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BASES IN SEQUENCE SPACES AND EXPANSION
OF A FUNCTION IN A SERIES OF POWER SERIES

Bruno de Malafosse

Abstract. In this paper we establish a relation between the existence of a basis and the
solution of an infinite linear system. Then we study the expansion of a function in a series of
power series.

1. Introduction

Bases in infinite dimensional sequence spaces have been studied by many au-
thors. Concerning Schauder bases, let us cite Wilansky [15] and more recently
Malkowsky [7] and [8]. New Schauder bases have been found in the spaces co(A*)
and ¢(A*) by the last author. We also have many results concerning AK spaces,
for example in the A-strongly null and A-strongly convergent sequence spaces. In
this work we establish a relation between the notion of a basis and the solution
of an infinite linear system. Let us recall that some results concerning linear infi-
nite systems have been studied in Cooke [1]. We can find results concerning Pdlya
systems in Petersen and Baker [12] and Petersen [13]. More recently, some results
concerning summability have been put together in Maddox [4], we find a study on
the Walsh functions in Mursaleen [9]. R. Labas and B. de Malafosse [2, 3] gave an
application of the theory of the sum of operators to the theory of infinite matrices.
Note that infinite linear systems have been used for the study of the spectrum of the
Cesaro operator in certain spaces, see Reade [14], Okutoyi [11] and de Malafosse [6].

The plan of this paper is organized as follows. In section 2, we recall some
results concerning AK spaces and Schauder basis [7, 8]. Next, we recall the spaces
sc and S. (see [5, 6, 9]) and define bases of a, 8 type. In section 3, we study how
a function can have an expansion in a given series of power series. In the first
subsection, we prove that this problem is equivalent to the existence of a solution
of an infinite linear system and we give an application where the Cesaro operator
is used. In the subsection 2 are given some properties of such expansions. In the
third subsection, we study a particular expansion and we study when a function
can have a unique expansion, or infinitely many expansions, or no expansion at all.
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100 B. de Malafosse

2. Bases in certain sequence spaces

2.1. Some known results

A Banach space E of complex sequences, with the norm || - || g is called a BK
space if every projection P, : E — C, defined by P,,(X) = x,, is continuous. Denote
by en, n > 0, the vector (0,...,1,0,...), where 1 is in the (n + 1)-st position and
by e the vector (1,1,...). A BK space E is said to have AK (see [15]), if for every
B=(bn)ns0 € E,B=3 " bmem,ie.

’B—mznzzobmemHEﬁO (n — 00).

It is well-known [15], that the space I, p > 0, of the sequences X = (zp)n>0
such that the series )" |z,|P are convergent have AK with respect to the norm
1X |l = (3, |2n|?)/P. Tt is the same for the space ¢ of all convergent sequences,
with the norm || X||;= = sup,,5¢ |[zx|- In this last case, if B = (bn)nzo € ¢, and
(bn)n>0 — b, we have a unique representation B =be + > °_ (by, — b)em, i.e.

HB— (be+ z( —b)em) H = sup [ =t =0, (N —cc).

Elsewhere, (@ )m>0 is a Schauder basis of the normed vector space E, if for
all B € E there is a unique sequence X = (z,),>0, such that B =3 >°_ 0 TmGm, in
the space E. That is

dim [ - 5 2nin] =

Note that {°° has no Schauder basis.

Here, we shall consider sequences as column vectors and give other bases in
new spaces. Then we must recall definitions of useful spaces permitting to do
calculations on infinite linear systems.

