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UNBOUNDED SOLUTIONS TO SOME SYSTEMS OF
CONSERVATION LAWS—SPLIT DELTA SHOCK WAVES

Marko Nedeljkov

Abstract. The solution concept is based on splitting of delta measures along regular curves
in R2. Now, their product with piecewise smooth functions with discontinuities along such curves
makes sense.

The differentiation is defined by their mapping into the usual Radon measure space (naturally
embedded into the space of Schwartz distributions).

1. Introduction

Let f;, g; be real valued C'-functions, i = 1,2. Suppose that the Riemann
problem for the hyperbolic system

ug + (fr(w)v + fo(u)), =0 (1)
v + (g1 (w)v + ga(u))z = 0, (2)
B

has no admissible elementary solution (see [6]).

A very good survey paper on general problems of non-existence of classical
solutions is [3], for example.

Our aim is to find a solution in the form of so called “delta shock wave” solution
with speed ¢1, where u(z,t) = G(z — c1t), v(z,t) = H(z — ct) + s1(t)d(x — ct), and
s € C(]0,00)).

Let us remind the reader that a wave is overcompressive if
/\Q(Uo) > )\1(U0) >c > /\Q(Ul) > )\1(U1), (4)

where \; and Aq are the eigenvalues of system (1-2), and U; = (u;,v;), i =1,2. In
this paper, admissible delta shock wave means that it is overcompressive.
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The references to some special cases of such systems one can find in [7].

Delta shock waves could occur when the total variation of initial data is not
small (see for example [9]), or in some other special cases (see for example [2], [10]
or [1]).

Our primary task will is to find sufficient conditions for the existence of a
solution to the Riemann problem (1-3) depending on different initial data.

Colombeau generalized functions are used in [7] for solving the Riemann prob-
lems (1-3). The main idea of [7] was the splitting of a generalized function associat-
ed with the delta distribution contained in the solution along a shock propagation
curve into two parts: the left- and the right-hand side.

In this paper we use the similar idea, but within a

This will be explained in the second section.

‘more classical” setting.

We refer to [4] for some other possibilities in solving of system (1-3).

2. A measure space

Let R2 = {(z,t) € R : ¢ > 0} and B2 = {(z,t) € R? : t > 0}.

—2
Suppose that R, is divided with a finite number of connected closed sets with

mutual intersections of Lebesgue measure zero, Z1,... , Z,, where Z; = Q; U 0,
Q; # 0 is an open set, i = 1,...,n. Suppose Q; N Q; = 0, i # j, and let T,
i=1,...,m, be piecewise smooth curves dividing the sets ;, i =1,... ,n.

Let C(Z;) be the space of bounded continuous functions on Z; with values in R
equipped with the L>®-norm. Its dual is M(Z;), the space of measures, i =1,... ,n.

Let Cr = [];, C(Z;) and equip it with the product topology. Its dual is
Mr =[], M(Z;) with the dual pairing

n

(DJG) = E(Dl’Gl)J D= (Dla"' )Dn) GMF) (Gla"' JGH) GCF‘

i=1

Clearly, if D € Mr and G € Cr, then the multiplication defined by
D-G=(D;-G1,...,D,-G,) € Mr (5)

makes sense. The mapping C(R) — Cr is defined by

G'f= (f(G1)7 s 7f(Gn))7
where G € Cr and f € C(R).

Let M(R%) be the dual space for C (Ri), equipped with the L*°-norm. Let
us define the mapping

m: Mr — M(RZ), m(D) = Dy + -+ + Dy, (6)

(m(D),9) = 3> (Diglz), g € C(R). (7)

i=1
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2.1. The solution concept

The solution concept which will be used in this paper can be described by the
following steps.

The first step: Multiplications and compositions in the space Mr (such operations
are closed in it) before the differentiation.

The second step: The mapping of Mr by m into M(@) first, and then the mapping
of this space by the usual embedding into the space of distributions.

The third step: The differentiation in the space of distributions.
If the result equals zero, then we have a solution.

REMARK 1. The above concept is an analogue of the usual one in the conser-
vation laws theory:

(1) Make all the operations in the space of locally integrable functions before the
differentiation.

