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OPEN COVERS AND FUNCTION SPACES

B. A. Pansera and V. Pavlović

Abstract. We investigate some closure properties of the space C(X) of the continuous
real-valued functions on a Tychonoff space X endowed with the compact-open topology and the
pointwise convergence topology.

1. Introduction

In this paper we use the standard topological notation and terminology as
in [3]. All spaces are assumed to be infinite Tychonoff. Let X be a topological
space. Then:

O denotes the collection of all open covers of X;

Ω denotes the collection of all open ω-covers of X. A cover U of a set Y is
called an ω-cover if Y is not a member of U and every finite subset of Y is
contained in a member of U [4];

K denotes the collection of all open k-covers of X. A cover U of a space X is
called a k-cover if X is not a member of U and every compact subset of X is
contained in a member of U [2].

A space X is called a k-Lindelöf space if for each open k-cover U of X there
is a V ⊆ U such that V is countable and V ∈ K. Each k-Lindelöf space is Lindelöf,
so normal, too.

For a space X and a point x ∈ X, the symbol Ωx denotes the set {A ⊆ X\{x} :
x ∈ A}. Let A and B be two arbitrary sets (usually collections of open covers of a
topological space X). The symbol S1(A,B) [9] denotes the selection principle:

For each sequence (An : n ∈ N) of elements of A there exists a sequence
(bn : n ∈ N) such that, for each n, bn ∈ An and {bn : n ∈ N} is an element
of B.
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The symbol Sfin(A,B) [9] denotes the selection principle:

For each sequence (An : n ∈ N) of elements of A there exists a sequence
(Bn : n ∈ N) such that, for each n, Bn is a finite subset of An and ∪n∈NBn is
an element of B.

Then the property S1(O,O) is called the Rothberger property [5,17], and the
property Sfin(O,O) is known as the Menger property [5,17].

For a space X by C(X) we denote the set of all continuous real-valued functions
defined on X. The symbol 0 denotes the constant to zero function defined on X.
Then Cp(X) is the set C(X) endowed with the topology of pointwise convergence
(the “pc-topology” for short). Typical basic open sets of C(X) are of the form:

W (x1, . . . , xk;U1, . . . , Uk) = {f ∈ Cp(X) : f(xi) ∈ Ui, i = 1, . . . , k}

where x1, . . . , xk are points of X and U1, . . . , Uk are open sets of R. For a subset
S of X and a positive real number ε we let

O(S, ε) = {g ∈ C(X) : |g(x)| < ε, for all x ∈ S}.

The standard local base at the point 0 consists of the sets O(F, ε), where F is a
finite subset of X and ε is a positive real number.

By Ck(X) we denote the set C(X) endowed with the compact-open topology
(the “co-topology” for short). Typical basic open sets of Ck(X) are of the form:

W (K1, . . . ,Kn;U1, . . . , Un) = {f ∈ C(X) : f(Ki) ⊂ Ui, i = 1, . . . , n}

where K1, . . . ,Kn are compact subsets of X and U1, . . . , Un are open sets of R.
The standard local base at the point 0 ∈ Ck(X) consists of the sets O(K, ε), where
K is a compact subset of X and ε is a positive real number.

Since Cp(X) and Ck(X) are homogenous spaces we may always consider the
point 0 when studying local properties of these spaces. Since we are considering
two topologies of C(X) we shall use the symbol (Ω0)p to denote Ω0 in the space
Cp(X) and the symbol (Ω0)k to denote Ω0 in the space Ck(X). Many results in the
literature show that for a Tychonoff space X closure properties of function spaces
Cp(X) and Ck(X) can be characterized by covering properties of X [1,9].

By standard techniques of switching between k-covers of X and subsets of
Ck(X) one can easily see that the following holds.

Lemma 1.1.Ck(X) has countable tightness iff X is k-Lindelöf.

In the first section of the paper we investigate the selection principles S1(K,Ω)
and Sfin(K,Ω) and their relations with function spaces. In the remaining two
sections we study a bitopological variant of the Pytkeev property and of the
Reznichenko property in function spaces.
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2. The selection principles S1(K,Ω) and Sfin(K,Ω)

Note that the following relations between classes of covers defined above hold:

K ⊆ Ω ⊆ O,

hence we have:

S1(K,K) ⊆ S1(K,Ω);

Sfin(K,K) ⊆ Sfin(K,Ω).

The next two lemmas follow from the definition of k-covers.

Lemma 2.1. If a k-cover U of a space X is the union of finitely many sub-
families, then at least one of them is also a k-cover of X.

Lemma 2.2. If U is a k-cover of a space X, then each compact subset of X is
contained in infinitely many elements of U . For any finite set S the family U \ S
is also a k-cover.

In [2] the following was proved:

Lemma 2.3. If U is a k-cover of a space Xn, then there is a k-cover V of X
such that {V n : V ∈ V} refines U .

Theorem 2.1. A space X satisfies S1(K,Ω) if and only if each finite power
of X satisfies S1(K,Ω).

