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AN ITERATIVE METHOD FOR VARIATIONAL
INEQUALITY PROBLEMS AND FIXED POINT

PROBLEMS IN HILBERT SPACES

Xiaolong Qin, Meijuan Shang and Yongfu Su

Abstract. In this paper, we introduce a new iterative scheme to investigate the problem
of finding a common element of the set of fixed points of a nonexpansive mapping and the set of
solutions of a variational inequality problem for a relaxed (γ, r)-cocoercive, Lipschitz continuous
mapping. Our results improve and extend the corresponding results of many others.

1. Introduction and preliminaries

Variational inequalities introduced by Stampacchia [7] in the early sixties have
had a great impact and influence in the development of almost all branches of pure
and applied sciences. It is well known that the variational inequalities are equivalent
to the fixed point problems. This alternative equivalent formulation has been used
to suggest and analyze in variational inequalities. In particular, the solution of the
variational inequalities can be computed using the iterative projection methods. It
is well known that the convergence of a projection method requires the operator
to be strongly monotone and Lipschitz continuous. Gabay [1] has shown that the
convergence of a projection method can be proved for cocoercive operators. Note
that cocoercivity is a weaker condition than strong monotonicity.

Let H be a real Hilbert space, whose inner product and norm are denoted by
〈·, ·〉 and ‖ · ‖, respectively. Let C be a nonempty closed convex subset of H and
A : C → H a nonlinear map. Let PC be the projection of H onto the convex subset
C. The classical variational inequality problem is to find u ∈ C such that

〈Au, v − u〉 ≥ 0, (1.1)

for all v ∈ C. Next, we denote the solution of the variational inequality (1.1) by
V I(C, A). We now recall some well-known concepts and results.
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Lemma 1.1. For a given z ∈ H, u ∈ C satisfies the inequality

〈u− z, v − u〉 ≥ 0, ∀v ∈ C,

if and only if u = PCz. It is known that projection operator PC is nonexpansive.
It is also known that PC satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2 (1.2)

for x, y ∈ H. Moreover, PCx is characterized by the properties: PCx ∈ C and
〈x− PCx, PCx− y〉 ≥ 0 for all y ∈ C.

Using Lemma 1.1, one can show that the variational inequality (1.1) is equiv-
alent to a fixed point problem.

Lemma 1.2. The element u ∈ C is a solution of the variational inequality
(1.1) if and only if u ∈ C satisfies the relation u = PC(u− λAu), where λ > 0 is a
constant.

It is clear from Lemma 1.2 that variational inequalities and the fixed point
problems are equivalent. This alternative equivalent formulation has played a sig-
nificant role in the studies of the variational inequalities and related optimization
problems.

Recall that the following definitions:
(1) A mapping A of C into H is called monotone if

〈Au−Av, u− v〉 ≥ 0,

for all u, v ∈ C.
(2) A is called µ-strongly monotone, if each x, y ∈ C, we have

〈Ax−Ay, x− y〉 ≥ µ‖x− y‖2,
for a constant v > 0. This implies that

‖Ax−Ay‖ ≥ µ‖x− y‖,
that is, A is µ-expansive and when µ = 1, it is expansive.

(3) A is said to be γ-cocoercive [10,11], if for each x, y ∈ C, we have

〈Ax−Ay, x− y〉 ≥ γ‖Ax−Ay‖2, for a constant γ > 0.

Clearly, every γ-cocoercive map A is 1/γ-Lipschitz continuous.
(4) A is called relaxed γ-cocoercive, if there exists a constant γ > 0 such that

〈Ax−Ay, x− y〉 ≥ (−γ)‖Ax−Ay‖2, ∀x, y ∈ C.

