0, but

uT (vw) =


0 0 0 s
0 0 0 0
0 0 0 0
0 0 0 0

 , T (uv)w =


0 0 0 t
0 0 0 0
0 0 0 0
0 0 0 0

 ,

where s ̸= t. Thus, neither T is a right (left) 3-multiplier nor it is a 3-multiplier.
However, ∥T (uvw) − uT (vw)∥ = |s| ⩽ ∥u∥∥v∥∥w∥, hence T is an almost right 3-
multiplier. Similarly, T is an almost left 3-multiplier and so it is an almost 3-multiplier.

The Banach algebra A is called uniform Banach algebra if the norm ∥.∥ on A is
multiplicative, i.e., ∥xy∥ = ∥x∥∥y∥, for all x, y ∈ A.
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Theorem 3.2. Suppose that A is a uniform Banach algebra. For T ∈ AMul2(A), at
least one of the following holds:
(i) T ∈ Muln(A),

(ii) there exist a constant k such that ∥T (x)∥ ⩽ k∥x∥, for all x ∈ A.

Proof. Suppose that T is not n-multiplier, hence there exist a1, a2, · · ·, an ∈ A such
that a1(Ta2· · ·an) ̸=(Ta1· · ·an−1)an. Take u=a1T (a2 · · · an) and v=T (a1a2 · · · an−1)an.
Thus, ∥u − v∥ ̸= 0. Since T ∈ AMul2(A,X), for every a, b ∈ A ∥aT (b) − T (a)b∥ ⩽
ε∥a∥∥b∥, for some ε > 0. Then for all x ∈ A,

∥T (x)∥∥u− v∥ = ∥(Tx)u− (Tx)v∥ ⩽ ∥(Tx)u± x(Tu)± x(Tv)− (Tx)v∥
⩽ ∥(Tx)u− x(Tu)∥+ ∥x(Tv)− (Tx)v∥+ ∥x(Tu)− x(Tv)∥
⩽ ε∥x∥

(
∥u∥+ ∥v∥+ ∥Tu− Tv∥

)
.

Therefore,

∥T (x)∥∥u− v∥ ⩽ ε∥x∥
(
∥u∥+ ∥v∥+ ∥Tu− Tv∥

)
.

Thus, if we set

k =
ε
(
∥u∥+ ∥v∥+ ∥Tu− Tv∥

)
∥u− v∥

,

then ∥T (x)∥ ⩽ k∥x∥, as required. □

From preceding theorem and Corollary 2.11, we have the following result.

Corollary 3.3. Let A be a uniform Banach algebra with left approximate identity.
If T ∈ AMul2(A) is additive, then it is continuous.

The following example shows that the inclusion Muln(A) ⊆ AMuln(A) is strict.

Example 3.4. Let A = C([0, 1]), the Banach algebra of all continuous complex-
valued functions on [0, 1] with uniform norm ∥f∥ = sup{|f(x)| : x ∈ [0, 1]}. Define
T : A −→ A by T (f) = f , where f(a) = f(a). Since ∥f∥ = ∥f∥, for all f1, f2 ∈ A, we
get

∥T (f1)f2 − f1T (f2)∥ = ∥f1f2 − f1f2∥ ⩽ ∥f1f2∥+ ∥f1f2∥
⩽ ∥f1∥∥f2∥+ ∥f1∥∥f2∥ ⩽ 2∥f1∥∥f2∥.

Thus, T ∈ AMul2(A) with ε = 2, and hence T is an almost n-multiplier by Theo-
rem 2.4, but T is not n-multiplier. Moreover, T is continuous by Corollary 3.3.

Theorem 3.5. Let A be a uniform Banach algebra and T ∈ Mul2(A). Then, at least
one of the following holds:
(i) T is additive and T ∈ Muln(A),

(ii) there exist a constant k such that ∥T (x)∥ ⩽ c∥x∥, for all x ∈ A.

