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OPEN COVERS AND FUNCTION SPACES
B. A. Pansera and V. Pavlovié

Abstract. We investigate some closure properties of the space C(X) of the continuous
real-valued functions on a Tychonoff space X endowed with the compact-open topology and the
pointwise convergence topology.

1. Introduction

In this paper we use the standard topological notation and terminology as
in [3]. All spaces are assumed to be infinite Tychonoff. Let X be a topological
space. Then:

O denotes the collection of all open covers of X;

Q denotes the collection of all open w-covers of X. A cover U of a set Y is
called an w-cover if Y is not a member of &/ and every finite subset of Y is
contained in a member of U [4];

K denotes the collection of all open k-covers of X. A cover U of a space X is
called a k-cover if X is not a member of i and every compact subset of X is
contained in a member of U [2].

A space X is called a k-Lindeldf space if for each open k-cover U of X there
is a V C U such that V is countable and V € K. Each k-Lindelof space is Lindelof,
so normal, too.

For aspace X and a point x € X, the symbol €2, denotes the set {4 C X'\ {z} :
x € A}. Let A and B be two arbitrary sets (usually collections of open covers of a
topological space X). The symbol S;(A, B) [9] denotes the selection principle:

For each sequence (4, : n € N) of elements of A there exists a sequence
(bn, : n € N) such that, for each n, b, € A, and {b, : n € N} is an element
of B.
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The symbol S, (A, B) [9] denotes the selection principle:

For each sequence (A4, : n € N) of elements of A there exists a sequence
(Bn : n € N) such that, for each n, B, is a finite subset of 4,, and U,enDB,, is
an element of B.

Then the property S1(0, Q) is called the Rothberger property [5,17], and the
property Sin(O, O) is known as the Menger property [5,17].

For a space X by C(X) we denote the set of all continuous real-valued functions
defined on X. The symbol 0 denotes the constant to zero function defined on X.
Then C,(X) is the set C'(X) endowed with the topology of pointwise convergence
(the “pc-topology” for short). Typical basic open sets of C(X) are of the form:

W(a:l,...,xk;Ul,...,Uk):{feOp(X):f(xi) EUi,izl,...,k}

where x4, ...,z are points of X and Uy,..., U, are open sets of R. For a subset
S of X and a positive real number € we let

O(S,e) = {g € C(X) : |g(z)| < &, for all z € S}.

The standard local base at the point 0 consists of the sets O(F,¢), where F is a
finite subset of X and ¢ is a positive real number.

By Ci(X) we denote the set C'(X) endowed with the compact-open topology
(the “co-topology” for short). Typical basic open sets of Ci(X) are of the form:

W(Ky,...,Kp;Up, ..., U) ={f €CX): f(K;) CU;,i=1,...,n}

where Ki,..., K, are compact subsets of X and Uy,...,U, are open sets of R.
The standard local base at the point 0 € C}(X) consists of the sets O(K, ), where
K is a compact subset of X and ¢ is a positive real number.

Since Cp(X) and Cy(X) are homogenous spaces we may always consider the
point 0 when studying local properties of these spaces. Since we are considering
two topologies of C(X) we shall use the symbol (£20)? to denote Qg in the space
Cp(X) and the symbol (20)* to denote Qg in the space Cj(X). Many results in the
literature show that for a Tychonoff space X closure properties of function spaces
Cp(X) and Cr(X) can be characterized by covering properties of X [1,9].

By standard techniques of switching between k-covers of X and subsets of
Ck(X) one can easily see that the following holds.

LEMMA 1.1.Ck(X) has countable tightness iff X is k-Lindeldf.

In the first section of the paper we investigate the selection principles S (K, )
and Sy (K, Q) and their relations with function spaces. In the remaining two
sections we study a bitopological variant of the Pytkeev property and of the
Reznichenko property in function spaces.
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2. The selection principles 5 (K, Q) and S¢;,, (K, Q)
Note that the following relations between classes of covers defined above hold:
KCQCOo,
hence we have:

S1 (]Ca ’C) c Sl(’Cv Q)’
Sfin(lca K:) g Sfin(Ka Q)

The next two lemmas follow from the definition of k-covers.

LEMMA 2.1. If a k-cover U of a space X is the union of finitely many sub-
families, then at least one of them is also a k-cover of X.

LEMMA 2.2. IfU is a k-cover of a space X, then each compact subset of X is
contained in infinitely many elements of U. For any finite set S the family U \ S
is also a k-cover.

