THE INVARIANT SUBSPACE LATTICE OF AN ALGEBRAIC OPERATOR

Marija Orovchanec and Biljana Nachevska

 ${f Abstract}.$ The main object in this work is to analyze the invariant subspace lattice of an algebraic operator.

Let X be a Banach space. By B(X) we mean the algebra of all bounded linear operators on X. A subspace \mathcal{M} is *invariant* under an operator A if $Ax \in \mathcal{M}$ for every $x \in \mathcal{M}$. The collection of all subspaces of X invariant under A is denoted by Lat A. The lattice Lat A is the direct sum of sublattices Lat A_1 and Lat A_2 if each $\mathcal{M} \in \text{Lat } A$ is uniquely representable in the form $\mathcal{M} = \mathcal{M}_1 \oplus \mathcal{M}_2$ with $\mathcal{M}_i \in \text{Lat } A_i$, i = 1, 2. Notation: Lat $A = \text{Lat } A_1 \oplus \text{Lat } A_2$.

An operator $A \in B(X)$ is algebraic if there exists a polynomial p other than 0 such that p(A) = 0. Let us consider the factorization $p(z) = \prod_{j=1}^k (z - \lambda_j)^{n_j}$ with the λ_j 's mutually distinct. Then the spectrum of A is $\sigma(A) = \{\lambda_1, \lambda_2, \ldots, \lambda_k\}$. Every operator on a finite-dimensional space is algebraic. The algebraic operators on infinte-dimensional spaces can be characterized in terms of their invariant subspaces. An operator is algebraic if and only if the union of its finite-dimensional invariant subspaces is X.

The main motivation and the basis for the work in this paper are the results obtained by Brickman and Filmore in [1].

PROPOSITION 1. Let A_1 and A_2 be algebraic operators with minimal polynomials p_1 and p_2 on the Banach spaces X_1 and X_2 , respectively. Then

$$\operatorname{Lat}(A_1 \oplus A_2) = \operatorname{Lat} A_1 \oplus \operatorname{Lat} A_2 \iff (p_1, p_2) = 1.$$

Proof. In general case, for every operator $A_i \in B(X_i)$, i = 1, 2, Lat $A_1 \oplus$ Lat $A_2 \subset \text{Lat}(A_1 \oplus A_2)$ holds. For the inverse inclusion, let $(p_1, p_2) = 1$. We must

AMS Subject Classification: 47 A 15

Keywords and phrases: Invariant subspace. algebraic operator

Communicated at the 5th International Symposium on Mathematical Analysis and its Applications, Niška banja, Yugoslavia, October, 2–6, 2002.

show that $\mathcal{M} \in \operatorname{Lat}(A_1 \oplus A_2)$ implies that $\mathcal{M} = \mathcal{M}_1 \oplus \mathcal{M}_2$ with $\mathcal{M}_i \in \operatorname{Lat} A_i$, i = 1, 2. Given $\mathcal{M} \in \operatorname{Lat}(A_1 \oplus A_2)$ let $\mathcal{M}_1 \oplus \{0\} = (1 \oplus 0)\mathcal{M}$ and $\{0\} \oplus \mathcal{M}_2 = (0 \oplus 1)\mathcal{M}$. Obviously $\mathcal{M} \subset \mathcal{M}_1 \oplus \mathcal{M}_2$. To prove that $\mathcal{M}_1 \oplus \mathcal{M}_2 \subset \mathcal{M}$, let r_1 and r_2 be polynomials such that $r_1p_1 + r_2p_2 = 1$, and let $q_2 = r_2p_2$. We have $q_2(A_1) = 1 - r_1(A_1)p_1(A_1) = 1$ so $q_2(A_1 \oplus A_2) = q_2(A_1) \oplus q_2(A_2) = 1 \oplus 0$. Then $\mathcal{M}_1 \oplus \{0\} = (1 \oplus 0)\mathcal{M} = q_2(A_1 \oplus A_2)\mathcal{M} \subset \mathcal{M}$. Similarly $\{0\} \oplus \mathcal{M}_2 \subset \mathcal{M}$. Thus $\mathcal{M}_1 \oplus \mathcal{M}_2 \subset \mathcal{M}$, and it follows that $\mathcal{M}_1 \oplus \mathcal{M}_2 = \mathcal{M}$. Clearly $\mathcal{M}_i \in \operatorname{Lat} A_i$ for i = 1, 2.

Conversely, suppose that p_1 and p_2 have a common prime factor q, i.e., $p_1 = qr_1$ and $p_2 = qr_2$. Deviding q by its largest coefficient, we can assume that the leading coefficient of q is 1. If $q(A_i)x_i \neq 0$ for each $x_1 \in X_1$ and $x_2 \in X_2$, then r_1 and r_2 are the minimal polynomials of A_1 and A_2 . That means that there exist $x_1 \in X_1$ and $x_2 \in X_2$ such that $q(A_i)x_i = 0$ for i = 1, 2.