Proof. Let X belong to the class S1(K,Ω) and let (Wn : n ∈ N) be a sequence
of k-covers of Xm, for a fixed natural number m. By Lemma 2.3, for each natural
number n there exists a k-cover Un of X such that {Um : U ∈ Un} refines Wn.
Apply the fact that X ∈ S1(K,Ω) to the sequence (Un : n ∈ N). There is a sequence
(Un : n ∈ N) such that, for each n, Un ∈ Un and {Un : n ∈ N} is a k-cover of
X. For each n, let Wn be an element of Wn with Um ⊂ Wn. Then the sequence
(Wn : n ∈ N) shows that Xm is in the class S1(K,Ω). Let F be a finite subset of
Xm. The union

⋃
i≤m pi(F ) = B of the projections onto X is a finite subset of X

and thus there is an n ∈ N such that B ⊂ Un. Hence F ⊆ Bm ⊆ Um
n ⊆ Wn.

In a similar way one can prove that:

Theorem 2.2. A space X satisfies Sfin(K,Ω) if and only if each finite power
of X satisfies Sfin(K,Ω).

Our intent in this section is to describe how these two principles affect the
bitopological space (Ck(X), Cp(X)). Let us mention here that the principles
S1(Ω,K) and Sfin(Ω,K) have already been considered in [8] where Ramsey theo-
retical characterizations were established.

A space X has countable fan tightness [1] if for each x ∈ X and each sequence
(An : n ∈ N) of elements of Ωx there exists a sequence (Bn : n ∈ N) of finite sets
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such that, for each n, Bn ⊆ An and x ∈ ∪n∈NBn, i.e. if Sfin(Ωx,Ωx) holds for
each x ∈ X.

A space X has countable strong fan tightness [16] if for each x ∈ X S1(Ωx,Ωx)
holds.

The following theorem was proved in [6].

Theorem 2.3. For a space X the following are equivalent:
(1) Ck(X) has countable strong fan tightness;
(2) X has the property S1(K,K).

Theorem 2.4. For a space X the following are equivalent:
(1) C(X) satisfies S1((Ω0)k, (Ω0)p));
(2) X has the property S1(K,Ω).

Proof. (1) ⇒ (2) : Let (Un : n ∈ N) be a sequence of k-covers of X. For each
pair of a compact subset K of X and an open subset U ⊇ K of X let fK,U be any
continuous function from X to [0, 1] such that fK,U (K) ⊆ {0} and fK,U (X \ U) ⊆
{1}. For each n let An = {fK,U : K compact in X, K ⊆ U ∈ Un}. Then for each
compact subset K of X there is a fK,U ∈ An so, as it can easily be verified, 0 is in the
closure of each An, with respect to the compact-open topology. Since C(X) satisfies
S1((Ω0)k, (Ω0)p) there is a sequence (fKn,Un

: n ∈ N) such that for each n, Kn is
compact, Un ∈ Un and 0 belongs to the closure of {fKn,Un

: n ∈ N} with respect to
the pointwise convergence topology. We claim that {Un : n ∈ N} ∈ Ω. Let F be a
finite subset of X. From the fact that 0 belongs to the closure of {fKn,Un

: n ∈ N}
with respect to the pointwise convergence topology it follows that there is an i ∈ N
such that W = O(F, 1) contains the function fKi,Ui

. Then F ⊆ Ui. Otherwise for
some x ∈ F one has x /∈ Ui so that fKi,Ui

(x) = 1, contradicting fKi,Ui
∈ W .

(2) ⇒ (1) : Let (Am : m ∈ N) be a sequence of subsets of C(X) \ {0} the
closures of which all contain 0, with respect to the compact-open topology. If X is
compact then the compact-open topology coincides with the topology of uniform
convergence, so Ck(X) is metrizable, thus first countable, which means that we
can find a sequence (an : n ∈ N), an ∈ An, converging uniformly to 0 so there is
nothing to be proved. Let X be a noncompact space.

For a bijection i : N2 → N put An,m := Ai(n,m).
For each n,m ∈ N and every compact set K ⊆ X the neighborhood W =

O(K, 1
n ) of 0 intersects Am,n, so there exists a continuous function fK,m,n ∈ Am,n

such that |fK,m,n(x)| < 1
n for each x ∈ K. Since fK,m,n is a continuous

function there is an open UK,m,n such that fK,m,n(UK,m,n) ⊆ (− 1
n , 1

n ). Let
Um,n = {UK,m,n : K is a compact subset of X}.

As for any compact subset K we have K �= X, it can easily be achieved
that none of the sets UK,m,n above coincides with X. So for each m and n, Um,n

is a k-cover of X. To each sequence (Um,n : m ∈ N) apply the fact that X is an
S1(K,Ω)-space to obtain sequences (UKm,n,m,n : m ∈ N), with each Km,n compact,
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such that {UKm,n,m,n : m ∈ N} ∈ Ω for every n ∈ N. Let us show that 0 belongs
to the closure of {fKm,n,m,n : m,n ∈ N} with respect to the pointwise convergence
topology.