(5) A is said to be relaxed (γ, r)-cocoercive, if there exist two constants γ, r > 0
such that

〈Ax−Ay, x− y〉 ≥ (−γ)‖Ax−Ay‖2 + r‖x− y‖2, ∀x, y ∈ C.
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(6) A mapping S : C → C is called nonexpansive if ‖Sx − Sy‖ ≤ ‖x − y‖ for
all x, y ∈ C. Next, we denote by F (S) the set of fixed points of S.

(7) A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H,
f ∈ Tx and g ∈ Ty imply 〈x − y, f − g〉 ≥ 0. A monotone mapping T : H → 2H

is maximal if the graph of G(T ) of T is not properly contained in the graph of any
other monotone mapping. It is known that a monotone mapping T is maximal if
and only if for (x, f) ∈ H ×H, 〈x − y, f − g〉 ≥ 0 for every (y, g) ∈ G(T ) implies
f ∈ Tx. Let A be a monotone map of C into H and let NCv be the normal cone
to C at v ∈ C, i.e., NCv = {w ∈ H : 〈v − u, w〉 ≥ 0, ∀u ∈ C} and define

Tv =
{

Av + NCv, v ∈ C

∅, v /∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C, A); see [6].
For finding a common element of the set of fixed points of nonexpansive map-

pings and the set of solution of variational inequalities for α-cocoerceive map, Taka-
hashi and Toyoda [9] introduced the following iterative process:

xn+1 = αnxn + (1− αn)SPC(xn − λnAxn) (1.3)

for every n = 0, 1, 2, . . . , where A is α-cocoerceive, x0 = x ∈ C, {αn} is a sequence
in (0, 1), and {λn} is a sequence in (0, 2α). They showed that, if F (S) ∩ V I(C,A)
is nonempty, then the sequence {xn} generated by (1.3) converges weakly to some
z ∈ F (S) ∩ V I(C, A). On the other hand, for solving the variational inequality
problem in the finite-dimensional Euclidean space Rn under the assumption that
a set C ⊂Rn is closed and convex, a mapping A of C into Rn is monotone and
k-Lipschitz-continuous and V I(C, A) is nonempty, Korpelevich [3] introduced the
following so-called extra-gradient method:




x0 = x ∈ C,

yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn),
(1.4)

for every n = 0, 1, 2, . . . , where λ ∈ (0, 1/k). He proved that the sequences {xn} and
{yn} generated by this iterative process converge to the same point z ∈ V I(C, A).
Nadezhkina and Takahashi [4], Zeng and Yao [15] introduced some new iterative
schemes for finding elements in F (S) ∩ V I(C,A) by combining (1.3) and (1.4).

Recently, Iiduka and Takahashi [2] proposed another iterative scheme as fol-
lowing:

xn+1 = αnx + (1− αn)SPC(xn − λnAxn) (1.5)
for every n = 0, 1, 2, . . . , where A is α-cocoerceive, x0 = x ∈ C, {αn} is a sequence
in (0, 1), and {λn} is a sequence in (0, 2α). They proved that the sequence {xn}
converges strongly to z ∈ F (S) ∩ V I(C, A).

Very recently, Yao and Yao [13], introduced the following iterative process:
x0 ∈ C and {

yn = PC(I − λnA)xn,

xn+1 = αnu + βnxn + γnSPC(I − λnA)yn, n ≥ 0,
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They also proved the sequence {xn} defined by about iterative process converges
strongly to some point z ∈ F (S) ∩ V I(C, A).

In this paper, we introduce a new iterative process for finding a common ele-
ment of the set of fixed points of a nonexpansive mapping and the set of solutions of
the variational inequalities for relaxed (γ, r)-cocoercive mappings in a real Hilbert
space. The results are obtained in this paper improve and extend the recent ones
announced by Yao and Yao [13], Zeng and Yao [15], Iiduka and Takahashi [2] and
some others.

In order to prove our main results, we need the following lemmas.