Let $\mathcal{M}=\{\,r(A_1)x_1\oplus r(A_2)x_2:\deg r<\deg q,$ the leading coefficient of r is 1. It is easy to verify that \mathcal{M} is a linear manifold in $X_1\oplus X_2$. If (y_n) is a sequence in \mathcal{M} and $y_n\to y$, then $y\in \mathcal{M}$. For, suppose that, for each n,r_n is a non-zero polynomial of degree less than $\deg q$ such that $y_n=r_n(A_1)x_1\oplus r_n(A_2)x_2$. Each coefficient of r_n has absolute value at most 1 and at least one coefficient has absolute value equal to 1. Then a subsequence of (r_n) converges coefficient-wise to a polynomial r of degree less than $\deg q$; r is not 0, since at least one of its coefficients has modulus 1. Re-label so that (r_n) is such a subsequence. Then $(r_n(A_1)x_1\oplus r_n(A_2)x_2)$ converges to $r(A_1)x_1\oplus r(A_2)x_2$. Thus \mathcal{M} is closed, and so \mathcal{M} is a subspace of $X_1\oplus X_2$.

Now, let $x \in \mathcal{M}$, $x = r(A_1)x_1 \oplus r(A_2)x_2$, deg $r < \deg q$. Then $(A_1 \oplus A_2)x = r_1(A_1)x_1 \oplus r_1(A_2)x_2$, where $r_1(z) = zr(z)$. The leading coefficient of r_1 is 1 and deg $r_1 = \deg r + 1 \leqslant \deg q$. Since $\deg(r_1 - q) < \deg r_1 \leqslant \deg q$, we have $(A_1 \oplus A_2)x = r_1(A_1)x_1 \oplus r_1(A_2)x_2 = (r_1 - q)(A_1)x_1 \oplus (r_1 - q)(A_2)x_2 \in \mathcal{M}$. Thus $\mathcal{M} \in \operatorname{Lat}(A_1 \oplus A_2)$. If $\mathcal{M} = \mathcal{M}_1 \oplus \mathcal{M}_2$ with $\mathcal{M}_i \in \operatorname{Lat}A_i$, i = 1, 2, we shall have $r(A_1)x_1 \oplus 0 \in \mathcal{M}$, $r(A_2)x_2 = 0$, and therefore r = 0 (because q is prime). Thus $\mathcal{M}_1 = \{0\}$ and similarly $\mathcal{M}_2 = \{0\}$. Hence $\mathcal{M} = \{0\}$, a contradiction.

Proposition 2. Let A be an algebraic operator on X with primary summands A_i . Then Lat $A = \bigoplus_i \text{Lat } A_i$.

Proof. Using the induction and previous proposition gives the result. ■

PROPOSITION 3. Let A be a prime algebraic operator, i.e., $(A - \lambda)^n = 0$. If $\mathcal{M} \in \text{Lat } A$, then $(A - \lambda)\mathcal{M} \subset \mathcal{M}_-$, where $\mathcal{M}_- = \bigvee \{ \mathcal{M}' : \mathcal{M}' \in \text{Lat } A, \mathcal{M}' \subset \mathcal{M}, \mathcal{M}' \neq \mathcal{M} \}$.

Proof. Suppose \mathcal{M}_{-} is a proper subset of \mathcal{M} . Let \hat{A} be the quotient operator on $X \setminus \mathcal{M}_{-}$. Then $\hat{\mathcal{M}} = \mathcal{M} \setminus \mathcal{M}_{-}$ is a minimal non-zero element of Lat \hat{A} . But $(\hat{A} - \lambda)\hat{\mathcal{M}} \subset \hat{\mathcal{M}}$ and $(\hat{A} - \lambda)\hat{\mathcal{M}} \in \operatorname{Lat} \hat{A}$. Since $\hat{A} - \lambda$ is nilpotent, $(\hat{A} - \lambda)\hat{\mathcal{M}} \neq \hat{\mathcal{M}}$. Hence $\hat{A} - \lambda$ annihilates $\hat{\mathcal{M}}$, i.e., $(A - \lambda)\mathcal{M} \subset \mathcal{M}_{-}$.

Proposition 4. Let A be an algebraic operator and Lat $A \subset \text{Lat } B$. Then B is algebraic.