Let W = O(F, ε) be a neighborhood of 0 in Cp(X) and let n be a positive
integer such that 1

n < ε. Since F is a finite subset of X and {UKm,n,m,n : m ∈
N} ∈ Ω there is a m ∈ N such that F ⊆ UKm,n,m,n. We have

fKm,n,m,n(F ) ⊆ fKm,n,m,n(UKm,n,m,n) ⊆ (− 1
n

,
1
n

) ⊂ (−ε, ε)

i.e. fKm,n,m,n ∈ W . Since fKm,n,m,n ∈ Am,n this ends the proof of the theorem.
In a similar way one can show that

Theorem 2.5. For a space X the following are equivalent:
(1) C(X) satisfies Sfin((Ω0)k, (Ω0)p));
(2) X has the property Sfin(K,Ω).

3. The Pytkeev-type properties

For a space X and x ∈ X, a family F of subsets of X is called a π-network at
x if every neighborhood of x contains an element of F .

A space X is called a Pytkeev space [14] if x ∈ A \ A and A ⊆ X imply the
existence of a countable π-network at x consisting of infinite subsets of A.

An open ω-cover U is said to be ω-shrinkable [14] if there is a function C such
that for each U ∈ U the set C(U) is closed, C(U) ⊆ U and {C(U) : U ∈ U} is an
ω-cover of X.

In [14] the following theorem was proved:
Theorem 3.1. The following are equivalent:

(1) Cp(X) is a Pytkeev space;
(2) If U is an ω-shrinkable open nontrivial ω-cover of X, there is a sequence (Un :

n ∈ N) of countably infinite subfamilies of U such that {∩Un : n ∈ N} is an
ω-cover of X.

Nontrivial means not containing the whole space as one of its elements.
When dealing with the space Ck(X) we will need the “compact” version of

“shrinkability”. An open cover U is said to be k-shrinkable if there is a function C
such that for each U ∈ U the set C(U) is closed, C(U) ⊆ U and {C(U) : U ∈ U}
is a k-cover of X; the collection of all k-shrinkable open covers of X is denoted
by Kshr. A family U of subsets of a space X is said to be a 3-k-shrinkable cover
of X if there is a function g such that for each U ∈ U g(U) = (VU , ZU ), where
VU ⊆ ZU ⊆ U , VU is a cozero set, ZU is a zero set and {VU : U ∈ U} k-covers
X. U is called an open 3-k-shrinkable cover provided that its elements are open
subsets of X. The collection of all nontrivial open 3-k-shrinkable covers of X will
be denoted by 3-Kshr. Obviously one has 3-Kshr ⊆ Kshr ⊆ K.
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In the sequel we will need the following two lemmas which are proved exactly
as Lemma 1.2 and Lemma 1.4, respectively, in [12], mostly by replacing the word
finite by the word compact.

Lemma 3.1. Every open k-cover can be refined by an open 3-k-shrinkable
cover.

Lemma 3.2. Let X be a k-Lindelöf space. If ε > 0 and 0 ∈ A ⊆ Ck(X) then
there is a B ⊆ A and a function s : B → (0, ε) such that at least one of the families
{|f |←[0, s(f)) : f ∈ B} or {|f |←[0, s(f)] : f ∈ B} is a 3-k- shrinkable open cover
of X.

What could be called “k-shr-Lindelöf” does not differ from k-Lindelöf. More
exactly:

Lemma 3.3. A space X is k-Lindelöf iff every open k-shrinkable cover contains
a countable k-shrinkable subcover.

Proof. If every open k-shrinkable cover contains a countable k-shrinkable sub-
cover then Lemma 3.1 implies that X is k-Lindelöf.

Now let X be k-Lindelöf and fix an open k-shrinkable cover U and a function
C confirming that. For each U ∈ U choose a fU ∈ C(X) such that fU [C(U)] ⊆
{0}, fU [X \ U ] ⊆ {1} and put T (U) := |fU |←[0, 1/2] ⊆ U . Clearly 0 is in the
closure of A = {fU : U ∈ U} with respect to the co-topology. By Lemma 1.1,
Ck(X) has countable tightness so there is a countable B ⊆ A such that 0 ∈ B with
respect to the co-topology. By the construction of A there is a countable V ⊆ U
with B = {fU : U ∈ V}. Then T witnesses that V is k-shrinkable.

Indeed, let K ⊆ X be compact. There is an h ∈ B ∩ O(K, 1/2) and a U ∈ V
with h = fU . Then |fU |[K] = |h|[K] ⊆ [0, 1/2) so K ⊆ |fU |←[0, 1/2] = T (U).

Using the techniques as in [12] one can show

Proposition 3.1. The following are equivalent:
(1) Ck(X) is a Pytkeev space;
(2) If U is a nontrivial 3-k-shrinkable cover of X, there is a sequence (Un : n ∈ N)

of countably infinite subfamilies of U such that {⋂Un : n ∈ N} is a k-cover
of X.

