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ABSTRACT FORMULATION OF AN AGE-PHYSIOLOGY
DEPENDENT POPULATION DYNAMICS PROBLEM

Jean M. Tchuenche

Abstract. We transform a population dynamics problem with an additional structure into
an abstract Cauchy problem, and use functional analytic method to solve it. Instead of using the
familiar theory of resolvent, we rather replace the condition of well-posedness by its equivalent
form in order to prove the existence of a unique weak solution. An a priori estimate of the solution
is also given as well as the perturbation about the equilibrium point, and by a bounded linear
operator.

1. Introduction

A variety of problems in differential equations, (abstract) differential equations,
age-dependent population models with or without delay, evolution equations with
boundary conditions, can be written as semi-linear Cauchy problems [18]. In this
paper, we consider a mathematical model describing the dynamical evolution of an
age-structured population with an additional structure, g, say. A brief comment of
previous works provides the context for this paper.

Inaba [10] considered a mathematical model of an epidemic spreading in an age-
structured population with age-dependent transmission. His analysis is basically on
the threshold and stability of the epidemic model. In order to prove the existence
and uniqueness of solutions, he transformed the model equations into an abstract
Cauchy problem.

Chan and Guo [4] present conditions which guarantee the boundedness and
stability of a large time behaviour of the population density distribution for the
general logistic model by writing their model equations as an abstract evolution
equation.

Magal [13] investigated the existence of compact attractors for time-periodic
age-structured models. He considered a population which can be divided into sev-
eral species, and several patches when there is spatial structure. He noted that it

AMS Subject Classification: 35B45, 47B65, 47D06, 47H20.
Keywords and phrases: Population dynamics, age dependent, physiology, semigroup, lin-

ear/positive operator.

79



80 J. M. Tchuenche

is natural to incorporate periodic births and periodic mortalities in fisheries prob-
lems, where intra and inter-specific competition as well as migration take place,
and considered an abstract formulation of that type of evolution problem.

Over the years, various authors have considered the abstract formulation in
handling dynamical systems of real life situations ([9], [5], [18], to name, but a
few). Nevertheless very few of these authors give concrete examples of evolution
operators (or generators) which satisfy the semigroup properties, except [9], [16],
to the best knowledge of this author.

More often than not, it happens that the characteristics lines through a given
point in an attempt to solve the system (2.1) below intersect. We cannot therefore
expect the existence of classical solution always, for t ≥ 0. We circumvent this
difficulty by making use of the theory of semigroup of linear operators. This tech-
nique enables us to ascertain the existence of a unique mild solution under some
conditions, and it applies usefully and meaningfully to smooth functions which
are C1.

Liadi and Tchuenche applied the theory of resolvent to show that solutions of
abstract delayed differential equations converge asymptotically to zero if starting in
the neighbourhood of the origin. Also, using the theory of semigroups of operators,
they show that solutions starting in the neighbourhood of the initial distribution
will converge to it for suitably chosen constant, which depends on the parameters
of the equation.

Motivated by the quasi-linear type equation of an age-structured population
with an additional structure [16], we decided to carry out this study in which we
define an evolution operator satisfying the semigroup properties.

We now present the plan of the paper. In the next section, we transform the
model equation given by the first order quasi-linear partial differential equation
(2.1) into a non-homogeneous abstract Cauchy problem. We adapt result of books
by Goldstein [8] and Pazy [14]. A classical generator a C0-semigroup is given,
followed by the proof of the existence and uniqueness of solutions. In section
3, we present an a priori of weak solutions. Finally in section 4, we consider a
perturbation of the non-zero steady state of (2.1).

2. Transformation into Abstract Problem

This section deals with the abstract evolution equations approach to a class
of partial differential equations (problem 2.1) motivated by population dynamics.
Using an evolution equation approach, sufficient conditions for well-posedness in L1

of the dynamics and of existence of a weak solution are given. The model equations
are

∂u

∂t
+

∂u

∂a
+ G(a)

∂u

∂g
= −R(a, g)u(t, a, g)

u(0, a, g) = u0(a, g)

u(t, 0, g) = B(t, g)

(2.1)
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where u(t, a, g) represents the population density of individuals at time t, age a with
physiological variable g, B(t, g) is the renewal equation while G(·) is the velocity
of g and R(·, ·) is the death modulus.