In [2] the following was proved:

LEMMA 2.3. IfU is a k-cover of a space X™, then there is a k-cover V of X
such that {V": V € V} refines U.

THEOREM 2.1. A space X satisfies S1(IC, Q) if and only if each finite power
of X satisfies S1(KC,Q).

Proof. Let X belong to the class S1(/C, ) and let (W, : n € N) be a sequence
of k-covers of X™, for a fixed natural number m. By Lemma 2.3, for each natural
number n there exists a k-cover U,, of X such that {U™ : U € U,} refines W,.
Apply the fact that X € 51 (K, Q) to the sequence (U, : n € N). There is a sequence
(U, : n € N) such that, for each n, U,, € U,, and {U,, : n € N} is a k-cover of
X. For each n, let W,, be an element of W,, with U™ C W,,. Then the sequence
(W, : n € N) shows that X™ is in the class S; (K, Q). Let F be a finite subset of
X™. The union {J,.,, pi(F) = B of the projections onto X is a finite subset of X
and thus there is an n € N such that B C U,,. Hence F C B™ C urcw,.=

In a similar way one can prove that:

THEOREM 2.2. A space X satisfies Syin(KC, Q) if and only if each finite power
of X satisfies Syin(KC, Q).

Our intent in this section is to describe how these two principles affect the
bitopological space (Ck(X),Cp(X)). Let us mention here that the principles
S51(92,K) and Sy, (€, K) have already been considered in [8] where Ramsey theo-
retical characterizations were established.

A space X has countable fan tightness [1] if for each z € X and each sequence
(A4, : n € N) of elements of €2, there exists a sequence (B, : n € N) of finite sets
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such that, for each n, B,, C A, and & € UpenBy, ie. if Sin(Qs, Q) holds for
each x € X.

A space X has countable strong fan tightness [16] if for each € X S1(4, Q)
holds.

The following theorem was proved in [6].

THEOREM 2.3. For a space X the following are equivalent:
(1) Cr(X) has countable strong fan tightness;
(2) X has the property S1(K,K).

THEOREM 2.4. For a space X the following are equivalent:
(1) O(X) satisfies S1((Q0)*, (20)P));
(2) X has the property S1(K, Q).

Proof. (1) = (2) : Let (U, : n € N) be a sequence of k-covers of X. For each
pair of a compact subset K of X and an open subset U 2 K of X let fx 7 be any
continuous function from X to [0, 1] such that fx y(K) C {0} and fx (X \U) C
{1}. For each n let A, = {fx,v : Kcompact in X, K CU € U,}. Then for each
compact subset K of X thereisa fx v € Ay, so, as it can easily be verified, 0 is in the
closure of each A,,, with respect to the compact-open topology. Since C(X) satisfies
S1((Q0)F, (20)P) there is a sequence (fx, v, : n € N) such that for each n, K, is
compact, U, € U, and 0 belongs to the closure of { fx, v, : n € N} with respect to
the pointwise convergence topology. We claim that {U, : n € N} € Q. Let F be a
finite subset of X. From the fact that 0 belongs to the closure of { fx, v, : n € N}
with respect to the pointwise convergence topology it follows that there is an i € N
such that W = O(F, 1) contains the function fg, y,. Then F' C U;. Otherwise for
some z € I one has z ¢ U; so that fk, y,(z) =1, contradicting fk, v, € W.

(2) = (1) : Let (A, : m € N) be a sequence of subsets of C'(X) \ {0} the
closures of which all contain 0, with respect to the compact-open topology. If X is
compact then the compact-open topology coincides with the topology of uniform
convergence, so Ci(X) is metrizable, thus first countable, which means that we
can find a sequence (a, : n € N), a,, € A,, converging uniformly to 0 so there is
nothing to be proved. Let X be a noncompact space.

For a bijection i : N*> — N put Apm = Ain,m)-

For each n,m € N and every compact set K C X the neighborhood W =
O(K, %) of 0 intersects A,, ,, so there exists a continuous function fx . € Amn
such that |fxmn(z) < + for each z € K. Since fgmn is a continuous
function there is an open Uk ., such that frxmn(Ukmn) C (—%,%) Let
Um.n = {Uk mn : K is a compact subset of X }.