For two sets A and B the formula Pyt(A,B) (see [12]) abbreviates the state-
ment:

for each sequence (An : n ∈ N) of elements of A there is a sequence (Bn :
n ∈ N), where each Bn is a countably infinite subset of An, such that for each
f ∈ ∏

(Bn : n ∈ N) the set {f(n) : n ∈ N} is an element of B.
For some topological properties it is possible to consider their “selective” ver-

sions (see e.g. [12,13]). In this paper we are interested in the selective bitopological
versions of the Pytkeev and the Reznichenko properties.
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Let τ1 and τ2 be two topologies on the same set X with τ2 ⊆ τ1. X has the
selectively (τ1, τ2)-Pytkeev property at x ∈ X if for each sequence (An : n ∈ N) of
subsets of X and x ∈ ∩n∈N(An \An), with respect to the topology τ1, there exists
a sequence (Bn : n ∈ N) such that each Bn is an infinite and countable subset of
An and {Bn : n ∈ N} is a π-network at x, with respect to the topology τ2. If this
holds for each point of X then we say that X has the selectively (τ1, τ2)-Pytkeev
property. This property has been already considered in the context of hyperspaces
in [7]. In further text if X = C(Y ) for a space Y , τ1 is the corresponding compact-
open topology and τ2 is the corresponding topology of pointwise convergence, then
the letters k and p will denote τ1 and τ2, respectively, in the above notation.
Obviously, Pyt((Ωx)τ1 , (Ωx)τ2) is another way of saying that X has the selectively
(τ1, τ2)-Pytkeev property at x ∈ X.

We now characterize this bitopological property considered on the set C(X).

Theorem 3.2. For a k-Lindelöf space X the following are equivalent:

(1) C(X) satisfies the selectively (k, p)-Pytkeev property;

(2) Pyt(Kshr,Ω) holds.

Proof. (1) ⇒ (2). Let us first remark that X is normal.

Let U be a nontrivial k-shrinkable open cover of X and C a function such that
for each U ∈ U , C(U) ⊆ U , C(U) is closed and such that {C(V ) : V ∈ U} ∈ K.
List injectively the finite subsets of X as (Fα : α < |X|). Choose a U0 ∈ U
with F0 ⊆ C(U0) and f0 ∈ C(X) with f0[C(U0)] ⊆ {0}, f0[X \ U0] ⊆ {1}. If
(Uβ , fβ) have been defined for all β < α, so that fβ ∈ C(X), C(Uβ) ⊆ f←

β {0},
X \ Uβ ⊆ f←

β {1} and for all β1 < β2 < α fβ1 �= fβ2 , Uβ1 �= Uβ2 , proceed the
recursive definition as follows: if {f←

β {0} : β < α} k-covers X then end defining; if
{f←

β {0} : β < α} does not k-cover X take a finite Tα ⊆ X with Tα ⊆ f←
β {0} for no

β < α, a Uα ∈ U with Tα∪Fα ⊆ C(Uα) and fα ∈ C(X) such that C(Uα) ⊆ f←
α {0},

X \ Uα ⊆ f←
α {1}; it is clear that fα �= fβ for all β < α and also, for each β < α

we must have that Uα �= Uβ because otherwise Tα ⊆ C(Uα) = C(Uβ) ⊆ f←
β {0}

for a β < α, which is impossible. Having finished this recursive definition there
is a β0 < α such that {f←

β {0} : β < β0} k-covers X and with Uβ1 �= Uβ2 and
fβ1 �= fβ2 for each β1 < β2 < β0. Therefore, the function gU such that for every
β < β0 (gU (Uβ) = fβ) and dom(gU ) ⊆ U is correctly defined. For gU the following
hold: dom(gU ) ⊆ U , ran(gU ) ⊆ C(X) , {gU (U)←{0} : U ∈ dom(gU )} k-covers X

and X \ U ⊆ gU (U)←{1} for all U ∈ dom(gU ). Clearly 0 ∈ ran(gU ) with respect
to the co-topology and as X /∈ U , ran(gU ) does not contain the function 0.

Now let C(X) satisfy the selectively (k, p)-Pytkeev property and let (Un : n ∈
N) be a sequence of elements of Kshr. For each n associate to Un a function gUn

as
described above. 0 ∈ ran(gUn

) \ ran(gUn
) with respect to the co-topology for each

n, so by the selectively (k, p)-Pytkeev property, there is a sequence (Bn : n ∈ N)
with each Bn an infinite subset of ran(gUn

) such that {Bn : n ∈ N} is a π-network
at 0 with respect to the pointwise-convergence topology. For each n there is an
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infinite Vn ⊆ dom(gUn
) ⊆ Un with Bn = {gUn

(U) : U ∈ Vn}. We show that
{∩Vn : n ∈ N} ∈ Ω.

Let F be a finite subset of X. As {Bn : n ∈ N} is a π-network at 0 with
respect to the pointwise-convergence topology there is n0 ∈ N such that Bn0 ⊆
O(F, 1). This actually means that gUn0

(U)[F ] ⊆ (−1, 1) for all U ∈ Vn0 . But
gUn0

(U)[X \ U ] ⊆ {1} for each U ∈ Vn0 . Therefore F ⊆ U for every U ∈ Vn0 , i.e.
F ⊆ ∩Vn0 .