2.2. Spaces S, and sq
In the following, we shall use infinite linear systems defined by
o0
Y. GnmTm = bn, n=0,1,2,...
m=0
Such a system can be written as a matrix equation

AX = B,

where A = (@nm)n,m>0 and X, B are the one column matrices defined respectively
by (n)n>0 and (bn)n>o0. The following spaces have been defined, for instance, in
[2] and [3]. For a sequence o = (an)n3>0, where a,, > 0, for every n > 0, we consider
the Banach algebra

So = {A = (@nm)n,m>0

sup( 52 Jana| ) < o0}, (1)

n>0
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normed by
0 Am
I4lls, = sup( 2 Janm] =), (2)
nz0 “m=0 Qn
We also define the Banach space s, of one-column matrices by
sa={X=(xn) sup(M) <oo}, (3)
n>0 N On
normed by
|7
X||s, =su (—) 4
I, = sup (32 @)

If @ = (an)nz0 and B = (Bn)n>0 are two sequences such that 0 < o, < B, for each
n, then s, C sg.

A very useful special case is the one where a,, = 7™, r > 0. We denote, then,
by S, and s,, the spaces S, and s,. When r = 1, we obtain the space of bounded
sequences [ = s;. If

”I - 'A'“Sa <1, (5)
then A is invertible in the space S,.

S being a unit algebra, we have the useful result: if we suppose that (5) holds,
then for every B € s,, the equation AX = B admits one and only one solution in
Sa, given by

(I — A)*B. (6)

18

X =

k=0

We have seen [3] that a matrix A, which verifies (5), for a given sequence
a = (an)n>0 is not necessarily of Polya type (see [1, 12, 13]). Recall that a matrix
A satisfies the Polya condition if

liminf C(n,m) =0, n=12 ...

where
_aom| + laim| + -+ lan—1,m|

C(n,m) ]
We see that a matrix A = (a!™ ™), .50, where 0 < a < 1/3, verifies (5), when we
replace S, by Si, but, for all n > 1, EZ;& |¢2=| > a > 0, which shows that it is
not of Polya type.

2.3. Bases of o, 3 type

In the following o = (an)nz0 and B = (Br)n>0 are two given sequences that
satisfy 0 < a.,, < 3, for all n.

DEFINITION 1. We shall say that (4., )m>o0 is a basis of the a, 8 type if G, € s,
for all m > 0 and for every B € s, there is a unique sequence X = (mn)n>0, such
that -

B= Y Zmim
m=0

in the space sg.
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If there are two reals ry,ry with 0 < ry < rp such that o = (77)n>0 and
B = (r5)n>0, we shall say that (G.m)m>o is a basis of r1, r2 type.

In order to establish a relation between the solution of an infinite linear system
and the notion of basis, we need a lemma.

LEMMA 2. Let o = Y(@om, - - - Gnm, - -- ) € 8 for all m > 0 and assume that
the series Y o _o Tmlm s convergent in the space sg. The following assertions are
equivalent:

i) (@m)m>0 is a basis of o, B type;

i1) equation AX = B admits only one solution, for all B € s,.

Proof. Suppose that i) is satisfied. For all B € s, there exists X = (Zn)n>0
such that ||B — Eﬁzo Tmlm||s, tends to 0 as N tends to infinity. We have

bn_ N— nm+4m
sup(| Lm=q Gnm? |)=o(1) as N — oo.

n20 ﬂn

Then for every value of n, |b, — ZTNn:o npmTm| = Bro(l) as N — oo and b, =
> o @nmTm, which proves that B = AX. Hence we deduce ii).

Conversely, denote by X = (2n)n>0 the solution of the equation AX = B,
B € 5. We see that B = AX = (3,7 _, @nmTn)n>0, and B € sg since so C 5.
Then for all NV

N
’B = > Tmlm
m=0

W= 5, ammn)

=N+1 n20

sp

The last term of the identity is equal to || Y°7°_ \ 1 mdm||s,, Which converges to 0,
as N tends to infinity, since the series > °_ | @@, is convergent in the space sg.
This proves that (@m)m>o is a basis of a, 3 type. m

REMARK 1. Note first that we can have an":o TmGm = 0 in a space S,,,
for a sequence X = (z,)n>0 # 0, although the vectors ag, a1, ... are linearly
independent (that is, if for all £ € N, an:o Tmam = 0, then z,, = 0, for all
m = 0,1,...,k. In fact, consider the family (am)m>o0 defined by *ao = eo and
‘4, = en_1 + e, for all n > 1. It is easy to see that these vectors are linearly
independent. Moreover, for all m > 0, 4., € $r,, for any r2 > 1 and we have for
every integer N: || Eﬁ:o(_l)m@m”sm =1/rY¥*1, which tends to 0 as N tends to
infinity. Then we have Y - (—1)"am, = 0 in the space s, .