As for any compact subset K we have K # X, it can easily be achieved
that none of the sets Uk, above coincides with X. So for each m and n, U, ,
is a k-cover of X. To each sequence (U, : m € N) apply the fact that X is an
S1(K, ©2)-space to obtain sequences (Uk,, ., ,m,n : m € N), with each K, ,, compact,
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such that {Uk,, ,.mn : m € N} € Q for every n € N. Let us show that 0 belongs
to the closure of { fx,, ., mn : m,n € N} with respect to the pointwise convergence
topology.

Let W = O(F,¢) be a neighborhood of 0 in Cp(X) and let n be a positive
integer such that % < . Since F' is a finite subset of X and {Uk,, ,,mn : m €
N} € Q there is a m € N such that F C Uk, nmmn- We have

11
me,n,m,n(F) c me,n,m’n(UKm,n,m,n) - (_Ev E) C (_E7€)
ie. fx, .mn €W. Since fr, . mmn € Amn this ends the proof of the theorem. m

In a similar way one can show that

THEOREM 2.5. For a space X the following are equivalent:
(1) C(X) satisfies Spin((Q0)*, (Q0)P));
(2) X has the property S¢in(IC, ).

3. The Pytkeev-type properties

For a space X and x € X, a family F of subsets of X is called a m-network at
x if every neighborhood of x contains an element of F.

A space X is called a Pytkeev space [14] if z € A\ A and A C X imply the
existence of a countable m-network at x consisting of infinite subsets of A.

An open w-cover U is said to be w-shrinkable [14] if there is a function C such
that for each U € U the set C'(U) is closed, C(U) C U and {C(U) : U € U} is an
w-cover of X.

In [14] the following theorem was proved:
THEOREM 3.1. The following are equivalent:
(1) Cp(X) is a Pytkeev space;
(2) IfU is an w-shrinkable open nontrivial w-cover of X, there is a sequence (Uy, :

n € N) of countably infinite subfamilies of U such that {NU, : n € N} is an
w-cover of X.

Nontrivial means not containing the whole space as one of its elements.

When dealing with the space Cj(X) we will need the “compact” version of
“shrinkability”. An open cover U is said to be k-shrinkable if there is a function C
such that for each U € U the set C(U) is closed, C(U) C U and {C(U) : U € U}
is a k-cover of X; the collection of all k-shrinkable open covers of X is denoted
by Kspr. A family U of subsets of a space X is said to be a 3-k-shrinkable cover
of X if there is a function g such that for each U e U ¢g(U) = (Vi, Zy), where
Vu C Zy C U, Vi is a cozero set, Zy is a zero set and {Vyy : U € U} k-covers
X. U is called an open 3-k-shrinkable cover provided that its elements are open
subsets of X. The collection of all nontrivial open 3-k-shrinkable covers of X will
be denoted by 3-Ksp,-. Obviously one has 3-Kyp, C Kgpr C K.
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In the sequel we will need the following two lemmas which are proved exactly
as Lemma 1.2 and Lemma 1.4, respectively, in [12], mostly by replacing the word
finite by the word compact.

LEMMA 3.1. FEwvery open k-cover can be refined by an open 3-k-shrinkable
cover.

LEMMA 3.2. Let X be a k-Lindeléf space. If ¢ >0 and 0 € A C Ci(X) then
there is a B C A and a function s : B — (0,¢) such that at least one of the families
{f1710,s(f)) : f € B} or {|f|7[0,s(f)] : f € B} is a 3-k- shrinkable open cover
of X.

What could be called “k-shr-Lindelof” does not differ from k-Lindeldf. More
exactly:

LEMMA 3.3. A space X is k-Lindeldf iff every open k-shrinkable cover contains
a countable k-shrinkable subcover.

Proof. If every open k-shrinkable cover contains a countable k-shrinkable sub-
cover then Lemma 3.1 implies that X is k-Lindelof.

Now let X be k-Lindelof and fix an open k-shrinkable cover U and a function
C' confirming that. For each U € U choose a fy € C(X) such that fiy[C(U)] C
{0}, fulX\U] C {1} and put T(U) := |fu]~[0,1/2] C U. Clearly 0 is in the
closure of A = {fy : U € U} with respect to the co-topology. By Lemma 1.1,
C(X) has countable tightness so there is a countable B C A such that 0 € B with
respect to the co-topology. By the construction of A there is a countable V C U
with B = {fy : U € V}. Then T witnesses that V is k-shrinkable.

