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SOME PROPERTIES OF ORDERED HYPERGRAPHS

Ch. Eslahchi and A. M. Rahimi

Abstract. In this paper, all graphs and hypergraphs are finite. For any ordered hypergraph
H, the associated graph GH of H is defined. Some basic graph-theoretic properties of H and GH

are compared and studied in general and specially via the largest negative real root of the clique
polynomial of GH . It is also shown that any hypergraph H contains an ordered subhypergraph
whose associated graph reflects some graph-theoretic properties of H. Finally, we define the depth
of a hypergraph H and introduce a constructive algorithm for coloring of H.

1. Introduction

Throughout this paper, all graphs and hypergraphs are assumed to be finite.
In this work, we extend and apply, in a natural way, some of the concepts and
results of [2] to ordered hypergraphs. A nonempty set S together with a total
ordering “≤” defined on S is called a totally or linearly ordered set. For any two
distinct elements a and b in a totally ordered set S, either a < b or b < a. Given
any two distinct elements a and b in S with a < b, we define the closed interval
[a, b] to be the set {x ∈ S | a ≤ x ≤ b}. For the ease of writing, we use the notation
I(a, b) to indicate the interval [a, b] or [b, a] whenever a < b or b < a, respectively.

Definition 1. A hypergraph H = (V, E) with the vertex set V and edge set
E is said to be ordered whenever V is a totally ordered set and for every edge e in
E, there exist two distinct vertices x and y in V such that e = I(x, y).

By H − x, we mean the ordered subhypergraph of H which is obtained by
removing x and all edges containing x. Moreover, for any edge e = I(x, y) of H,
H − I(x, y) is the ordered subhypergraph of H which is obtained by just removing
e from H and its order is exactly the same order as defined on V (H).

Definition 2. An interval cycle of an ordered hypergraph H is an alternating
sequence of distinct vertices v1, v2, . . . , vk and edges e1, e2, . . . , ek of H such that
I(vi, vi + 1) = ei for all 1 ≤ i ≤ k where vk + 1 = v1.
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An interval girth of an ordered hypergraph H, containing an interval cycle, is
the minimum size of the length of all interval cycles of H and is denoted by Ig(H).
We follow [1] for the classical definition of a hypergraph cycle (resp., girth). A cycle
in a hypergraph H is an alternating sequence of distinct vertices and edges of the
form v1, e1, v2, e2, . . . , vk, ek, v1, such that vi, vi + 1 is in ei for all 1 ≤ i ≤ k − 1
with vk, v1 ∈ ek. The girth of a hypergraph H, containing a cycle, is the shortest
size of the length of cycles of H.

Note that every interval cycle is a cycle but the converse is not true in general
which implies g(H) < ig(H). For example, the ordered hypergraph H with the
vertex set {1, 2, 3, 4, 5} (with usual ordering) and edge set {I(1, 4), I(3, 5), I(2, 5)}
has a 3-cycle but does not have any interval cycles.

Definition 3. For a given ordered hypergraph H, the associated graph of H
is defined to be the simple graph GH with the vertex set V (GH) = V (H) and any
2-element set of distinct vertices x, y ∈ V (GH) is an edge in GH whenever I(x, y)
is an edge of H.

Remark 1. It is clear that every interval cycle of an ordered hypergraph H
is a cycle in its associated graph. Consequently, the interval girth of H is equal to
the girth of GH .

We end this section by recalling some of the results from [2]. The authors in
[2], by an elementary method, have shown that the clique polynomial of a simple
graph G always has a negative real root whose largest one is denoted by ξG ≥ −1.
From this, they have presented a simple argument on Turan’s Theorem that in any
triangle-free graph, the number of edges is always less than or equal to n2

4 where n
is the number of vertices of G. They have also shown that for any induced (resp.,
spanning) subgraph G′ of G, ξG′ ≤ ξG (resp., ξG′ ≥ ξG). By applying these facts,
they verified that the following results are always true for any simple graph G.