(2) ⇒ (1). Let (An : n ∈ N) be a sequence of subsets of C(X) with 0 ∈ An\An,
with respect to the co-topology, for each n.

If A ⊆ Ck(X) and 0 ∈ A \ A, call A small if for every ε > 0 there is an f ∈ A
such that |f |[X] ⊆ [0, ε). For a small A, given any δ > 0 one can find an injective
sequence (fn(A, δ) : n ∈ N) of elements of A such that |fn(A, δ)|[X] ⊆ [0, δ) for all
n ∈ N.

If A ⊆ Ck(X), 0 ∈ A \ A and A is not small, there is a positive real number
δ(A) > 0 such that for each f ∈ A we have |f |←[0, δ(A)) �= X.

Put S := {n ∈ N : An is small}.
Case 1. S is infinite. For each n ∈ S let Bn := {fm(An, 1/n) : m ∈ N}. If

n /∈ S choose arbitrarily an infinite Bn ⊆ An. Obviously for each n ∈ N Bn is an
infinite subset of An. We show that {Bn : n ∈ N} is a π-network at 0 with respect
to the pc-topology.

Let F be a finite subset of X and ε > 0. Take n0 ∈ N with 1/n0 < ε and
n ∈ S with n ≥ n0. Then Bn ⊆ O(F, ε): if h ∈ Bn then h = fm(An, 1/n) for a
m ∈ N, so h[X] ⊆ (−1/n, 1/n) ⊆ (−ε, ε), i.e. h ∈ O(F, ε).

Case 2. S is finite. Let m0 := max S. Fix n > m0. The set An is not small
thus X �= |f |←[0, δ(An)) for each f ∈ An. Let δn := min{δ(An), 1/n}. Then
δn ≤ 1/n and if f ∈ An we have that X �= |f |←[0, δn). By Lemma 3.2 there
is a function Un with dom(Un) ⊆ An such that Un := {Un(f) : f ∈ dom(Un)}
is an open 3-k-shrinkable cover of X and such that Un(f) ⊆ |f |←[0, δn) for each
f ∈ dom(Un). X /∈ {|f |←[0, δn) : f ∈ An} so Un is nontrivial.

Apply the principle Pyt(Kshr,Ω) to (Un : n > m0) to get a sequence (Vn : n >
m0) with Vn ⊆ Un, |Vn| = ω for each n > m0 and such that {∩Vn : n > m0} ∈ Ω.
Then for each n > m0 there is an infinite Bn ⊆ An with {Un(f) : f ∈ Bn} = Vn.
For n ≤ m0 choose any infinite Bn ⊆ An. We show that {Bn : n ∈ N} is a
π-network at 0 with respect to the pc-topology.

Let F be a finite subset of X and ε > 0. Take n0 ∈ N with 1/n0 < ε and
a finite F0 ⊆ X such that there is no n ∈ N, m0 < n < n0, with F0 ⊆ ∩Vn. As
{∩Vn : n > m0} ∈ Ω there is a k > m0 with F ∪ F0 ⊆ ∩Vk. By the construction
of F0 we have k ≥ n0. Also, F ⊆ ∩{Uk(f) : f ∈ Bk}, so for each f ∈ Bk we
have F ⊆ Uk(f) ⊆ |f |←[0, δk) ⊆ |f |←[0, 1/k) ⊆ |f |←[0, 1/n0) ⊆ |f |←[0, ε), i.e.
f ∈ O(F, ε). In other words Bk ⊆ O(F, ε).

A space X is called a (τ1, τ2)-Pytkeev space, if whenever x ∈ A\A with respect
to the τ1 topology, there is a countable π-network at x with respect to the τ2

topology consisting of infinite subsets of A.
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Theorem 3.3. For a k-Lindelöf space X the following are equivalent:
(1) C(X) is a (k, p)-Pytkeev space;
(2) If U is a k-shrinkable open nontrivial cover of X, there is a sequence (Un :

n ∈ N) of subfamilies of U such that |Un| = ω for each n and {∩Un}n∈N is an
ω-cover of X.

Proof. Practically repeat the proof of the previous theorem.

4. The Reznichenko-type properties

In 1996 Reznichenko (at a seminar at the Moscow State University) introduced
the following property of a space X:

For each x ∈ X and A ⊆ X with x ∈ A\A, there is a countably infinite pairwise
disjoint family F of finite subsets of A such that for every neighborhood V of
x the family {F ∈ F : F ∩ V = ∅} is finite.
This property is referred to as the weakly Fréchet-Urysohn property [14,15],

or the Reznichenko property [7,10]. Let us remark that every Pytkeev space is a
Reznichenko space (see [11]).

In [14] it was shown

Theorem 4.1. For a space X the following are equivalent:
(1) Cp(X) is a Reznichenko space;
(2) If U is a nontrivial ω-shrinkable open cover of X, then there is a sequence

(Un : n ∈ N) of pairwise disjoint finite subsets of U such that for each finite F
the set {n ∈ N : F ⊆ U for some U ∈ Un} is cofinite in N.