Proof. The proof is similar to the proof of Theorem 4.8 [2]. Let A be an algebraic operator with the minimal polynomial p_A , $p_A(z) = \prod_{j=1}^k (z - \lambda_j)^{n_j}$, and Lat $A \subset \text{Lat } B$. Let $x \in X$ and $\mathcal{M}_x = \bigvee \{A^n x\}$. We have $\dim \mathcal{M}_x \leqslant \deg p_A$ and $\mathcal{M}_x \in \text{Lat } A \subset \text{Lat } B$. Thus there exists q_x , polynomial in B, such that $q_x(B)x = 0$. Let F_k denote the set of all vectors x such that $q_x(B)x = 0$, $\deg q_x \leqslant k$. Then $X = \bigcup_{k=1}^{\infty} F_k$. Let (x_n) is a sequence in F_k , $x_n \to x$. We shall prove that $x \in F_k$. For each n, $q_{x_n}(B)x_n = 0$, $\deg q_{x_n} \leqslant k$. We can assume that each coefficient of q_{x_n} has absolute value at most 1 and at least one coefficient has absolute value equal to 1. Then a subsequence of (q_{x_n}) converges coefficient-wise to a polynomial q; $\deg q \leqslant k$; q is not 0. Since

$$||q(B)x|| = ||q(B)x - q_{x_n}(B)x|| + ||q_{x_n}(B)x_n - q_{x_n}(B)x||$$

$$\leq ||q(B) - q_{x_n}(B)|| ||x|| + ||q_{x_n}(B)|| ||x_n - x|| \to 0,$$

q(B)x=0. Thus each F_k is closed. By the Baire category theorem, there exists k_0 such that the interior of F_{k_0} is not empty. For $x_0 \in \operatorname{int} F_{k_0}$, there exists r>0 such that $B(x_0,r)=\{x\in X:\|x-x_0\|< r\}\subset F_{k_0}$. If $y\in B(0,r)$, then $y=x-x_0$ for some $x\in B(x_0,r)$. Then $q_x(B)q_{x_0}(B)y=0$ and $\deg q_xq_{x_0}\leqslant 2k_0$ and so $B(0,r)\subset F_{2k_0}$. Since $q_x(B)q_{x_0}(B)(\alpha y)=\alpha q_x(B)q_{x_0}(B)(y)$, it follows that $X=F_{2k_0}$.

Let $x \in X$ and n_x is the degree of the lowest-degree non-zero polynomial of degree n such that q(B)x = 0, where $n = \max\{n_x\}$. We claim that q(B)y = 0 for all y. Given y, let $\mathcal{M} = \bigvee_{j=0}^{\infty} \{B^j x, B^j y\}$. Then $\mathcal{M} \in \text{Lat } B$ and dim $\mathcal{M} \leq 2n$. Let r be the minimal polynomial of $B|\mathcal{M}$, then q devides r. Moreover, deg $q = \deg r$. Thus q is a multiple of r, and $q(B|\mathcal{M}) = 0$. Then q(B)y = 0.

In the subsequent work we prove that every commutative set of algebraic operators is triangularizable. First we give some definitions.

DEFINITIONS. A collection of bounded linear operaors on a complex Banach space is *triangularizable* if there is a chain of subspaces which is maximal as a subspace chain and which consists of common invariant subspaces for the operators in the collection.

A collection of properties is said to be *inherited by quotients* if for every collection of quotients of a set satisfying the properties also satisfies the same properties.

The Triangularization Lemma. Let P be a collection of properties inherited by quotients. If every set of operators on a space of dimension greater than one, which satisfies P, has a non-trivial invariant subspace, then every such set is trinagularizable.

Proposition 5. Every commutative set of algebraic operators is triangularizable.

Proof. Let \mathcal{A} is a commutative set of algebraic operators. If every operator in \mathcal{A} is a multiple of the identity, the result is trivial, so assume that $A \in \mathcal{A}$ is not a

multiple of the identity. If p is a minimal polynomial of A, let $p(z) = \prod_{j=1}^k (z - \lambda_j)^{n_j}$. Then $\sigma(A) = \{\lambda_1, \lambda_2, \dots, \lambda_k\}$. Each $\lambda_j \in \Pi_0(A)$. For at least one $\lambda \in \sigma(A)$, the $\operatorname{cl}(A - \lambda)X \neq X$ (otherwise $\operatorname{cl}(\prod_{j=1}^k (A - \lambda_j)X) = X$). $\operatorname{Ker}(A - \lambda)$ is a nontrivial invariant subspace for A. Let $f \in \operatorname{Ker}(A - \lambda)$ and $B \in \mathcal{A}$. Then $(A - \lambda)Bf = B(A - \lambda)f = 0$, i.e., $Bf \in \operatorname{Ker}(A - \lambda)$. It follows that the kernel of $A - \lambda$ is invariant under A. The Triangularization Lemma completes the proof. \blacksquare

REFERENCES

- Brickman, L., Fillmore, P. A., The invariant subspace lattice of a linear transformation, Can. J. Math. 19 (1967), 810-822.
- [2] Radjavi, H., Rosenthal, P., *Invarinat Subspaces*, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- [3] Radjavi, H., Rosenthal, P., Simultaneous Trinagluarization, Springer-Verlag, Berlin-Heidelberg-New York, 2000.

(received 12.12.2002)

St. Cyril and Methodius University, Faculty of Natural Sciences and Mathematics, Institute of Mathematics, P.O.Box 162, 1000 Skopje, R. Macedonia

E-mail: marijaor@iunona.pmf.ukim.edu.mk