In an attempt to solve (2.1), we proceed as follows: pick (t0, a0, g); find the
characteristic curve through (t0, a0, g), and suppose it hits the a-axis at (0, ā, 0).
Then u(t0, a0, g) = f(ā). Unfortunately, it can happen that two characteristics
intersect, and so the solution is constrained to take distinct values at the same
point. We cannot therefore, expect to have classical solutions of (2.1) always for
t ≥ 0. We therefore employ the theory of semigroup of linear operators which will
enable us to ascertain the existence of a unique weak solution of (2.1), which can
be posed as a linear abstract Cauchy problem. Our approach relies on the theory of
semi-linear evolution equations, and so we consider (2.1) as an ordinary differential
equation in an appropriate Banach space. Let

Aφ(a, g) :=
−∂φ(a, g)

∂a
, a ∈ [0, A], g ∈ Ω

where A is a linear but unbounded operator in L1([0, A]×Ω;R+) [15]. In general,
L1([0, A] × Ω;R+) represents the set of equivalence classes of Lebesgue integrable
functions (u(a, g), say) from [0, A] × Ω to R+ [10]. It is assumed that u(a, g) is
absolutely continuous on the appropriate interval where it is defined. Also, u(0, g) =
u0(g) := φ(g). The regularity on the variable g is u0(0) = φ(0); φ(0) is known
and satisfies φ(0) =

∫ A

0
β(a, 0)u(a, 0) da. Then, D(A) = {u ∈ L1([0, A] × Ω;R+),

du
da , du

dg ∈ L1([0, A] × Ω;R+); u(0, g) = u0(g) = φ(g)}, with φ(·) satisfying the
following relation

φ(g) =
∫ A

0

β(a, g)u(a, g) da.

Now, we define another operator (linear) F : L1 → L1 by

F (φ)(a, g) := −
(

G(a)
∂

∂g
+ R(a, g)

)
φ(a, g),

where without any ambiguity, we write L1 for short where necessary. Hence, prob-
lem (2.1) can be rewritten as an evolution equation in the space L1

du(t)
dt

= Au(t) + F (u(t))

u(0) = u0.
(2.2)

Prub [15] gave conditions for stability of equilibrium solutions of (2.2). Since
F (·) 6= 0, (2.2) is an inhomogeneous abstract Cauchy problem on the Banach space
L1([0, A]×Ω;R+). Solving it by showing that A generates a (C0) contraction semi-
group exhibits a number of qualitative properties besides existence, uniqueness, and
continuous dependence on initial data or distributions, namely: continuous depen-
dence on A [8]. Tchuenche [17] give a stability analysis of the extended abstract
linear and nonlinear forms of (2.2) with delay. Since u(t, a, g) is non-negative, we
seek for solution of (2.2) in a closed convex set K,

K := {u(t) | u(t) ∈ L1, u ≥ 0 a.e. },
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because only non-negative solutions are biological relevant [15]. It is to be noted
here that the theory of C0-semigroup has many applications to problems that are
not concerned with the classical solution of differential equations.

Let

(T (t)u)(a, g) :=
{

u0(a− t, g), t < a < A,

0, elsewhere.

It is an easy matter to show that T (t) satisfies the semigroup properties. This well-
defined semigroup T (t) is known as the semigroup of translations in L1([0, A] ×
Ω;R+), and according to a universal principle of conservation of difficulty [18], we
have:

‖T (t)u‖L1 ≤ ‖u‖L1 =⇒ ‖T (t)‖ ≤ 1.

Hence T (t) is a contraction semigroup of class C0 which is dissipative, i.e.
Re〈Au, u〉 ≤ 0, and

Re〈T (t)u− u, u〉 = Re〈T (t)u, u〉 − ‖u‖2 ≤ ‖T (t)u‖ ‖u‖ − ‖u2‖ ≤ 0

Let A be the infinitesimal generator of a C0-semigroup T (t), t ≥ 0 and F (·) be
Fréchet or Gâteaux differentiable and Lipschitz continuous, then by using the vari-
ation of constant formula, (2.2) is transformed to the following integral equation:

u(t) = T (t)u0 +
∫ t

0

T (t− s)F (u(s)) ds, t ∈ R+ (2.3)

u(0) = u0

Continuous solutions of equation (2.3) are called weak or mild solutions of (2.1).
If u0 ∈ D(A), then t 7→ T (t)u0 is differentiable, though a solution of (2.3) is not
necessarily differentiable, whence the term weak solution.