In a similar way one can prove

Theorem 4.2. For a space X the following are equivalent:
(1) Ck(X) is a Reznichenko space;
(2) If U is a nontrivial k-shrinkable open cover of X, there is a sequence (Un : n ∈

N) of pairwise disjoint finite subsets of U such that for each compact set K of
X the set {n ∈ N : K ⊆ U for some U ∈ Un} is cofinite in N.

Let τ1 and τ2 be two topologies on the same set X with τ2 ⊆ τ1. A space X
satisfies the selectively (τ1, τ2)-Reznichenko property if for each x ∈ X and each
sequence (An : n ∈ N) of subsets of X with x ∈ ∩n∈N(An \ An) with respect to
the topology τ1, there exists a sequence (Bn : n ∈ N) such that Bn is a finite
subset of An for each n, Bn and Bm are disjoint for distinct m and n and for every
neighborhood V of x, with respect to the topology τ2, the set {n ∈ N : Bn∩V = ∅}
is finite. In further text if X = C(Y ) for a space Y , τ1 is the corresponding compact-
open topology and τ2 is the corresponding topology of pointwise convergence, then
the letters k and p will stand for τ1 and τ2, respectively, in the above notation.

In [7] this property has been considered in the context of hyperspaces.
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We now borrow some terminology from [12]. Let A and F be two sets (here one
may look at F as a “list of certain properties”). HL0(A,F) denotes the following
statement:

for each sequence (Un : n ∈ N) of elements of A there is a sequence (Vn : n ∈
N) such that each Vn is a finite subset of Un, if n �= m then Vn ∩ Vm = ∅, and
for every F ∈ F there exists n0 such that for every n ≥ n0 there is a U ∈ Vn

such that U ∈ F .
If we do not require that the Vn-s must be pairwise disjoint we obtain the

principle denoted by HL(A,F). The corresponding games GameHL0(A,F) and
GameHL(A,F) are defined as it is customary with selection principles.

The next two general results will considerably simplify further study in this
section.

Proposition 4.1. [12] If for every X ∈ A there exists Y ⊆ X such that Y ∈ A
and card(Y ) = ω and if HL(A,F) holds, then ONE has no winning strategy in the
game GameHL(A,F).

Proposition 4.2. [12] Let for each X ∈ A and each finite set Y , X \ Y ∈ A
hold. Then: ONE has no winning strategy in the game GameHL(A,F) iff he has
no winning strategy in the game GameHL0(A,F).

Note 4.1. Obviously, if ONE has no winning strategy in the game
GameHL(A,F) (GameHL0(A,F)), then HL(A,F) (HL0(A,F)) holds. Also,
HL0(A,F) implies HL(A,F). Thus, if A satisfies both the condition of Propo-
sition 4.1 and Proposition 4.2, then HL(A,F) is equivalent to HL0(A,F). As a
consequence of this we have that the following holds:

Let τ1 and τ2 be two topologies on the same set X with τ2 ⊆ τ1 such that
(X, τ1) has countable tightness. If x ∈ X, for A = (Ωx)τ1 and a suitable F , we
obtain that X has the selectively (τ1, τ2)-Reznichenko property at x iff for each
sequence (An : n ∈ N) of subsets of X and x ∈ ∩n∈N(An \An), with respect to the
topology τ1, there exists a sequence (Bn : n ∈ N) such that Bn is a finite subset of
An for each n and for every neighborhood V of x, with respect to the topology τ2,
the family {n ∈ N : Bn ∩ V = ∅} is finite, i.e. such that the sequence (Bn : n ∈ N)
converges to x with respect to the τ2 topology. Note that the Bn-s do not have to
be pairwise disjoint.

We state our next bitopological result.

Theorem 4.3. Let X be k-Lindelöf. Then the following are equivalent:
(1) C(X) satisfies the selectively (k, p)-Reznichenko property;
(2) If (Un : n ∈ N) is a sequence of nontrivial k-shrinkable open covers of X, there

is a sequence (Vn : n ∈ N) such that Vn is a finite subset of Un for each n, Vn

and Vm are disjoint for distinct m and n and for each finite F ⊆ X the set
{n ∈ N : K ⊆ U for some U ∈ Vn} is cofinite in N.

Proof. (1) ⇒ (2): As X is k-Lindelöf, by Note 4.1 and Lemma 3.3 we only need
to show that for each sequence (Un : n ∈ N) of nontrivial k-shrinkable open covers
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of X there is a sequence (Rn : n ∈ N), with each Rn a finite subset of Un, such that
for each finite F ⊆ X for all but finitely many n ∈ N the set {U ∈ Rn : F ⊆ U} is
not empty.