(2) Map the space of locally integrable functions into the space of distributions by
the usual embedding.

(3) Make the differentiation in the space of distributions.

If the result equals zero, the function is a solution.

3. The main assertion

We shall say that G is a step function with value (yo,v1) if

Yo, ¥ <0
() ={
Y, Y > 0;

and denote its jump by [G] = y1 — yo-
Here are the new definitions of the delta shock wave and the delta locus.
DEFINITION 1. The delta shock wave solution to Riemann problem (1-3) is a
solution in the form
u(z,t) = G(z — ct)

v(z,t) = H(z — ct) + s0(t)d (z — ct) + 51 ()0 (z — ct), ®

where s;(0) = 0, s; € C'(R), i = 1,2, G and H are the step functions with
values (ug,u1) and (vp,vy), respectively, 6 (z — ct) is the delta measure on the set

Ri N {z < ct} supported by the line = = ct, while §*(z — ct) is the delta measure
supported by the same line, but on the set @i NA{z > ct}.

Solutions of such a type are observed in [5] for the first time.

DEFINITION 2. Let (ug,v9) € R%. A point (uy,v;) is said to be in the delta
locus of the point (ug,vp) if there exists a solution in the sense of the above solution
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concept to (1-3). A point is in the admissible delta locus if the delta shock solution
is overcompressive.

A sufficient condition for a point (u1,v1) to be in the delta locus of a point
(uo,vo) for system (1-3) is given in the following theorem. It is similar to the one
obtained by using Colombeau generalized functions in [7].

THEOREM 1. A point (u1,v1) is in the delta locus of a point (ug,ve) for the
Riemann problem (1-8) if the following holds:

(@) g1(uo) # g1(w1)-
ki(gi(uy) —¢) k1(g1(uo) — ©)
(b) 1 (uO)gl (u1) = g1(uo) 4 (U1)91 (u1) = g1(uo)’
where k1 = c[G] — [f1(G)H + f2], and c is a speed of the delta shock wave.

Proof. The substitution of functions in (8) into (1-3) and the use of the
Rankine-Hugoniot conditions gives the following equation
(—c[GI+[A(G)H + £2(G)])d(z—ct) +(f1(s0()uo)d ™ (z—ct)+ fi(s1(H)ur)d " (z—ct))a
= (=Gl + [L(G)H + f2(G)])d(z — ct) + (fi(so(t)uo) + f1(s1(H)u1))d' (z —ct) = 0.

Suppose that ug # u1. From the above equation, one obtains the value of the speed
¢ and the coupling equations for so and si:

c= [fl(G)IfG? A6 and  so(t) f1(uo) + s1(t) f1(u1) = 0. ©)

Doing the same for the second equation, one obtains

— c[H] + (s0(t) + s1(¢)) 6(z — ct) — c(s0(t) + 81)8" (z — ct)
+[91(G)H + g2(G)]é(z — ct) + (so(t)g1(uo) + s1(t)g1(u1))d'(z — ct) = 0. (10)
Since ¢ is already determined,
(so(t) + 51(1))" = c[H] = [91(G)H + g2(G)), i-e. s0(t) + s1(t) = kut,

and k; is called Rankine-Hugoniot deficit ([4]). Now, one obtains the following
system of equations for s and si:

(91 (uo) — c)so(t)+(g1(u1) — ¢)s1(t) =0
So(t)+ Sl(t) = klt.

If g1 (uo) = g1(uy), then k; = 0, i.e. there is no delta shock wave solution. Other-

wise,
k — k(e —
so(t) = 1(g1(u1) — ¢ s1(t) = 1(c— g1(uo)) (11)
91 (u1) — g1(uo) 91(u1) — g1(uo)
are determined. Using these values and the second equation in (9), one gets the
assertion of the theorem.
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Now, let ug = uy. Then, from the above equations, one can see that k; = 0
and there is no delta shock wave solution to (1-3). m

REMARK 2. One can easily see that the given definitions and the algorithm
can be used for more general systems of conservation laws, linear in one variable,
but non necessary in evolution form:

(fr(w)v + f2(w))e + (fs3(u)v + fa(u))z =0
(g1 (u)v + g2(u))e + (g3(u)v + g4(u))z = 0.
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