It is known that the above Cauchy problem is well-posed if the well-posedness
condition ρ(A) 6= φ is replaced by its equivalent form,

‖T (t)u‖ ≤ Mewt‖u0‖, t ∈ R+, w ≤ 0, M > 0,

where w, M are constants, and ρ(A) is the resolvent set of A [14], [7]. The solution
of (2.3) is unique if |ρ(A)| < 1. This condition which expresses the fact that solu-
tions of system (2.1) depend continuously on the initial distribution, is sometimes
difficult to verify [3]. A similar property found in [6] requires the application of
the classical Gronwall’s inequality. However, with this proviso in mind, it may be
expedient to show that the operator S defined below (or some power Sn of it) is a
contraction.

Lemma 2.1. Let u0 ∈ L1([0, A] × Ω;R+), F : L1 −→ L1. Then, F (·) is
Lipschitz continuous.

Proof. In order to prove this lemma, we shall assume that ug and vg can be
made arbitrarily small for any g ∈ Ω. Let max(‖G(a)‖, ‖R(a, g)‖) = c, and the first
derivative ug be continuous and bounded in a closed domain Ω̄, then we can now
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show that F is Lipschitzian.

‖F (u(s))− F (v(s))‖L1 = ‖G(a)(ug − vg) + R(u− v)‖
≤ min(‖G(a)‖, ‖R(a, .g)‖)‖ug + u− (vg + v)‖L1

≤ c‖u− v‖W 1,1([0,A]×Ω)

≤ c‖u− v‖L1 , (2.4)

by Sobolev imbedding theorem [1], where the constant c depends on the parameters
of the equation.

Lemma 2.2. Let τ > 0, Y := C([0, τ ], L1([0, A] × Ω;R+) and N be a closed
neighbourhood of u0 in W 1,1. Define S by

(Su)(t) := T (t)u0 +
∫ t

0

T (t− s)F (u(s)) ds, 0 ≤ t ≤ τ.

Then S is a contraction on Y . If

u ∈M := { v ∈ Y | v(0) = u0, v([0, T ]) ⊂ N },
then M is a complete metric space and Su ∈ Y .

Proof. Let M , w be such that ‖T (t)‖ ≤ Mewt = O(ewt), (T (t) is exponentially
bounded). Then,

‖Su− Sv‖Y = sup
0≤t≤τ

‖Su(t)− Sv(t)‖

= sup
0≤t≤τ

∥∥∥∥
∫ t

0

T (t− s) [F (u(s))− F (v(s))] ds

∥∥∥∥

≤ Mewt

∫ τ

0

‖F (u(s))− F (v(s))‖ ds

≤ Mewtc(τ)
∫ τ

0

‖u(s)− v(s)‖ ds

< c(τ)Mewt τ‖u− v‖Y −→ 0 as τ → 0+ (2.5)

where c(τ) is assumed to be bounded by c(1) for τ < 1. Now, we can show that
S(M) ⊂M.

‖Su− u0‖Y ≤ sup
0≤t≤τ

‖T (t)u0 − u0‖+ sup
0≤t≤τ

∥∥∥∥
∫ t

0

T (t− s)F (u(s)) ds

∥∥∥∥
= J1(τ) + J2(τ).

J1(τ) → 0 as τ → 0 while

J2(τ) ≤ τMewτ sup
0≤t≤τ

‖F (u(t))‖ → 0 as τ → 0+.

Also, ‖J1(τ)‖ = O(t) =⇒ lim
t→0

T (t)u0 − u0

t
= Au0. Hence S(M) ⊂M provided τ
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is sufficiently small. Applying inequality (2.5) n times, we have

‖Snu(t)− Snv(t)‖Y =
∥∥∥∥
∫ t

0

T (t− s)
{
F (Sn−1u(s))− F (Sn−1v(s))

}
ds

∥∥∥∥
Y

≤ Mewtc

∫ t

0

(cMewsτs)n−1 sup
0≤r≤τ

‖u(r)− v(r)‖ dr

(n− 1)!

≤ (Mewtc)n sup
0≤r≤τ

‖u− v‖
∫ t

0

sn−1

(n− 1)!
ds

≤ (cMewt)n

n!
sup

0≤r≤τ
‖u− v‖Y sn (2.6)

Let α = (cMsewt)n

n! , and choose n large enough so that α < 1. Then

‖Snu− Snv‖Y ≤ α‖u− v‖Y , u, v ∈ Y.