Let (Un : n ∈ N) be a sequence of nontrivial k-shrinkable open covers of X.
For each n ∈ N associate to Un in the way we did in Theorem 3.2 a function gn such
that dom(gn) ⊆ Un, ran(gn) ⊆ C(X) , {gn(U)←{0} : U ∈ dom(gn)} k-covers X

and X \U ⊆ gn(U)←{1} for all U ∈ dom(gn). Clearly 0 ∈ ran(gn) with respect to
the co-topology and as X /∈ Un, ran(gn) does not contain the function 0. Apply the
selectively (k, p)-Reznichenko property of C(X) to the sequence (ran(gn) : n ∈ N)
to obtain a sequence (Rn : n ∈ N), with each Rn a finite subset of ran(gn),
converging to 0 with respect to the pc-topology. For each n there is a finite subset
Rn of dom(gn) ⊆ Un with {gn(U) : U ∈ Rn} = Rn. Ck(X) has countable tightness,
so by Note 4.1 it suffices to show that for each finite F ⊆ X for all but finitely
many n ∈ N the set {U ∈ Rn : F ⊆ U} is not empty, so fix such an F . As
(Rn : n ∈ N) converges to 0 with respect to the pc-topology there is n0 ∈ N such
that for all n > n0 the set O(F, 1) ∩ Rn is not empty. Fix n > n0. There is an
f ∈ O(F, 1) ∩ Rn and a U ∈ Rn with gn(U) = f . Since gn(U)[F ] = f [F ] ⊆ (−1, 1)
and X \ U ⊆ gn(U)←{1}, it follows that F ⊆ U . Thus {U ∈ Rn : F ⊆ U} is not
empty.

(2) ⇒ (1): As X is k-Lindelöf, by Note 4.1 and Lemma 1.1 we only need to show
that for each sequence (An : n ∈ N) of subsets of C(X) with x ∈ ∩n∈N(An \ An)
with respect to the co-topology, there exists a sequence (Bn : n ∈ N) converging to
0 with respect to the pc-topology, such that for each n, Bn is a finite subset of An.

Let (An : n ∈ N) be a sequence of subsets of C(X) with 0 ∈ An \ An, with
respect to the co-topology, for each n. By Lemma 3.2 for each n ∈ N there is
a function Un with dom(Un) ⊆ An such that Un := {Un(f) : f ∈ dom(Un)} is
an open 3-k-shrinkable cover of X and such that Un(f) ⊆ |f |←[0, 1/n) for each
f ∈ dom(Un). Set S := {n ∈ N : X /∈ Un}.

Case 1. S is finite. Then there would be a sequence (fn : n > max S), with
fn ∈ An for each n > max S, uniformly converging to 0 so this would end the proof.

Case 2. S is infinite. For each n /∈ S pick an fn ∈ An with fn[X] ⊆
(−1/n, 1/n). As for each n ∈ S the cover Un is nontrivial, we can apply the condi-
tion (2) of this theorem to the sequence (Un : n ∈ S) to get a sequence (Vn : n ∈ S),
where for each n ∈ S, Vn is a finite subset of Un, such that for each finite F ⊆ X
for all but finitely many n ∈ S the set {U ∈ Vn : F ⊆ U} is not empty. For each
n ∈ S there is a finite Cn ⊆ dom(Un) ⊆ An with Vn = {Un(f) : f ∈ Cn}. Put
Bn := Cn if n ∈ S and Bn := {fn} if n /∈ S. We show that (Bn : n ∈ N) is as
required.

Let F be a finite subset of X and ε > 0. By the construction of (Vn : n ∈ S)
there is n0 ∈ S such that for each n ∈ S with n > n0 the set {U ∈ Vn : F ⊆ U} is
not empty. Without loss of generality we may suppose that 1/n0 < ε. Fix n > n0.
If n /∈ S then fn[F ] ⊆ fn[X] ⊆ (−1/n, 1/n) ⊆ (−ε, ε), so O(F, ε)∩Bn is not empty.
If n ∈ S then there is a U ∈ Vn with F ⊆ U and an f ∈ Cn with U = Un(f). Since
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F ⊆ U = Un(f) ⊆ |f |←[0, 1/n) ⊆ f←(−ε, ε), thus again O(F, ε)∩Bn = O(F, ε)∩Cn

is not empty.
A space X has the (τ1, τ2)-Reznichenko property if A ⊆ X and x ∈ A \A with

respect to τ1 topology imply the existence of a countably infinite disjoint family
F of subsets of A such that for every neighborhood V of x with respect to the τ2

topology, the family {F ∈ F : F ∩ V = ∅} is finite.

Theorem 4.4. For a k-Lindelöf space X the following are equivalent:
(1) C(X) has the (k, p)-Reznichenko property;
(2) If U is a nontrivial k-shrinkable open k-cover of X, there is a sequence (Un :

n ∈ N) of pairwise disjoint finite subsets of U such that for each finite set F
the set {n ∈ N : F ⊆ U for some U ∈ Un} is cofinite in N.