In the following we shall use the increasing sequence A = (An41)n>0 Of strictly
positive reals tending to infinity. Denote by C = (@nm)n,m>0 the well-known
infinite triangle matrix defined from A by anm = 1/An41 for 0 < m < n, the other
coefficients being equal to 0 (see [7, 8, 15]). Recall that if A\, =nforalln >1,C
is called the Cesaro operator (see [6, 11, 14]). We shall assert the following reslusts
in which

Cm =40, ;1 / Ams1, 1/ Amy2y---), m=0,1,...
the first non-zero coefficient being in the (m + 1)-st position.
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PROPOSITION 3. %) Let (&m)m>0 be the sequence defined by
dm = t(O, ey am,m, am+1,m, am+27m, N ),

m=0,1,2,..., Gm,m 7# 0 being in the (m + 1)-st position. Assume that there is
M > 0 such that for all n,m > 0:

|anm| K M and

@ \ <M (7)

mm
For real i > M + 1 and ra > 11, (Gm)m>0 is a basis of 11,72 type.
i) For 2 < ry <712, (Em)m>o0 s a basis of r1,r2 type.

it5) Assume that o = (an)nz0 and f = (Bn)nso0 are two sequences for which
(an)n>0 is increasing and

Then (ém)m>o0 is a basis of a, 3 type.

Proof. Assertioni). Consider for all m the sequence defined by a., = a;,},m =
{o,...,1,4ztm ). As ry > 1, we deduce from (7) that

Amm

sup (|anm|/|ammr™]) < 0.

n>2m+1

Define the infinite matrix A’, whose (m + 1)-st column is a},. We see that A’ is
a lower triangle, whose diagonal entries are equal to 1 and the coefficient in the
(n + 1)-st row and of the (m + 1)-st column, with 0 < m < n—1forn > 1, is equal
t0 Gnm [/Gnn. We have

1 |an0| |an1| |an n1|):|
s, = su + ot
! n)g) |:|ann| ( T{L TIL L T1 ’

Sm(-x)
sup | 1——].
1 — 1 p>2 ]

Hence if ry > M + 1 then ||I — A'[|s,, < 1. We deduce that for every B € s,,,
the equation A’X = B admits only one solution X = (A4’)~!'B € s,,. Furthermore,
there exists a constant K > 0 such that

P Anm KM T m
@mllli,le,, < K17 sup ( |G| >< <_) ‘

n>mt1 \|@GmmTy T\ T2

I7— Al

that is, using (7),

11— Als,, <

Then the series with general term |z,,]|ay,|ls,, is convergent, since 72 > 71. s,
being a Banach space, the series Y °_; &m@,, is convergent in s,,. Using Lemma
2 we deduce that for all B € s,, there exists a unique sequence X = (& )n>0 such

that B =3 0" Zmal, = D oe_g Tmpmbnm. And since
a M

sup (@) £ < M,
nzm T1 T

we see that d,, € s, for all m > 0. This completes the proof of i).
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Assertion ii). We can apply i) to the sequence (ém,)m>0. Indeed, A being

increasing, we have here @, = 1/ 41 < 1/A1 and % = AAHJJ: L<lforalln>0
with m < n. It is enough to take M = sup(1,1/A1).