Proposition 1. For every simple graph G with n vertices, the following results
are true:

1. Let α(G) be the independence number of G. Then α(G) ≤ −1
ξG

.

2. χ(G) ≥ −|V (G)|ξG.
3. Suppose G is not complete and let g(G) be the girth of G Then g(G) ≤ −1

ξ2
G+ξG

.

4. If G is not a complete graph and og(G) denotes the smallest size of the length
of odd cycles of G, then og(G) ≤ −1

ξ2
G+ξG

.

5. If n ≥ 4 and ξG > 1
2 (−1 +

√
1− 4

n ), then G is not Hamiltonian.

6. If n ≥ 2 and ξG > −1 +
√

1− 2
n , then G does not have any perfect matching.

2. The associated graph of an ordered hypergraph

In this section, We shall exploit an ordered hypergraph as a bridge between its
associated simple graph and its ambient hypergraph H to find sharp upper bounds
for the chromatic number of H and an upper bound for the girth of H.
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Theorem 2. The following results are always true in any ordered hyper-
graph H.

1. H is 2-colorable.
2. α(H) ≥ n

2 where α(H) (resp., n) is the independence number (resp., number
of vertices) of H.

3. For any non-negative integer m, there exists an ordered hypergraph H such
that χ(GH)− χ(H) ≥ m or equivalently, χ(GH) ≥ m + 2.

4. Turan’s theorem: If H is triangle-free, then |E(H)| ≤ |V (H)|2
4 .

Proof. Let V (H) = {x1, x2, . . . , xn} where xi < xj if and only if i < j.
We assign color 1 to the vertices with odd subscripts and 2 to the other vertices.
Consequently, this color assignment is a two coloring of H. Part 2 can be followed
directly from part 1. Part 3 is an immediate consequence of part 2 and Theorem
3. Part 4 follows from Turan’s theorem on graphs, |E(H)| = |E(GH)|, and the
fact that every triangle free ordered hypergraph is also interval triangle free which
implies GH is a triangle free graph.

In the following example we show that the converse of part 1 in the above
theorem is not true in general.

Example 1. Let H be a hypergraph with the vertex set V (H) = {1, 2, 3, 4, 5}
and edge set E(H) = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}}. Now, it is not difficult to show
that H is 2-colorable which can not be ordered by our definition.

Theorem 3. For every simple graph G, there exists an ordered hypergraph H
whose associated graph GH is isomorphic to G.

Proof. The proof by induction on the number of vertices of G. Obviously,
the result is valid for n = |V (G)| = 3. Let n ≥ 3 be an integer and G a simple
graph with n+1 vertices. Let G′ = G − x be a subgraph of G where x ∈ V (G)
is an arbitrary vertex. Now, by induction hypothesis, there exists an ordered hy-
pergraph H ′ whose associated graph is isomorphic to G′. We construct an ordered
hypergraph H by adding x to V (H ′) to get V (H) = V (H ′) ∪ x and defining an
order on V (H) as follows: Suppose “≤′” is the order relation on H’. We define “≤”
to be the extension of “≤′” on V (H) by assuming that y ≤ x for all y ⊂ V (H ′)
and I(a, x) is an edge in H whenever there is an edge between a and x in G. By
this construction, G is isomorphic to GH .

Remark 2. In the above theorem, we can also construct H by assuming that
x is the smallest element in the vertex set of H.

Remark 3. Every hypergraph contains an induced ordered subhypergraph.
For example, any minimal edge of an arbitrary hypergraph H with its vertices is
an induced ordered subhypergraph of H.

Theorem 4. Let M be an induced ordered subhypergraph of a hypergraph H.
Then g(H) ≤ g(M) ≤ Ig(M) ≤ −1/ξ2

GM
+ ξGM

. This inequality is also valid
whenever g(H) is replaced by the shortest length of odd cycles of H.
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Proof. Clearly, the girth of H is at most the girth of M . Now, the proof can
be followed directly by applying Remark 1 and Proposition 1.