Proof. (1) ⇒ (2): If U ∈ Kshr then as in Theorem 3.2 construct a function g
with dom(gU ) ⊆ U , ran(g) ⊆ C(X), X \ U ⊆ g(U)←{1} for all U ∈ dom(g) and
{g(U)←{0} : U ∈ dom(g)} k-covers X. We have that 0 ∈ ran(gU ) \ ran(g) with
respect to the co-topology, so we can apply the condition (1) to ran(g) to get a
sequence (Rn : n ∈ N) of finite pairwise disjoint subsets of ran(g) converging to 0
with respect to the pc-topology. Pick an h : ran(g) → dom(g) with h(g(U)) = U
for each U ∈ dom(g). Put Un := {h(a) : a ∈ Rn}. Then (Un : n ∈ N) is a sequence
of finite pairwise disjoint subsets of U . It is not difficult to check using the methods
of previous theorems that this sequence is as required.

(2) ⇒ (1): Let the condition (2) be satisfied.
Claim. Let 0 ∈ A \ A with respect to the co-topology and δ > 0. Then there

is a sequence (An : n ∈ N) of pairwise disjoint finite subsets of A and a B ⊆ A,
with 0 ∈ B \B with respect to the co-topology, such that (

⋃
n∈N An)∩B = ∅ and

the sequence (An : n ∈ N) is δ-converging to 0, i.e. for each finite subset F of X
for all but finitely many n the set An ∩ O(F, δ) is not empty.

Proof of the claim. If for each ε > 0 there is an f ∈ A with f [X] ⊆ (−ε, ε), there
exists an injective sequence (fn : n ∈ N) of elements of A uniformly converging to
0 so, in this case there is nothing to prove. Thus we may suppose that there is a
δ1 > 0 with f [X] ⊆ (−δ1, δ1) for no f ∈ A. Put δ0 := min{δ, δ1}.

By Lemma 4.1, let U be a function with dom(U) ⊆ A, U(f) ⊆ |f |←[0, δ0)
for every f ∈ dom(U), such that ran(U) is a 3-k-shrinkable open cover of X. By
the assumption made above ran(U) is nontrivial so by the condition (2) there is a
sequence (Un : n ∈ N) of pairwise disjoint finite subsets of ran(U) such that for
each finite subset F of X for all but finitely many n the set {V ∈ Un : F ⊆ V } is
not empty. For each n there is a finite subset An of dom(U) ⊆ A with Un = {U(f) :
f ∈ An}. If n �= m and g ∈ An ∩ Am then U(g) ∈ Un ∩ Um, which is impossible.
Thus An ∩ Am = ∅ for distinct n and m.

For each finite F ⊆ X we have that for all but finitely many n the set An ∩
O(F, δ) is not empty: there is an n0 with {V ∈ Un : F ⊆ V } �= ∅ for each n > n0.
Fix an n > n0 and a V ∈ Un with F ⊆ V . Then V = U(f) for some f ∈ An. Hence
F ⊆ V = U(f) ⊆ |f |←[0, δ0) ⊆ |f |←[0, δ), i.e. f ∈ O(F, δ) ∩ An.
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If 0 belongs to the closure of the set (A\⋃
n∈N An)∪ (

⋃
n∈N A2n) with respect

to the co-topology then let B := (A\⋃
n∈N An)∪(

⋃
n∈N A2n) and let Cn := A2n−1.

If 0 belongs to the closure of the set (A\⋃
n∈N An)∪(

⋃
n∈N A2n−1) with respect to

the co-topology then let B := (A \ ⋃
n∈N An) ∪ (

⋃
n∈N A2n−1) and let Cn := A2n.

Then it easy to see that the sequence (Cn :∈ N) and the set B are as required.

Now we prove the theorem. Let 0 ∈ A \A with respect to the co-topology. By
the above Claim let (H1

n : n ∈ N) be a sequence of pairwise disjoint finite subsets
of A which 1−converges to 0 and B1 ⊆ A with 0 ∈ B1 \ B1, (

⋃
n∈N H1

n) ∩ B1 = ∅.
If the sequences (Hi

n : n ∈ N) and sets Bi ⊆ A have been defined for 1 ≤ i ≤ k so
that:

(i)
⋃{Hi

n : 1 ≤ i ≤ k, n ∈ N} ∩ Bk = ∅;
(ii) 0 ∈ Bk \ Bk;

(iii) (Hi
n : n ∈ N) (1/i)−converges to 0 for each 1 ≤ i ≤ k,

then let by the above Claim (Hk+1
n : n ∈ N) be a sequence of pairwise disjoint finite

subsets of Bk which 1/(k+1)−converges to 0 and Bk+1 ⊆ Bk with 0 ∈ Bk+1\Bk+1,
(
⋃

n∈N Hk+1
n ) ∩ Bk+1 = ∅.

Having finished the construction we set An :=
⋃{Hi

n : 1 ≤ i ≤ n}. Obviously
for distinct n and m the sets An and Am are disjoint finite subsets of A. We show
that (An : n ∈ N) converges to 0 with respect to the pc-topology.

Let F be a finite subset of X and ε > 0. Fix an m0 > 1/ε and an n0 > m0

such that Hm0
n ∩ O(F, 1/m0) �= ∅ for every n ≥ n0. If n ≥ n0 then Hm0

n ⊆ ⋃{Hi
n :

1 ≤ i ≤ n} = An, so ∅ �= An ∩ O(F, 1/m0) ⊆ An ∩ O(F, ε).
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