Assertion iii). First we see that d., € s, for allm > 0. In fact, lim, o Ap, = 00
and a, > ap imply that supn>m(ﬁ) < oo for every m. Further, the matrix
whose columns are successively ¢, ¢1, ... is equal to C. The equation CX = B,
where B € s,, admits only one solution. To calculate this solution we need the
infinite lower triangle matrix A = (Npm)n,m>0 defined by n, ,—1 = —1 for n > 1,
Nnn = 1 for n > 0, the other entries being equal to 0. We get then CAD = I,
where D = (An410nm)n,m>0, With 6,, = 1 and 6,,, = 0 for m # n (see [6]). Hence
C~! = AD. If we denote C~' = (c},,,,)n,m>0, then ¢}, = A,41 for all n > 0 and

Chn1 = —An for n > 1. Calculating the product C~'B we deduce that:
xo = bo,
_ . (9)
Tn = —Anbn_1 4+ Ang1bn, ifn>1.
The series R,, = Ef:: N4l TmCm, for a given integer N, is equal to the product
0 0 0 ... 0\ /ayp
. 1 ..................... TN42
Ry=|x 0 0 0
1 1 0

If we set RN = (yn)ngo, then Yn = 0forall n = 0,1,.. .,N, YN+1 = :cN+1/)\N+2
and y, = )\IT(E::L:N-FI Tm) for n > N + 2. We have
|5, e

— sup (@)
m=N+1 56 n>N+1 \ Bn

For n = N + 1, there is a constant K; > 0 such that

|3/N+1|< K ayy

< . 10
BN+1  An+2 Byt (10)
Using (9), we obtain for n > N + 2
M — |)\n+1bn - AN-|—1bN|
/Bn )\n+1/8n
There is a constant Ko > 0 such that
|yn| - [an AN+1 aN] O,
“— < Ky |— —| < 2K;—, 11
ﬁn ﬂn )\n+1 ﬂn Bn ( )

since the sequences A = (An41)n>0 and (@n)n>0 are increasing. Now put 74 (N) =

%Zx—ﬁ and 7(N) = 2K3 sup,,» y4o(52); (10) and (11) imply

sup (M> < sup(m(N), 72(N)).
n>N+1 \ Bn
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71(N) — 0 as N — o0, since A tends to infinity and 0 < a,, < B, for all n. Using
(8), we see that 75(IN) — 0 as N — oo and the conclusion follows from Lemma 2. m

REMARK 2. For any X = (2)n>0 let us denote | X| = (|zn|)n>0. Consider the
space of A-strongly null sequences w(A). Recall that B = (bn)n>0 € w(A) if and
only if C(|BJ) € co, that is lim, (5= Yp_g [bx]) = 0. Tt is well-known (see [7])
that w(A) has AK with respect to the norm

]_ n
1B = sup(5= 3 1],
n>0 N An k=0
ie. |B— ZZ:O bmeéml|| — 0 as N — oo.

We shall consider now a new kind of basis using power series.

3. Expansion of a function in a series of power series

Until here we have studied the representation of a vector B = (bn)n>0 € Sa
as B = Y0 xm(D 0 anmen) in a space sg for a given sequence (Gnm)n,m>0-
Analogously, we are going to see how a function f can be written as f(z) =
S 0 Tm (Y g @nmz™) in a given disk D(0, R), the set of complex numbers z
that satisfy |z| < R.

3.1. Definition and first properties

Let A = (@nm)n,m>0 be an infinite matrix and suppose that there are r, R > 0
such that

30 anm| R ™ < oo, (12)

m=0n=0

Define by A = (A, )m>0 the sequence whose general term is
Am(z) = > anpm2z", m=0,1,...
n=0

defined for |z| < R. We shall say that the infinite matrix A is associated to the
sequence A. We deduct from (12) that for every m > 0 the series Yool o lanm|R™
is convergent. Hence, if r,,, denotes the radius of convergence of /im(z), m 2 0, we
must have 7, > 0 for all m, and we conclude that inf,,>(rm) 2> R.

~

Denote by E, r(A) the set of functions f, defined by the power series f(z) =

Ym0 bnz™, such that there exists a sequence X = (z,)n>0 € s, for which
@) = 5 andn(z), (13)
for all z € D(0, R).