Indeed, let K C X be compact. There is an h € BN O(K,1/2) and a U € V
with h = fyr. Then | fu|[K] = [BI[K] C [0,1/2) so K C |fu[~[0,1/2] = T(U). m

Using the techniques as in [12] one can show

ProprosITION 3.1. The following are equivalent:
(1) Cr(X) is a Pytkeev space;
(2) IfU is a nontrivial 3-k-shrinkable cover of X, there is a sequence (Uy, : n € N)

of countably infinite subfamilies of U such that {(\U, : n € N} is a k-cover
of X.

For two sets A and B the formula Pyt(A, B) (see [12]) abbreviates the state-
ment:

for each sequence (A, : n € N) of elements of A there is a sequence (B, :

n € N), where each B, is a countably infinite subset of A,,, such that for each

f €TI(By :n €N) the set {f(n) : n € N} is an element of 5.

For some topological properties it is possible to consider their “selective” ver-
sions (see e.g. [12,13]). In this paper we are interested in the selective bitopological
versions of the Pytkeev and the Reznichenko properties.
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Let 71 and 75 be two topologies on the same set X with 75 C 7. X has the
selectively (71, 72)-Pytkeev property at © € X if for each sequence (A, : n € N) of
subsets of X and x € N,en(A, \ 4,), with respect to the topology 71, there exists
a sequence (B, : n € N) such that each B,, is an infinite and countable subset of
A, and {B, : n € N} is a m-network at x, with respect to the topology 7». If this
holds for each point of X then we say that X has the selectively (7, 72)-Pytkeev
property. This property has been already considered in the context of hyperspaces
in [7]. In further text if X = C(Y') for a space Y, 7y is the corresponding compact-
open topology and 75 is the corresponding topology of pointwise convergence, then
the letters k£ and p will denote ™ and 7o, respectively, in the above notation.
Obviously, Pyt((Q,)™, (2,)™) is another way of saying that X has the selectively
(11, 72)-Pytkeev property at x € X.

We now characterize this bitopological property considered on the set C(X).

THEOREM 3.2. For a k-Lindeldf space X the following are equivalent:
(1) C(X) satisfies the selectively (k, p)-Pytkeev property;
(2) Pyt(Ksnr,2) holds.

Proof. (1) = (2). Let us first remark that X is normal.

Let U be a nontrivial k-shrinkable open cover of X and C' a function such that
for each U € U, C(U) C U, C(U) is closed and such that {C(V) : V € U} € K.
List injectively the finite subsets of X as (F, : a < |X|). Choose a Uy € U
with Fy C O(Uo) and fy € O(X) with fo[C(Uo)] - {O}, fo[X \ Uo] - {1} If
(Ug, fz) have been defined for all 8 < «, so that fg € C(X), C(Up) C f5 {0},
X\Up C f5 {1} and for all 81 < B2 < «a fg1 # fp,, Us, # Up,, proceed the
recursive definition as follows: if {f57{0} : 8 < a} k-covers X then end defining; if
{f5 {0} : B < a} does not k-cover X take a finite 7, C X with T, C f5 {0} for no
B <a,aly, €U withT,UF, C C(U,) and f, € C(X) such that C(U,) C f {0},
X\ Uy C fi{1}; it is clear that f, # fs for all 3 < a and also, for each § < «
we must have that U, # Ug because otherwise T,, C C(Ua) = C(Up) C f5 {0}
for a § < «, which is impossible. Having finished this recursive definition there
is a By < a such that {f57{0} : B < By} k-covers X and with Us, # Up, and
fa1 # fa, for each B1 < B2 < By. Therefore, the function gy such that for every
B < Bo (gu(Us) = fs) and dom(gy) C U is correctly defined. For gy the following
hold: dom(gy) C U, ran(gy) C C(X) , {gu(U)~{0} : U € dom(gy)} k-covers X
and X \ U C gy(U)~ {1} for all U € dom(gy). Clearly 0 € ran(gy) with respect
to the co-topology and as X ¢ U, ran(gy) does not contain the function 0.

Now let C'(X) satisfy the selectively (k,p)-Pytkeev property and let (U, : n €
N) be a sequence of elements of Kgp,-. For each n associate to U, a function gy, as
described above. 0 € ran(gu, ) \ ran(gu, ) with respect to the co-topology for each
n, so by the selectively (k, p)-Pytkeev property, there is a sequence (B, : n € N)
with each B,, an infinite subset of ran(gy, ) such that {B,, : n € N} is a m-network
at 0 with respect to the pointwise-convergence topology. For each n there is an
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infinite V,, C dom(gy,) C U, with B, = {gu,(U) : U € V,}. We show that
{NV, :n e N} e

Let F be a finite subset of X. As {B, : n € N} is a m-network at 0 with
respect to the pointwise-convergence topology there is ng € N such that B,, C
O(F,1). This actually means that gy, (U)[F] C (=1,1) for all U € V,,. But
9u,,, (U)X \ U] C {1} for each U € V,,,. Therefore F' C U for every U € V,,, i..
F CNVy,.