Hence, S is a contraction and has a unique fixed point in Y . Thus (2.1) possesses a
unique continuous (mild) solution on [0, τ ] and since τ is arbitrary, the result holds
in the whole of R+.

3. A Priori Bound of Weak Solutions

Theorem 3.1. If T (t) is dissipative and F : L1([0, A]×Ω;R+) −→ L1([0, A]×
Ω;R+) is Lipschitzian, then equation (2.1) possesses a unique bounded weak solu-
tion provided there exist constants M > 0, w ≤ 0 such that ‖T (t)‖ = O(eᾱt), with
ᾱ = cM + w < 0.

Proof.

‖u(t)‖L1 ≤
∥∥∥∥T (t)u0‖+

∫ t

0

‖T (t− s)F (u(s)) ds

∥∥∥∥

≤ Mewt‖u0‖+ Mewt

∫ t

0

e−ws‖F (u(s))‖ ds

≤ Mewt‖u0‖+ Mewt

∫ t

0

ce−ws‖u(s)‖ ds

≤ Mewt

(
‖u0‖+ c

∫ t

0

e−ws‖u(s)‖ ds

)

e−wt‖u(t)‖ ≤ M‖u0‖+ cM

∫ t

0

e−ws‖u(s)‖ ds.

On applying Gronwall’s inequality to e−ws‖u(s)‖, we have

‖u(t)‖ ≤ M‖u0‖e(cM+w)t. (3.1)

If cM + w < 0 then ‖u(t)‖ < ∞ as t →∞.

Lemma 3.2. Let F (·) be Lipschitz continuous in u. If u ∈ C([0, T ] : L1), then
the weak solution of (2.1) is unique.
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Proof. Define S : C([0.T ] : L1) −→ C([0, T ] : L1) and let u(t) and v(t) be two
solutions. Then from equation 6.1 [4], we have

‖(Su)(t)− (Sv)(t)‖ ≤ ‖T (t)u0 − T (t)u0‖+
∫ t

0

‖T (t− s)‖‖F (u(s))− F (v(s))‖ ds

≤ cMewt

∫ t

0

e−ws‖u(s)− v(s)‖ ds

and by the classical Gronwall’s lemma, we have ‖u(t)− v(t)‖ ≤ 0, implying u(t) =
v(t). This completes the proof.

4. Perturbation about an Equilibrium Point

Lemma 4.1. The steady state solution of equation (2.1) is exponentially asymp-
totically stable if for M > 0 and α < 0,
(i) ‖h(t, u(t))‖ ≤ M‖u(t)‖,
(ii) M + α < 0.

Proof. Let ze be a steady-state solution of (2.1). Then putting u = ze + z into
(2.1), we get

ż(t) = Az(t) + h(t, z(t)), z(0) = z0

where h(t, z(t)) := F (ze + z(t)). By a variation of parameters,

z(t) = eAtz0 +
∫ t

0

eA(t−τ)h(τ, z(τ)) dτ. (4.1)

Taking the Laplace transform of (4.1) with respect to t, while introducing ξ as the
transform variable yields

L{z(t)} = L{eAt}[z0 + L{h(t, z(t))}] (4.2)

and the transform equation takes the form

ẑ(ξ) = (ξI −A)−1[z0 + ĥ(ζ, z(ξ))] (4.3)

where (ξI − A)−1 is a bounded linear operator provided ‖A‖ < |ξ|, I being the
identity operator. Assuming Laplace invertibility of (4.3) in Re(ξ) ≤ α < 0, we
obtain

z(t) = eαtz0 +
∫ t

0

eα(t−τ)h(τ, z(τ)) dτ. (4.4)

Thus, from hypothesis (i),

‖z(t)‖ ≤ eαt{‖z0‖+ M

∫ t

0

e−ατ‖z(τ) dτ‖}

Hence, by Gronwall’s Lemma,

‖z(t)‖ ≤ ‖z0‖e(M+α)t ∀t ≥ 0 (4.5)

and the conclusion follows if M + α < 0.
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Relevant to this result, although not overlapping with it is that of [12], equation
(4.5) being a special case of his result. The asymptotic stability of such abstract
equations with time delay can be found in Tchuenche [17].
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