Notice that if p is the radius of convergence of f, we have R < p, since (13) is
satisfied for all z € D(0, R).
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We shall give now a condition for which the vectors of the seqence A = (A)m>0
are linearly independent, that is: if for any integer k and z € D(0, R) the sum
Z];:O mmfim(z) =0, then z,,, =0 for all m =0,1,... k.

PROPOSITION 4. For every integer k let (n;(k))ogick be a sequence of integers
with no(k) < n1(k) < -+ < ng(k). Assume that for every k the determinant of the
Matric (Gp,(k),m)o<i,m<k 15 different from 0. Then the vectors A, m=0,1,...
are linearly independent.

Proof. From the identities 3°F _ ZmAm(2) = 38 _0 2m(X07 g Gnmz") = 0,
where |z| < R, we obtain that Zfzo(zz:o AnmTm)2™ = 0. We obtain a linear
system with infinitely many equations and a finite number of unknowns

k
> GnmTm =0, n=20,1,... (14)

m=0
Hence we have
k
2 Gni(k),mTm =0, 1=0,1,...,k,
m=0

and, since the determinant of the coefficients of the variables of this last system is
different from zero, we deduct that zo =21 =+ - =2, =0.m

Now we can state the following results.

PROPOSITION 5. Assume that (12) holds.
i) Let f(z) = > o2 obn2™. Then f € E, r(A) if and only if the infinite linear
system
> GnmTm = bn, n=0,1,... (15)

m=0
admits a solution in the space S;.
i) If we suppose that the matric A = (Gnm)n,m>0 satisfies the following con-
ditions:

X nm bn
sup( > dnm rm*”) <1, — =0(") (n— o). (16)
n20 “m#n Qnn Qnn

Then f € ET,R(A) and the expansion is unique.
Proof. Assertion i). Suppose that

f@)= % tndn(z) = T an( X anme"),
m=0 m=0 n=0
for all z € D(0,R). Since we have (10), the order of symbols Y and ), can
be interchanged. Then f(2) = Y7 (X or_ @nm@m)z", and we deduce that (15)
admits a solution in s,. Conversely, assume that equation (15) admits a solution
in s,. The double series with general term |anm||Zm||2|™ being convergent for all
z € D(0,R) and for all X = (2, )n € s,, we can write

oo

£ = £ bozm = £ (£ annrn) 2"

n=0 ‘m=0
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for |2] < R. And (12) implies f(2) = > oo _; Zm (> or g anm2z™) for all z € D(0, R),

A~

so f € E, r(A).

Assertion ii). Denote by D the infinite diagonal matrix (6,m /@nn)n,m>0. From
(16) we conclude ||I — DA|ls, < 1 and DB € s,. Them (13) is equivalent to
D(AX) = DB. 1t is easy to verify that D(AX) = (DA)X. Hence X = (DA)"'DB
is the unique solution of (15) in s,. Finally, applying i) we conclude ii). m

~

DEFINITION 6. In the case when each f € E, r(A) admits a unique expansion
as in (13) and satisfies Porposition 4, A = (A,,)m>0 is called an r, R basis.

We are going to give some expansions in nontrivial cases. Let us consider the
first example, where the infinite matrix associated with A is of Polya type (see
Subsection 2.2).

EXAMPLE 7. Let a be a real with 0 < a < 1/3 and set

Ap(z) =3 almrlzm.

n=0

We are going to see that the function f, defined by f(z) = > .2 b,2", where

(bn)n>0 is bounded, belongs to ELR(A) for all R €]0,1], is a 1, R basis. In fact,
we have a,, = 1 for every n and (16) is satisfied since (b,), € s1 and 0 < a < 1/3
implies

) ) 2
sup( 3 a'm_"|) <23 af = 2 <1
n30 “\mZn k=1 1-a
Furthermore,
> % drrirr= 3[R o)+ ¥ B e,
n=0m=0 n=0 m=0 n=0 m=1
that is
i i a\m—n\Rn_ il:Rnl_an-}_l]{— a iRn
n=0 m=0 B n=0 1-a 1-a n=0 ’
and this last term is equal to %‘ We see that condition (12) holds

for all R < 1. Applying the previous proposition we conclude that f € E; r(A)
and A is a 1, R basis.

