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THE INVARIANT SUBSPACE LATTICE
OF AN ALGEBRAIC OPERATOR

Marija Orovchanec and Biljana Nachevska

Abstract. The main objecr in this work is to analyze the invariant subspace lattice of an
algebraic operator.

Let X be a Banach space. By B(X) we mean the algebra of all bounded linear
operators on X. A subspace M is invariant under an operator A if Az € M for
every x € M. The collection of all subspaces of X invariant under A is denoted
by Lat A. The lattice Lat A is the direct sum of sublattices Lat A; and Lat A,
if each M € Lat A is uniquely representable in the form M = M; & M, with
M; € Lat A;, i = 1,2. Notation: Lat A = Lat A; & Lat As.

An operator A € B(X) is algebraic if there exists a polynomial p other than 0
such that p(A) = 0. Let us consider the factorization p(z) = Hle(z — \;)™ with
the \;’s mutually distinct. Then the spectrum of A is o(A4) = {Ai, A2, ..., A}
Every operator on a finite-dimensional space is algebraic. The algebraic operators
on infinte-dimensional spaces can be characterized in terms of their invariant sub-
spaces. An operator is algebraic if and only if the union of its finite-dimensional
invariant subspaces is X.

The main motivation and the basis for the work in this paper are the results
obtained by Brickman and Filmore in [1].

PROPOSITION 1. Let Ay and Ay be algebraic operators with minimal polyno-
mials p1 and ps on the Banach spaces X1 and Xs, respectively. Then

Lat(A1 D Az) =LatA; ® Lat Ay, < (pl,pQ) =1.

Proof. In general case, for every operator A; € B(X;), i = 1,2, Lat 4; &
Lat As C Lat(A4; @ A») holds. For the inverse inclusion, let (p;,p2) = 1. We must
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show that M € Lat(A4; @& Ay) implies that M = M; & My with M; € Lat A;,
i =1,2. Given M € Lat(4; @ A42) let M; & {0} = (1 ® 0)M and {0} & My =
(0 ® 1)M. Obviously M C My & M,. To prove that My & My C M, let ry
and r; be polynomials such taht rip; + rep2 = 1, and let go = rops. We have
qZ(Al) =1- rl(Al)pl(Al) =1s0 qg(Al D Ag) = QQ(Al) D qQ(AQ) =1 D 0. Then
M;a{0} =(100)M = g(A1 & Ax)M C M. Similarly {0} & M2 C M. Thus
M; & My C M, and it follows that My @ Ms = M. Clearly M; € Lat A; for
i=1,2.

Conversely, suppose that p; and p; have a common prime factor g, i.e., p1 = qry
and py = gre. Deviding ¢ by its largest coefficient, we can assume that the leading
coefficient of ¢ is 1. If g(A;)z; # 0 for each z; € X; and 2 € Xy, then r1 and ro
are the minimal polynomials of A; and A;. That means that there exist z1 € X3
and z5 € X5 such that q(4;)z; =0fori=1,2.

Let M = {r(A1)z1 ®r(Az)z, : degr < deggq, the leading coefficient of 7 is 1 }.
It is easy to verify that M is a linear manifold in X; ® X». If (y,) is a sequence in M
and y, — y, then y € M. For, suppose that, for each n, r,, is a non-zero polynomial
of degree less than deggq such that y, = rp(A1)2z1 ® rn(As)zs. Each coefficient of
ry has absolute value at most 1 and at least one coefficient has absolute value equal
to 1. Then a subsequence of (r,) converges coefficient-wise to a polynomial r of
degree less than deg ¢; r is not 0, since at least one of its coefficients has modulus 1.
Re-label so that (7,) is such a subsequence. Then (7, (A;)z; ®r,(As)x2) converges
to r(A1)xy ® r(A2)zs. Thus M is closed, and so M is a subspace of X1 & X5.

Now, let z € M, z = r(A1)z1 ® 7(A2)xs, degr < degq. Then (A; & As)x =
r1(A1)z1 ® 71(As)x2, where r1(2) = zr(z). The leading coefficient of r; is 1 and
degr; = degr + 1 < degq. Since deg(r; — ¢) < degr; < deggq, we have (4; &
Az)x = 7’1(141)1‘1 D ’I“1(A2).’L'2 = (7‘1 — q)(Al).Z'l D (7‘1 — q)(A2)$2 € M. Thus
M € Lat(4; @ Az). If M = M; & M, with M; € Lat A;, 1 = 1,2, we shall have
r(A1)z1 ®0 € M, r(As)za = 0, and therefore r = 0 (because ¢ is prime). Thus
M, = {0} and similarly M» = {0}. Hence M = {0}, a contradiction. m