(2) = (1). Let (A, : n € N) be a sequence of subsets of C(X) with 0 € A,\4,,
with respect to the co-topology, for each n.

If AC Cx(X) and 0 € A\ A, call A small if for every € > 0 there is an f € A
such that |f|[X] C [0,¢). For a small A, given any ¢ > 0 one can find an injective
sequence (f(A4,0) : n € N) of elements of A such that |f,,(A4,9)|[X] C [0, ) for all
n € N.

If AC Cx(X), 0 € A\ A and A is not small, there is a positive real number
d(A) > 0 such that for each f € A we have |f|—[0,5(4)) # X.

Put S:={n e N: A, is small}.

Case 1. S is infinite. For each n € S let B, := {fm(A4n,1/n) : m € N}. If
n ¢ S choose arbitrarily an infinite B,, C A,,. Obviously for each n € N B,, is an
infinite subset of A,,. We show that {B,, : n € N} is a m-network at 0 with respect
to the pc-topology.

Let F be a finite subset of X and ¢ > 0. Take ng € N with 1/ny < ¢ and
n € S with n > ng. Then B, C O(F,¢): if h € B, then h = f,,(A,,1/n) for a
m € N, so h[X] C (-1/n,1/n) C (—¢,¢), i.e. h € O(F,¢).

Case 2. S is finite. Let mg := max S. Fix n > mg. The set A, is not small
thus X # |f|7[0,0(A,,)) for each f € A,. Let ¢, := min{d(4,),1/n}. Then
dn < 1/n and if f € A, we have that X # |f|[0,0,). By Lemma 3.2 there
is a function U, with dom(U,) C A, such that U, := {U,(f) : f € dom(U,)}
is an open 3-k-shrinkable cover of X and such that U, (f) C |f|~[0,4,) for each
fedom(Uy,). X ¢ {|f|7[0,0,) : f € An} so U, is nontrivial.

Apply the principle Pyt(KCspr, 2) to (Uy, : n > myg) to get a sequence (V,, : n >
mo) with V,, C Uy, |Vn| = w for each n > mg and such that {0V, : n > mg} € Q.
Then for each n > mg there is an infinite B, C A,, with {U,(f) : f € Bn} = Va.
For n < myg choose any infinite B, C A,. We show that {B, : n € N} is a
m-network at 0 with respect to the pc-topology.

Let F' be a finite subset of X and ¢ > 0. Take ng € N with 1/ny < ¢ and
a finite Fy C X such that there is no n € N, mg < n < ng, with Fy C NV,,. As
{NV, :n > mg} € Q there is a k > mg with F'U Fy C NVy. By the construction
of Fy we have k > ng. Also, F C N{Ux(f) : f € By}, so for each f € By we
have F' C Up(f) C |f|(_[0’6k) - ‘f|(_[05 1/k) C |f|(_[071/n0) - |f‘(_[0’5)7 Le.
f € O(F,¢). In other words By, C O(F,¢). m

A space X is called a (71, 72)- Pytkeev space, if whenever x € A\ A with respect
to the 7 topology, there is a countable m-network at x with respect to the 7
topology consisting of infinite subsets of A.
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Theorem 3.3. For a k-Lindelof space X the following are equivalent:
C(X) is a (k,p)-Pytkeev space;
If U is a k-shrinkable open nontrivial cover of X, there is a sequence (U, :

n € N) of subfamilies of U such that |Uy,| = w for each n and {Uy, }nen s an
w-cover of X.

Proof. Practically repeat the proof of the previous theorem. m

4. The Reznichenko-type properties

In 1996 Reznichenko (at a seminar at the Moscow State University) introduced

the following property of a space X:

For each z € X and A C X with z € A\ A, there is a countably infinite pairwise
disjoint family F of finite subsets of A such that for every neighborhood V' of
x the family {F € F: FNV = 0} is finite.

This property is referred to as the weakly Fréchet-Urysohn property [14,15],

or the Reznichenko property [7,10]. Let us remark that every Pytkeev space is a
Reznichenko space (see [11]).