Now consider the sequence A = (An41)n>0 defined in Subsection 2.3 and set
C = (é’m)m>0, where C,, is defined by the power series C, = > L _om,

n=m Ap41

m=0,1,2,..., defined for |z| < 1. We can give the following result.

PROPOSITION 8. Assume that A € s, forr > 1. Let f(2) = > oo o bn2™ be a
power series such that (bn)n>o is bounded. Then f € E, r(C) when R < 1/r, that
18

F2) = b0Co(2) + 3 Pomstbm = Ambm1]Con(2), (17)

m=1

with |z| < R. Furthermore, C is an r, R basis.
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Proof. We saw in Subsection 2.3 that the infinite matrix A = (@nm)n,m>0
associated to C' is equal to C. Let us show that condition (12) is satisfied. We have

© n 1 ~ 1 n+l _q
> 5 R = R (T,
n=0m=

0 Antl =0 Ant1 r—1

and since the sequence (1/A,41)n>0 is bounded, R < 1 and rR < 1, then

55y L pem o 1 (rf LIV S R).

n=0m=0 )\n+1 B r—1 n=0 )‘TL+1 n=0 )‘TL+1
We deduce that the series > >0 />" | An1+1 R™r™ is convergent. Then (17) is

equivalent to the linear system CX = B. As in Proposition 3, X = (Zn)n30 is
defined by (9), it can be verified that it belongs to s, for r > 1. Finally, it is easy
to see that C' = (é’m)m>0 is an r, R basis, since the matrix C is a lower infinite
triangle matrix with non-zero entries on the main diagonal.

REMARK 3. The previous proposition can be applied to the case where C is
the Cesaro operator, since the sequence A = (n + 1), € s, for all 7 > 1.

~

3.2. Properties of the set E, r(A)

In this part it is useful to associate to every power series f, defined by f(z) =
>0 o bnz™, the upper triangular infinite matrix

bo b1 b
o b b

That is, setting [f] = (@nm)n,m>0, a(nm) = bym—n when m > n, and apm = 0
when m < n (see [2]). The function

fe=11]

maps the algebra of functions which can be expanded in a power series, into the
algebra of the corresponding matrices. Recall that if by # 0, [f] is invertible and
[1/f]=[f1""

In the following we can suppose that a,, = 1 for all values of n. When a,, # 0
for all n, we can refer to this case by replacing A,,(z) by ZZ(Z) =a;l A, (2). We
have the next result.

PROPOSITION 9. Assume that (12) holds for r and R > 0.

i) If f,9 € Er,g(A), then f + g € Ey,p(A).
i) Suppose that for r > 1/R,

sup( i |anm|7"m_”) <1 (18)

n>0 “m£n

If fvg € E’I‘,R(/i)7 then f ‘g € ET‘,R(A)'
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1) Suppose that f(z) =Y o0 o bnz™ with by # 0 satisfies the condition

E |bnb0 - bn—lblan < |b6|7 (19)
n=2

with R > 1/r, and that (18) holds. Then f € ET,R(A) implies 1/ f € ET,R(A).

~

Proof. If f and g belong to E, r(A), there are two sequences (2, )n>o and
(Yn)nzo0 belonging to s, such that (f + ¢)(2) = Yo (@m + Ym)Am(2) for all
z € D(0, R). Since s, is a Banach space, (2, + Yn)n>0 € Sy, which proves i).

Assertion ii). If f, g € E, g(A), then [f] and [¢] belong to Sg since the expan-
sion in (13) holds in the whole disk D(0, R). Sy being an algebra, we conclude that
the infinite matrix [/ - g] = [f]lg] € Sk, Denote now £(2)g(2) = 3o tne". The
series >~ o |7n|R™ being convergent, we conclude that the sequence v = (Vn)n>0
belongs to s1/g. Finally (18) is equivalent to ||[I — Al|s, < 1, and since v € sy/g
with s;/r C s,, the system

oo
> Gnm@m =Y, n=0,1,...
m=0

admits only one solution in s,. Applying i) in Proposition 5, we conclude that

~

f-9¢€ E, r(A).