Proof. Assume that T is neither n-multiplier nor additive. If T /∈ Muln(A), then the
conclusion follows from Theorem 3.2. If T is not additive, then T (a+b) ̸= T (a)+T (b),
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for some a, b ∈ A. Take u = T (a+b), v = T (a) and w = T (b). Hence ∥u−v−w∥ ≠ 0.
Since T ∈ AMul2(A), ∥aT (b) − T (a)b∥ ⩽ ε∥a∥∥b∥, for some ε ⩾ 0 and for every
a, b ∈ A. Then, for all x ∈ A we have

∥T (x)∥∥u− v − w∥ = ∥T (x)u− T (x)v − T (x)w∥
⩽ ∥T (x)u± xT (u)− T (x)v ± xT (v)− T (x)w ± xT (w)∥
⩽ ∥T (x)u− xT (u)∥+ ∥xT (v)− T (x)v∥
+ ∥xT (w)− T (x)w∥+ ∥xT (u)− xT (v)− xT (w)∥

⩽ ε∥x∥
(
∥u∥+ ∥v∥+ ∥w∥+ ∥T (u)− T (v)− T (w)∥

)
.

By setting

k =
ε
(
∥u∥+ ∥v∥+ ∥w∥+ ∥T (u)− T (v)− T (w)∥

)
∥u− v − w∥

,

we deduce ∥T (x)∥ ⩽ k∥x∥, for all x ∈ A. □

As a consequence of Theorem 3.5, we have the next result.

Corollary 3.6. With the same hypotheses of Theorem 3.5, if the mapping T is
additive, then either T ∈ Muln(A), or it is continuous.

Next we prove that each mapping which is near to almost n-multiplier T is an
almost n-multiplier.

Theorem 3.7. Let A be a Banach algebra, and T ∈ AMuln(A). If φ : A −→ A is a
mapping such that ∥φ(x)− T (x)∥ ⩽ ε∥x∥, for every x ∈ A, then φ ∈ AMuln(A).

Proof. By assumption ∥a1T (a2 · · · an)−T (a1 · · · an−1)an∥ ⩽ ε1∥a1∥ · · · ∥an∥, for some
ε1 ⩾ 0. Hence for every a1, a2, · · · , an ∈ A, we have

∥a1φ(a2 · · · an)− φ(a1 · · · an−1)an∥
⩽∥a1φ(a2 · · · an)± a1T (a2 · · · an)± T (a1 · · · an−1)an − φ(a1 · · · an−1)an∥
⩽∥a1φ(a2 · · · an)− a1T (a2 · · · an)∥+ ∥a1T (a2 · · · an)− T (a1 · · · an−1)an∥
+ ∥T (a1 · · · an−1)an − φ(a1 · · · an−1)an∥

⩽ε∥a1∥ · · · ∥an∥+ ε1∥a1∥ · · · ∥an∥+ ε∥a1∥ · · · ∥an∥ ⩽ (2ε+ ε1)∥a1∥ · · · ∥an∥.
Thus, ∥a1φ(a2 · · · an)− φ(a1 · · · an−1)an∥ ⩽ δ∥a1∥ · · · ∥an∥, where δ = 2ε+ ε1. □

Remark 3.8. (i) If A is a unital commutative Banach algebra and T ∈ AMuln(A),
then there exist exact n-multiplier h : A −→ A such that

∥h(a)− T (a)∥ ⩽ ε∥a∥, (1)

for every a ∈ A. Moreover, if T is linear, then it is continuous. To see this, let
∥a1T (a2 · · · an) − T (a1 · · · an−1)an∥ ⩽ ε∥a1∥ · · · ∥an∥, for some ε ⩾ 0 and for every
a1, a2, · · · , an ∈ A. Taking a2 = · · · = an = eA, we get ∥aT (eA) − T (a)∥ ⩽ ε∥a∥,
(a ∈ A).

Now the mapping h : A −→ A defined by h(a) = aT (eA) is an n-multiplier and it
satisfies in (1). The continuity of T is now follows from (1).
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(ii) Let A be a unital Banach algebra and T ∈ AMuln(A). If T is linear and unital,
then T is continuous. In fact, for all a ∈ A, we have

∥T (a)∥ − ∥aeA∥ = ∥T (a)∥ − ∥aT (eA)∥ ⩽ ∥T (aeA · · · eA)− aT (eA · · · eA)∥ ⩽ ε∥a∥.
Thus ∥T (a)∥ ⩽ (1 + ε)∥a∥, and so T is continuous.

4. Conclusion

In this work, we introduced and studied the notion of almost n-multiplier on Banach
algebras. Under some conditions, we proved the continuity and automatic continuity
of such maps on Banach algebras. Some general theory and useful results on the notion
of almost n-multiplier are established. We presented some useful and important
examples to illustrate our results. In particular, we generalize the celebrated theorem
of Johnson to (left) n-multipliers on Banach algebras. The results obtained in this
work complement and extend some existing results in the literature.
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