In [14] it was shown

THEOREM 4.1. For a space X the following are equivalent:
Cp(X) is a Reznichenko space;

If U is a nontrivial w-shrinkable open cover of X, then there is a sequence
(U, : n € N) of pairwise disjoint finite subsets of U such that for each finite F
the set {n € N : F C U for some U € U} is cofinite in N.

In a similar way one can prove

THEOREM 4.2. For a space X the following are equivalent:
Ck(X) is a Reznichenko space;

IfU is a nontrivial k-shrinkable open cover of X, there is a sequence (U, : n €
N) of pairwise disjoint finite subsets of U such that for each compact set K of
X the set {n e N: K C U for some U € Uy} is cofinite in N.

Let 71 and 72 be two topologies on the same set X with 7, C 77. A space X

satisfies the selectively (71, 72)-Reznichenko property if for each x € X and each
sequence (A, : n € N) of subsets of X with # € Nyen(A, \ A,) with respect to
the topology 71, there exists a sequence (B, : n € N) such that B, is a finite
subset of A,, for each n, B,, and B,, are disjoint for distinct m and n and for every
neighborhood V' of =, with respect to the topology 7o, the set {n € N: B, NV = 0}
is finite. In further text if X = C(Y") for a space Y, 71 is the corresponding compact-
open topology and 75 is the corresponding topology of pointwise convergence, then
the letters k and p will stand for 7 and 7o, respectively, in the above notation.

In [7] this property has been considered in the context of hyperspaces.
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We now borrow some terminology from [12]. Let .4 and F be two sets (here one
may look at F as a “list of certain properties”). HLy(A, F) denotes the following
statement:

for each sequence (U, : n € N) of elements of A there is a sequence (V,, : n €
N) such that each V), is a finite subset of U,,, if n # m then V, NV, = 0, and
for every F' € F there exists ng such that for every n > ng there is a U € V),
such that U € F.

If we do not require that the V,,-s must be pairwise disjoint we obtain the
principle denoted by HL(A,F). The corresponding games GameH Lo(A, F) and
GameHL(A, F) are defined as it is customary with selection principles.

The next two general results will considerably simplify further study in this
section.

PROPOSITION 4.1. [12] If for every X € A there existsY C X such thatY € A
and card(Y) = w and if HL(A, F) holds, then ONE has no winning strategy in the
game GameHL(A, F).

PROPOSITION 4.2. [12] Let for each X € A and each finite set Y, X \Y € A
hold. Then: ONE has no winning strategy in the game GameHL(A, F) iff he has
no winning strategy in the game GameH Lo(A, F).

NOTE 4.1. Obviously, if ONE has no winning strategy in the game
GameHL(A,F) (GameHLy(A,F)), then HL(A,F) (HLo(A,F)) holds. Also,
HLy(A,F) implies HL(A, F). Thus, if A satisfies both the condition of Propo-
sition 4.1 and Proposition 4.2, then HL(A, F) is equivalent to HLy(A,F). As a
consequence of this we have that the following holds:

Let 7 and 75 be two topologies on the same set X with 7 C 7 such that
(X, 71) has countable tightness. If z € X, for A = (£,)™ and a suitable F, we
obtain that X has the selectively (71, 72)-Reznichenko property at x iff for each
sequence (A, : n € N) of subsets of X and x € N,en(4, \ A,,), with respect to the
topology 71, there exists a sequence (B,, : n € N) such that B, is a finite subset of
A, for each n and for every neighborhood V' of z, with respect to the topology 7o,
the family {n € N : B, NV = (0} is finite, i.e. such that the sequence (B,, : n € N)
converges to x with respect to the 7 topology. Note that the B,-s do not have to
be pairwise disjoint. m

We state our next bitopological result.

THEOREM 4.3. Let X be k-Lindeldf. Then the following are equivalent:

(1) C(X) satisfies the selectively (k,p)-Reznichenko property;

(2) If Uy : n € N) is a sequence of nontrivial k-shrinkable open covers of X , there
is a sequence (V,, : n € N) such that V,, is a finite subset of U,, for each n, V,

and Vp, are disjoint for distinct m and n and for each finite F C X the set
{neN:K CU for someU € V,} is cofinite in N.

Proof. (1) = (2): As X is k-Lindeldf, by Note 4.1 and Lemma 3.3 we only need
to show that for each sequence (U, : n € N) of nontrivial k-shrinkable open covers
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of X there is a sequence (R, : n € N), with each R,, a finite subset of U,,, such that
for each finite ' C X for all but finitely many n € N the set {U € R,, : F C U} is
not empty.