Assertion iii). We shall modify the expression of f(z) in order to know the
behavior of ots inverse. So, let p; be the function defined by p1(z) =1 — i—éz and
consider the product

e =1+ 5 (Bt o
0

n=2 b0

From (19) we conclude

1 x bn bn—lbl
I—— H =y == R" < 1. 20
H bo Ui Sr nz::2 bo b3 < 20)
Consider now the equation
[f1X =Y, (21)

for any Y € sp. If we set X = [p1]X’, (21) is equivalent to ([f][p1])X' =Y, since
[p1] € Sg. Using (20), we see that this last equation admits a unique solution
X" = ([f]lp1])~'Y in sg. Then X = [p1]([f][p1]) Y is the unique solution of (21)
in the space sg. Thus [f]~! = [p1]([f][p1])~* € Skg, that is [f]7! = [1/f] € Sg.
Now set ﬁ =302 b2", the series 7 |bl,|R™ is convergent, and the sequence
B' = (b;,)n30 belongs to s1/g. So B’ € s, since s1/p C s,. From (18) we conclude
that the system

3 T =0, n=0,1,...

m=0
admits only one solution in s,. Using Proposition 5 we conclude that 1/f €
ET‘,R(A)' |
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REMARK 4. In the previous proposition, iii) holds when we replace the
condition given by (19) by the following one: there exists Ry > 0 such that
Y51 [ba|RE < |bo|. Indeed, we have then [|I — 3~[f]||s,, < 1. The choice of p;
permits to take R = Ry > Ry as in (19) and we obtain a greater space sg, D Sr,
in which the equation AX = B admits only one solution (see the following ap-
plication). p; has been chosen such that the coefficient of z in the polynomial
%f(z)pl(z) is equal to O (see [9]). This method can be repeated, so ps can be
chosen so that the coefficients of z and 2% in %f(z)pl(z)pg(z) are equal to 0, and
Ry > Ry satisty ||I — - [fpipo]llsp, <1, and so on.

3.2.1. An application

We shall adapt iii) in Proposition 9 in a case where we have not an, = 1
for all n. Consider the function f(z) = Yo", ﬁ Here we choose the sequence

A = (Ma41)n>0 of Subsection 2.3 such that the series Y- 1/An41 is convergent.
We are going to verify that the following expansion

= Y (S ) (22)

f(Z) m=0 n=m An-l—l

holds for |2] < R and X € s,. First we see that for r = 1/R > 1 the series

NI D )\n1+1 Rrrm = L (r3% ﬁ = An1+1 R™) is convergent (notice

that f € El/R,R(A))- Furthermore, (19) is satisfied, since Zfzz[m - W] =
1 implies that for all R < 1, E:’:Q[ﬁ - ﬁ]R" < 1 (remark here that the

matrix [f] does not satisfy || — ;-[f]ls, < 1 for any R > 0). Finally, recall that

C is the infinite matrix associated to the sequence with general terms C,,(z) =
Yo w2 m 2 0. Then 55 = 3007 ,2™ is convergent for [z < R for all
R < 1. So (22) is equivalent to CX = B’ with B’ = (b},)n>0 € s1/r, i.e. B' € s,
since r = 1/R. Thus the equation CX = B’ admits a unique solution X = (zn)n>0
in s1/R, given by (9). We see that X € s;,5. Using i) in Proposition 4, we conclude
that (22) is satisfied for |2| < R and X € s1,p with R < 1. This expansion is unique

and we obtain an r, R basis.

