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ON GNOMONS
Jan M. Aarts and Robbert J. Fokkink

Abstract. A gnomon is a shape which, when added to a figure, yields a figure that is similar
to the original one. Gazalé [4] conjectured that if the gnomon is a regular polygon and the figure
to which it is added is a finite polygon then the gnomon is a triangle or a square. We prove this
conjecture to be correct.

1. Introduction

A gnomon is a shape which, when added to a figure, yields a figure that is
similar to the original. A precise mathematical definition follows.

DEFINITION 1. Suppose that V and W are closed subsets in the plane whose
interiors are non-empty and disjoint. Then W is called a gnomon of V if WUV is
similar to V, i.e., there exists a bijection f: W UV — V and a real number A with
0 < A <1 such that d(z,y) = Ad(f(x), f(y))-

Fig. 1. W is a gnomon of V'

Figure 2 shows the examples that are presented in Gazalé’s book [4] and in a
column of Tan Stewart in the Scientific American [8].

In Figure 2, the left hand figure is the spiral that is associated to the golden
number, or the golden ratio. Here the gnomon W is a square and V is a rectangle,
the sides of which have a ratio that is equal to the golden ratio, the positive root
of 22 +2—1. The similarity between WUV and V is the composition of a clockwise
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Fig. 2. The square and triangle as gnomons

rotation over 7/2 and a contraction by the golden ratio. The figure on the right
shows an equilateral triangle as a gnomon of a pentagon V. The ratio between the
lengths of successive sides of V is equal to the positive root of 22 + 22 — 1. This
root is called the silver number by Gazalé. The similarity transformation between
WUV and V is a clockwise rotation over 7/3 combined with a contraction by the
silver number. The figure on the left is called the golden spiral and the figure on
the right is called the silver spiral. In [4, page 143] it is stated that “there is (in all
likelihood) no finitary polygon whose gnomon is a regular polygon other than the
golden rectangle and the silver pentagon”. We shall show this to be true.

THEOREM 2. Suppose that W is a gnomon of V, that V is a finite polygon
and that W is a reqular polygon. Then V and W constitute either the golden spiral
or the silver spiral.

In this theorem the orientation of the spiral is irrelevant. In other words,
spirals that are mirror images of each other are considered the same.

2. Similarity transformations

We assume from now on that W is a gnomon of V', that both W and V are
finite polygons and that W is convex. Suppose that o: W UV — V is a similarity
transformation. As a similarity transformations is determined by its action on three
non-collinear points, we may assume that ¢ is defined on all of R%. By the Banach
contraction theorem, ¢ has a unique fixed point. It is known that contracting
similarity transformations of the plane of which the origin is a fixed point can be
of three types [3]:

1. A pure contraction z — Ax for some A such that 0 < A < 1.
2. A composition of a contraction and a rotation.
3. A composition of a contraction and a reflection.

The gnomon in figure 1 has a similarity of type 1 or type 3. The gnomons
in figure 2 have a similarity of type 2. The orbit space of R*\ {0} is the quotient
space under the equivalence relation generated by x ~ ¢(x). The orbit space is a
torus for similarity transformations of type 1 or 2. It is a Klein bottle for similarity
transformations of type 3.
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LeEMMA 3. Suppose that o:W UV — V is of type 1 or 3, that W is conver
and that V is a finite polygon. Then W is a quadrilateral.

Proof. First note that VN W # (), for otherwise V is the disjoint union of
e(W), @2(W), @3(W), ... together with the limit point, whence not a polygon.
Let ¢ be of type 1. Then the only iterate ¢*(W) that has non-empty intersection
with W is ¢(W). By convexity W and (W) intersect in a single side, which, since
V is a finite polygon, has to be a mutual side of V' and W. This accounts for two
sides of W, one being mapped onto the other under the similarity transformation.
The gnomon has to be the convex hull of these two sides, tiling a triangle under
the iteration of the similarity transformation.

Now let ¢ be a similarity transformation of type 3. If W and ¢(WW) have
non-empty intersection, then by the same argument as above W is a quadrilateral
and V is a triangle. If W and ¢(W) are disjoint, then W intersects (W) and
by the same argument V must be a union of two triangles whose intersection is
the fixed point of the similarity transformation. As the resulting figure is not a
polygon, the last case can not occur. m

From now on we shall consider only gnomons with similarities of type 2, namely
contracting rotations; we may assume as well that angles of the rotation are positive
and less than 7.

3. Convex gnomons

Let W be a gnomon for V' and let ¢ € V' be the fixed point of the contracting
rotation ¢. We may assume that the rotation has angle less than 7. It is easily
seen that ¢ must be an interior point of V. It follows that the copies of W under
the iteration of ¢ form a tessellation of V' \ {q}.

VA{g} =oW)U(W)U*(W)U---

By extending the tessellation so as to include negative iterates, we get a tessellation
of the punctured plane R?\ {¢} with sets ©*(W), i an integer. For each point
the orbit of x under the action of ¢ is a set with one limit point only, namely gq.
The orbit space of R? \ {¢} is obtained as a quotient space by identifying each
orbit to a single point. It can be represented by W with identification of points in
the boundary OW. To describe this identification properly, we distinguish between
geometric sides and combinatorial edges of a gnomon.

DEFINITION 4. Suppose that W is a gnomon of V' with contracting rotation
p:VUW — V. We say that an arc I C OW is a combinatorial edge of W if
I =W ne!(W) for some (positive or negative) i. We shall say that the end points
of a combinatorial edge are combinatorial vertices.