Let (U, : n € N) be a sequence of nontrivial k-shrinkable open covers of X.
For each n € N associate to U,, in the way we did in Theorem 3.2 a function g,, such
that dom(gn,) C Uy, ran(g,) C C(X) , {gn(U){0} : U € dom(g,)} k-covers X
and X \U C g,(U) {1} for all U € dom(gy). Clearly 0 € ran(g,) with respect to
the co-topology and as X ¢ U,,, ran(g,) does not contain the function 0. Apply the
selectively (k, p)-Reznichenko property of C'(X) to the sequence (ran(g,) : n € N)
to obtain a sequence (R, : n € N), with each R, a finite subset of ran(gy),
converging to 0 with respect to the pc-topology. For each n there is a finite subset
R, of dom(gy) C Uy, with {g,(U) : U € R} = R,,. Cr(X) has countable tightness,
so by Note 4.1 it suffices to show that for each finite ' C X for all but finitely
many n € N the set {U € R, : F C U} is not empty, so fix such an F. As
(R, : n € N) converges to 0 with respect to the pc-topology there is ny € N such
that for all n > ng the set O(F,1) N R, is not empty. Fix n > ng. There is an
feOF,1)NR, and a U € R, with g,(U) = f. Since g, (U)[F] = f[F] C (-1,1)
and X \ U C g,(U) {1}, it follows that F C U. Thus {U € R,, : F C U} is not
empty.

(2) = (1): As X is k-Lindelof, by Note 4.1 and Lemma 1.1 we only need to show
that for each sequence (4, : n € N) of subsets of C'(X) with z € Npen(An \ An)
with respect to the co-topology, there exists a sequence (B,, : n € N) converging to
0 with respect to the pc-topology, such that for each n, B, is a finite subset of A,,.

Let (A, : n € N) be a sequence of subsets of C(X) with 0 € 4,, \ A4,, with
respect to the co-topology, for each n. By Lemma 3.2 for each n € N there is
a function U,, with dom(U,) C A,, such that U, := {U,(f) : f € dom(U,)} is
an open 3-k-shrinkable cover of X and such that U,(f) C |f|7[0,1/n) for each
fe€dom(Uy,). Set S:={neN:X ¢&U,}.

Case 1. S is finite. Then there would be a sequence (f,, : n > max.S), with
fn € A, for each n > max S, uniformly converging to 0 so this would end the proof.

Case 2. S is infinite. For each n ¢ S pick an f, € A, with f,[X] C
(=1/n,1/n). As for each n € S the cover U,, is nontrivial, we can apply the condi-
tion (2) of this theorem to the sequence (U, : n € S) to get a sequence (V,, : n € 9),
where for each n € S, V, is a finite subset of U,,, such that for each finite FF C X
for all but finitely many n € S the set {U € V,, : FF C U} is not empty. For each
n € S there is a finite C,, C dom(U,) C A, with V,, = {U,(f) : f € C,,}. Put
B, :=C,ifne S and B, :={f,} if n ¢ S. We show that (B, : n € N) is as
required.

Let F be a finite subset of X and € > 0. By the construction of (V,, : n € 5)
there is ng € S such that for each n € S with n > ng the set {U € V,, : F C U} is
not empty. Without loss of generality we may suppose that 1/ng < e. Fix n > ng.
If n ¢ S then f,[F] C fn[X] C (=1/n,1/n) C (—¢,¢), so O(F,e)N B, is not empty.

If n € S then there is a U € V,, with FF C U and an f € C,, with U = U, (f). Since
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FCU=U,(f) C|fI7[0,1/n) C f(—¢,¢), thus again O(F,e)NB,, = O(F,e)NC,
is not empty. m

A space X has the (71, 72)-Reznichenko propertyif A C X and z € A\ A with
respect to 7, topology imply the existence of a countably infinite disjoint family
F of subsets of A such that for every neighborhood V of z with respect to the
topology, the family {F € F: FNV = (} is finite.

THEOREM 4.4. For a k-Lindeldf space X the following are equivalent:
(1) C(X) has the (k,p)-Reznichenko property;
(2) If U is a nontrivial k-shrinkable open k-cover of X, there is a sequence (Uy, :

n € N) of pairwise disjoint finite subsets of U such that for each finite set F
the set {n € N: F C U for some U € U,} is cofinite in N.