Next, by applying the fact that any arbitrary hypergraph H contains a max-
imal induced ordered subhypergraph, we can obtain an upper bound for the chro-
matic number of H.

Lemma 5. Let M be a maximal induced ordered subhypergraph of the hyper-
graph H and H1 = H −M . Then χ(H) ≤ χ(H1) + 2.

Proof. It suffices to color M by two colors and H1 by χ(H1) new colors different
from colors of M .

The following example shows that the bound in the above theorem is sharp.

Example 2. Let M be an ordered hypergraph and H ′ be an arbitrary hy-
pergraph such that V (M) ∩ V (H ′) = ∅. Let H be the hypergraph with the vertex
set V (H) = V (M) ∪ V (H ′) and the edge set E(H) = E(M) ∪ E(H ′) ∪ {{x, y} |
x ∈ V (M), y ∈ V (H ′)}. By this construction, M is a maximal induced ordered
subhypergraph of H and χ(H) = χ(H ′) + 2.

In order to write the next definition, we construct a sequence H1,H2, . . . , Hl

of subhypergraphs of H with l ≥ 1 as follows: H1 a maximal induced or-
dered subhypergraph of H, H2 a maximal induced ordered subhypergraph of
H −H1, . . . , Hl−1 a maximal induced ordered subhypergraph of H −⋃

1≤j≤l−2 Hj

and Hl = H − ⋃
1≤j≤l−1 Hj is an induced ordered subhypergraph of H. The se-

quence H1,H2, . . . , Hl is called an extracted sequence of subhypergraphs of H.

Definition 4. The depth of an hypergraph H, denoted by d(H), is the mini-
mum length of all extracted sequences of subhypergraphs of H.

Theorem 6. For any hypergraph H, we have χ(H) ≤ 2d(H).

Proof. The proof by induction on the depth of H. If d(H) = 1 then H is an
ordered hypergraph and χ(H) = 2d(H). Now suppose the result is true for any
hypergraph H ′ with d(H ′) < d(H). Let H1,H2, . . . , Hl be an extracted sequences
of subhypergraphs of H. Consider the hypergraph H ′ = H −H1. By Lemma 5 we
have χ(H) ≤ χ(H ′)+2. Now, since d(H ′) = d(H)−1, the result is straightforward
by induction hypothesis.

By a complete hypergraph H, we mean a hypergraph such that every sub-
set with at least two elements of its vertex set is an edge of H. Note that the
subhypergraphs generated by two vertices are the only maximal induced ordered
subhypergraphs of H. Therefore we can conclude that the depth of H is [ |V (H)|

2 ]+1
or [ |V (H)|

2 ] whenever |V (H)| is odd or even, respectively. Moreover, a complete hy-
pergraph with an even number of vertices is an example of a sharp bound for the
above theorem.

Next, we introduce a greedy algorithm to construct an ordered subhypergraph
in an arbitrary hypergraph.
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Algorithm. Let H be an arbitrary hypergraph.
Step 1. Choose two arbitrary vertices x1 and x2 in H. we assume an order on

the set {x1, x2} by x1 < x2.
Step 2. Let A = {a1, a2, · · · , ak} be a subset of V (H) with the order relation

< such that the induced subhypergraph of H generated by (A,<) is an ordered
subhypergraph of H. Choose a vertex x ∈ V (H) − A and consider the orders
x < a1 < a2 < · · · < ak, a1 < x < a2 < · · · < ak, . . . , and a1 < a2 < · · · < ak < x
on the set A∪{x}. If A∪{x} with one of the above orders (for example a1 < a2 <
· · · < aj < x < aj+1 < · · · < xk) constructs an induced ordered subhypergraph of
H, set A = A ∪ {x} with this order and go to step 2. If there is no such vertex,

write A

set H = H −A and go to step 1.
If H = ∅, the algorithm is done.

Remark. We can obtain a coloring for a hypergraph H, by coloring the
ordered subhypergraphs of H which are constructed in the above algorithm.
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