PROPOSITION 2. Let A be an algebraic operator on X with primary summands

Proof. Using the induction and previous proposition gives the result. m

PROPOSITION 3. Let A be a prime algebraic operator, i.e., (A — X" = 0. If
M € Lat A, then (A — )M C M_, where M_ = \[{M' : M' € Lat A, M' C
MM #£ M}

Proof. Suppose M _ is a proper subset of M. Let A be the quotient operator
on X \ M_. Then M = M \ M_ is a minimal non-zero element of Lat A. But
(A—X)M c M and (A— MM € Lat A. Since A — X is nilpotent, (A — \)M # M.
Hence A — A annihilates M, i.e., (A =AM C M_.m

PROPOSITION 4. Let A be an algebraic operator and Lat A C Lat B. Then B
is algebraic.
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Proof. The proof is similar to the proof of Theorem 4.8 [2]. Let A be an
algebraic operator with the minimal polynomial pa, pa(z) = H?Zl(z — )™, and
Lat A C Lat B. Let z € X and M, = \/{A"z}. We have dim M, < degpa and
M, € Lat A C Lat B. Thus there exists ¢,, polynomial in B, such that ¢, (B)x = 0.
Let F} denote the set of all vectors z such that ¢,(B)x = 0, degg, < k. Then
X = Uz, Fr. Let (z,) is a sequence in Fy, z, — z. We shall prove that z € Fj.
For each m, q,, (B)z, =0, degg,, < k. We can assume that each coefficient of g,
has absolute value at most 1 and at least one coeflicient has absolute value equal
to 1. Then a subsequence of (g,,) converges coefficient-wise to a polynomial g;
degq < k; ¢ is not 0. Since

lla(B)zll = llg(B)z = gz, (B)z| + [|gz, (B)2n — gz, (B)x||
< 9(B) = gz, (B)|l 2]l + [|gz.. (Bl [|2n — || = 0,

g(B)x = 0. Thus each F} is closed. By the Baire category theorem, there exists
ko such that the interior of Fj, is not empty. For z¢ € int F},, there exists r > 0
such that B(zg,r) = {2z € X : ||t —xo]| < 7} C Fy,.- If y € B(0,r), then
y = ¢ — xo for some z € B(zg,r). Then ¢;(B)¢y,(B)y = 0 and degq,qz, < 2ko
and so B(0,r) C Fay,. Since ¢ (B)gz, (B)(ay) = aq,(B)gz, (B)(y), it follows that
X = Foy,.

Let x € X and n, is the degree of the lowest-degree non-zero polynomial of
degree n such that ¢(B)z = 0, where n = max{n,}. We claim that ¢(B)y = 0 for
all y. Given y, let M = V;';O{Bjm,Bjy}. Then M € Lat B and dim M < 2n. Let
r be the minimal polynomial of B|M, then ¢ devides r. Moreover, degq = degr.
Thus ¢ is a multiple of r, and ¢(B|M) = 0. Then ¢(B)y =0. =

In the subsequent work we prove that every commutative set of algebraic op-
erators is triangularizable. First we give some definitions.

DEFINITIONS. A collection of bounded linear operaors on a complex Banach
space is triangularizable if there is a chain of subspaces which is maximal as a
subspace chain and which consists of common invariant subspaces for the operators
in the collection.

A collection of properties is said to be inherited by quotients if for every collec-
tion of quotients of a set satisfying the properties also satisfies the same properties.

THE TRIANGULARIZATION LEMMA. Let P be a collection of properties inher-
ited by quotients. If every set of operators on a space of dimension greater than
one, which satisfies P, has a non-trivial invariant subspace, then every such set is
trinagularizable.

PROPOSITION 5. Every commutative set of algebraic operators is triangulariz-
able.

Proof. Let A is a commutative set of algebraic operators. If every operator in
A is a multiple of the identity, the result is trivial, so assume that A € A is not a



162 M. Orovchanec, B. Nachevska

multiple of the identity. If p is a minimal polynomial of A, let p(z) = H;c:l (z—Aj)".

Then o(A) = {A1,A2,...,A\¢}. Each A\; € IIo(A). For at least one A € o(A4),
the cl(A — N)X # X (otherwise cl([J}_,(4 — X;))X) = X). Ker(4 — 1)) is a
nontrivial invariant subspace for A. Let f € Ker(4 — A) and B € A. Then
(A—XNBf =B(A-X)f=0,ie., Bf € Ker(A — \). It follows that the kernel of
A — X is invariant under 4. The Triangularization Lemma completes the proof. m
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