3.3. Study of a particular r, R basis

Consider now the case where Ag(z) = 1+ ¢}z, and for m > 1, A, (z) =
Cm2™ 4 2™+ 2l 2™ F1. Assume that R < 1 and the series with general terms
cn(rR)™ and ¢, (rR)™ are absolutely convergent. Then (12) is satisfied and equiva-
lent to

18

(Ieh1|r™ " + 1™ + |epga [r" T R™ < oo. (23)

n=1

One has
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PROPOSITION 10. Suppose that (23) holds and R < 1/r. We have:
i) If

cl
P (M + |cn+2|r> , |cl|r} <1, (24)

X = sup{su
n20 T

~

then f € E, r(A), and the expansion is unique.

ii) Assume that B € sq, where a = (cpr™)nxo with:

g+
lei| > 1/r  and sup <%> <ri (25)

Then f € E,, r(A) admits infinitely many expansions.

/
n—1

n 1 1
sup (M) < - (26)

n>0 || T

i4i) Suppose that B € sg, where 3 = (cl,_17™)n>1 and

There is a real ug so that by # wo implies that f ¢ E. r(A).

Proof. The infinite matrix A = (@nm )n,m>o0 is definied here for all n > 1 by
(nn—1 = Ch_1, Gnn =1, Gn nt1 = Cng1 and agp = 1, ap1 = c1, the other elements
being equal to 0. Relation (24) implies ||[I — A||s, < 1 (since x = ||[I — A||s,), which
proves i), using Proposition 4.

Assertion ii). Denote by A(eg) = (al,,,,)n,m>0 the matrix obtained from A by
addition of the supplementary row eg. If Dy = (6mn/a,,)n,m>0 is the diagonal
matrix whose nonzero elements are the inverses of the diagonal entries of A(eq),
then (25) expresses that || I — DoA(eo)||s, < 1. Hence the equation AX = B with
DyB(u) € s, admits infinitely many solutions in s, defined for all scalars u by
X = [A(eo)] 7t B(u) (see [5]). Since DoB(u) € s, is equivalent to b, = O(c,r™) as
n — 00, we conclude that f(z) has infinitely many expansions which can be written

as
o0

F(@) = 3 (@m + uym)An(2),

m=0
where (Zn)n>0, (Yn)n>0 € sr for all scalars u.

For iii), denote by A* the matrix obtained from A by deleting the first row, and
define B* from B in the same way. D* is the diagonal matrix whose nonzero entries
are the inverses of the diagonal elements of A*. (26) implies || — D*A*||s,. < 1, so
the equation A*X = B*, with D*B* = (bpy1/¢),)n>0 € sy, has a unique solution
X = (A*)"'B* in s,. Hence there is a real ug for which the equation AX = B
does not admit any solution in sg, for ug # by.

ExXAMPLE 11. Take a function f(z) = >, b,2". There is a real r > 0 such
that (bn)n>0 € Sa, where a = (nr™), and there exist infinitely many expansions of
the form

fR)=x0+21+ 3 (MTr—1 +M2Tn, + M3 p1)2™. (27)
m=1
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Here we have Ag(2) =14z, A1(2) =1+ 2+ 222 and A, (2) = (m — 1)32™"1 +
m22™ + (m 4 1)2™*! for all m > 2. The matrix A = (@nm)n,m>o0 is here defined
by ago = @o1 = a10 = a11 = a12 = 1, and apn1 = N, Gpn = N2, Appgr = 0P
for all n > 2. In order to refer to the previous case, where entries on the diagonal
are equal to 1, consider the product D1 A with D; = (dnénm)n,m>0 and do = 1,
dn=mn"2forn > 1. Then ¢/, =1/(n+1) foralln > 0;¢c; =1 and ¢, = n — 1 for

1
n 22 Setm =1+rand 7 = sup,, ZTI Then condition ii) in the previous
proposition yields

sup{ri,} < r2.

Hence 72 —r —1 > 0 that is 7 > (1++/5)/2. We conclude that for all (bn)n>0 € Sa
with r > (1 +/5)/2 and for |z| < R, with R < 2/(1 + v/5), we have the expansion
in (27).
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