Proof. (1) = (2): If U € Kspy then as in Theorem 3.2 construct a function g
with dom(gy) C U, ran(g) € C(X), X \U C g(U) {1} for all U € dom(g) and
{g(U)~{0} : U € dom(g)} k-covers X. We have that 0 € ran(gy) \ ran(g) with
respect to the co-topology, so we can apply the condition (1) to ran(g) to get a
sequence (R, : n € N) of finite pairwise disjoint subsets of ran(g) converging to 0
with respect to the pc-topology. Pick an h : ran(g) — dom(g) with h(g(U)) =U
for each U € dom(g). Put U, := {h(a) : a € R,}. Then (U,, : n € N) is a sequence
of finite pairwise disjoint subsets of /. It is not difficult to check using the methods
of previous theorems that this sequence is as required.

(2) = (1): Let the condition (2) be satisfied.

Claim. Let 0 € A\ A with respect to the co-topology and J > 0. Then there
is a sequence (A4, : n € N) of pairwise disjoint finite subsets of A and a B C A,
with 0 € B\ B with respect to the co-topology, such that ({J,cx 4n) N B =0 and
the sequence (A, : n € N) is d-converging to 0, i.e. for each finite subset F' of X
for all but finitely many n the set A,, N O(F,d) is not empty.

Proof of the claim. If for each ¢ > 0 thereisan f € A with f[X] C (—¢,¢), there
exists an injective sequence (f, : n € N) of elements of A uniformly converging to
0 so, in this case there is nothing to prove. Thus we may suppose that there is a
91 > 0 with f[X] C (—61,01) for no f € A. Put dp := min{d, d }.

By Lemma 4.1, let U be a function with dom(U) C A, U(f) C |f|71]0,d0)
for every f € dom(U), such that ran(U) is a 3-k-shrinkable open cover of X. By
the assumption made above ran(U) is nontrivial so by the condition (2) there is a
sequence (U, : n € N) of pairwise disjoint finite subsets of ran(U) such that for
each finite subset F of X for all but finitely many n the set {V €U, : F C V} is
not empty. For each n there is a finite subset A,, of dom(U) C A with U,, = {U(f) :
feA,}. Ifn#mandge A,NA, then U(g) € U, NU,,, which is impossible.
Thus A, N A,, = 0 for distinct n and m.

For each finite F' C X we have that for all but finitely many n the set A, N
O(F,d) is not empty: there is an ng with {V € U,, : F C V} # () for each n > ny.
Fixann > ng and a V € U,, with FF C V. Then V = U(f) for some f € A,,. Hence
FCV=U()CIf1710,00) C 117 10,8), ie. € O(F,3) N A,
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If 0 belongs to the closure of the set (A\J, cn An)U (U, en A2n) With respect
to the co-topology then let B := (A\J,,cn An)U(Unen A2n) and let C, := Agy, 1.
If 0 belongs to the closure of the set (A\ U, cn An)U(Upen A2n—1) with respect to
the co-topology then let B := (A\ U, en An) U (Upen A2n—1) and let Cy, := Ag,.
Then it easy to see that the sequence (C,, :€ N) and the set B are as required.
Now we prove the theorem. Let 0 € A\ A with respect to the co-topology. By
the above Claim let (H,, : n € N) be a sequence of pairwise disjoint finite subsets
of A which 1—converges to 0 and By C A with 0 € By \ By, (U,,en Hpy) N B1 = 0.
If the sequences (H! : n € N) and sets B; C A have been defined for 1 < i < k so
that:
(i) U{H :1<i<k, neN}NB, =0
(ii) 0 € By, \ By;
(iii) (HE :n € N) (1/i)—converges to 0 for each 1 < i < k,
then let by the above Claim (H*+! : n € N) be a sequence of pairwise disjoint finite
subsets of By, which 1/(k+1)—converges to 0 and Byy1 C By with 0 € By11\ Br41,
(Unen Hy) N B = 0.
Having finished the construction we set A, := J{H : 1 <i < n}. Obviously

for distinct n and m the sets A,, and A,, are disjoint finite subsets of A. We show
that (A, : n € N) converges to 0 with respect to the pc-topology.

Let F be a finite subset of X and ¢ > 0. Fix an mg > 1/¢ and an ng > myg
such that H™ N O(F,1/mg) # 0 for every n > ng. If n > ng then H™ C | J{H} :
1<i<n}=A,,s00#A,N0O(F,1/my) CA,NO(F,e). m
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