The combinatorial edges of a gnomon are subsets of the geometric sides, and
they are identified pairwise by the orbit quotient map. The number of combinatorial
edges is equal to the number of neighbors of W in the tessellation {p'(W) :i € Z}
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of the punctured plane. A combinatorial vertex is the common intersection of at
least three tiles. Figure 2 showes that combinatorial vertices are the intersection
of three tiles in the golden spiral and that they are the intersection of four tiles in
the silver spiral.

LEMMA 5. Suppose that W is a convex gnomon of V and that the similarity
transformation is a contractive rotation. Then W has either four or six combina-
torial edges. In the first case, each combinatorial vertex is the intersection of four
tiles. In the second case, each combinatorial vertex is the intersection of three tiles.

Proof. This is a common observation for tessellations of the plane, see e.g.
[3, page 63]. Let n be the number of combinatorial edges of W. Then n is equal
to the number of combinatorial vertices, since W is a simple closed curve. The
orbit map identifies the tessellation to a triangulation of a torus, with 1 face and
n/2 edges. As each combinatorial vertex belongs to at least 3 tiles, the number of
combinatorial vertices is < n/3. Since the torus has zero Euler characteristic, the
number of combinatorial vertices is n/2 — 1. It follows that n < 6. Since n is even,
n is equal to 4 or 6. In the first case all combinatorial vertices are identified to one
point. In the second case they are identified to two points in the orbit space. m

Fig. 3. The Voronoi-diagram of an orbit

COROLLARY 6. A convex gnomon has at most six geometric sides.

Proof. A geometric side contains at least one combinatorial edge. m
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One may wonder whether convex gnomons with six edges really exist. Figure
3 shows that they do. The figure is constructed by drawing the Voronoi cells of a
contracting rotation over 53 degrees.

4. Regular gnomons
We shall say that a gnomon is regular if it is a regular polygon.
LEMMA 7. A regular gnomon is either a triangle or a square.

Proof. Let W be aregular gnomon and let ¢ be a contracting rotation. Since W
is a regular polygon, all its sides are of equal length. As was indicated above
combinatorial edges of OW are pairwise identified and in each pair one combinatorial
edge is a geometric side. If there are four combinatorial edges, the gnomon is a
triangle. If there are six combinatorial edges, the gnomon is a square. m

LEMMA 8. Suppose that W is a reqular gnomon with contracting rotattion .
Then (W) NW is non-empty.

Proof. We give the proof in the case W is a triangle only. This case is more
difficult than the case that W is a square. Fach vertex of W equals the intersection
of four tiles, three of which have the vertex as a corner point. We label the three
corner points of W as vy, va, vz. They are chosen in such a way that v; the
intersection with three other tiles, all of which are larger than W. The second
vertex vy is the intersection with two larger tiles and one smaller tile. The third
vertex vs is the intersection with one larger tile and two smaller tiles. Let VU W
be the polygon such that V' UW is similar to V. Then v is a corner point of VUW
with angle 7/3, v2 is a vertex with angle 27/3 and vz is on a side of VU W. All
interior angles in V' therefore are equal to 7/3 or 27/3. The exterior angles of V
(for each corner point only one) add up to 27, so there are two possibilities for V:
one angle of V' is w/3 and four angles are 27 /3, or two angles are 7/3 and two angles
are 2w /3. In the latter case V has a diamond shape which is clearly impossible.
So v; has a unique interior angle in V UW and v, has a unique interior angle in V,
This implies that ¢(v1) = v2 and the result follows. m

Proof of Theorem 2. Suppose that W is regular gnomon and that ¢ is its
contracting rotation with d(¢(x),(y)) = Ad(z,y). First we consider the case
that W is a triangle, so it has four combinatorial edges, two of which are geometric
sides. In the boundary of W there is one unique combinatorial vertex v that is
not a corner point of W. It is the intersection of four copies of W, one of which
meets W in v only. Label the vertices of W as a, b, ¢ such that ab the edge that
contains v and b is in W N o(W). It follows that ¢(c) = b and ¢(a) = v. So ¢
rotates over 7/3 and ¢ is a pure contraction. This implies that {v} = W N%(W),
in particular ©%(c) = v. It follows that ¢°(b) = v and ©°(c) = a, s0 A+ A3 = 1. The
last equation has the silver number as its only positive real root. This statement
follows from the fact that A3 + A2 — 1 is a factor of A> + X\ — 1, the other factor
being A2 — X\ + 1 (which has no real zeroes).
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Now we consider the case that W is a square and apply the same arguments.
W has six combinatorial edges, three of which are geometric sides. Let v and w
be the two combinatorial vertices that are not corner points. Since W N (W) is
non-empty, the rotation has to be over m/2. So ¢* is a proper contraction, which
implies that {v,w} = WNg*(W). Label the corner points of W as a, b, ¢, d with ab
the edge that contains {v,w} and b in W N o(W). We may assume that ¢(a) = v.
Then ¢o(d) = b, p*(c) = v, p*(d) = w. We have ©?(c) = a and ¢3(b) = w, so
A+ A%+ \* = 1. The last equation has the golden number as its only positive real
root.

5. Concluding remarks

Gnomons were introduced by Gazalé in a metaphysical book on shapes that
occur in biology and architecture. The silver number has appeared in works on
architecture, in particular that of the Dutch architect and Benedictine monk Dom
van der Laan, [2, 5, 6, 7, 8].

We have seen that convex gnomons can have six sides. We are unable, however,
to decide whether there exist gnomons that have five sides.
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