Lemma 1.3. (Osilike and Igbokwe [5]). Let (E, 〈·, ·〉) be an inner product
space. Then for all x, y, z ∈ E and {αn}, {βn}, {γn} ∈ [0, 1] with αn +βn + γn = 1,
we have

‖αnx + βny + γnz‖2 ≤
αn‖x‖2 + βn‖y‖2 + γn‖z‖2 − αnγn‖x− z‖2 − αnβn‖x− y‖2 − βnγn‖y − z‖2.

Lemma 1.4 (Suzuki [8]). Let {xn} and {yn} be bounded sequences in a
Banach space X and let βn be a sequence in [0,1] with 0 < lim infn→∞ βn ≤
lim supn→∞ βn < 1. Suppose xn+1 = (1 − βn)yn + βnxn for all integers n ≥ 0
and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

Lemma 1.5 (Xu [12]). Assume that {αn} is a sequence of nonnegative real
numbers such that

αn+1 ≤ (1− γn)αn + δn,

where γn is a sequence in (0,1) and {δn} is a sequence such that
(i)

∑∞
n=1 γn = ∞;

(ii) lim supn→∞ δn/γn ≤ 0 or
∑∞

n=1 |δn| < ∞.
Then limn→∞ αn = 0.

2. Main results

Theorem 2.1. Let H be a real Hilbert space, C be a nonempty closed convex
subset of H and A : C → H be relaxed (γ, r)-cocoercive and µ-Lipschitz continuous.
Let S : C → C be a nonexpansive mapping such that F (S) ∩ V I(C,A) 6= ∅. {xn}
is a sequence generated by the following algorithm: x0 ∈ C and





zn = ωnxn + (1− ωn)PC(I − tnA)xn,

yn = δnxn + (1− δn)PC(I − snA)zn,

xn+1 = αnu + βnxn + γnSPC(I − rnA)yn, n ≥ 0,

(2.1)
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where {αn}, {βn}, {γn}, {δn} and {ωn} are sequences in (0, 1). If {αn}, {βn},
{γn}, {δn}, {ωn}, {rn}, {sn} and {tn} are chosen such that

(i) αn + βn + γn = 1;

(ii) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(iv) limn→∞ |rn+1 − rn| = limn→∞ |sn+1 − sn| = limn→∞ |tn+1 − tn| = 0;

(v) {rn}, {sn}, {tn} ⊂ [a, b] for some a, b with 0 < a < b < 2(r−γµ2)
µ2 and r > γµ2;

(vi) limn→∞ δn = limn→∞ ωn = 0.

Then {xn} converges strongly to PF (S)∩V I(C,A)u.

Proof. First, we show the mapping I − snA, I − rnA and I − tnA are nonex-
pansive, respectively. Indeed, from the relaxed (γ, r)-cocoercive and µ-Lipschitzian
definition on T and condition (v), we have

‖(I − snA)x− (I − snA)y‖2
= ‖(x− y)− sn(Ax−Ay)‖2
= ‖x− y‖2 − 2sn〈x− y, Ax−Ay〉+ s2

n‖Ax−Ay‖2
≤ ‖x− y‖2 − 2sn[−γ‖Ax−Ay‖2 + r‖x− y‖2] + s2

n‖Ax−Ay‖2
≤ ‖x− y‖2 + 2snµ2γ‖x− y‖2 − 2snr‖x− y‖2 + µ2s2

n‖x− y‖2
= (1 + 2snµ2γ − 2snr + µ2s2

n)‖x− y‖2
≤ ‖x− y‖2,

(2.2)

which implies that the mapping I − snA is nonexpansive, and so are I − tnA and
I−rnA. Next, we show the sequence {xn} is bounded. Letting p ∈ F (S)∩V I(C, A),
we have

‖zn − p‖ = ‖ωn(xn − p) + (1− ωn)(PC(I − tnA)xn − p)‖
≤ ωn‖xn − p‖+ (1− ωn)‖xn − p‖ = ‖xn − p‖.

It follows that
‖yn − p‖ = ‖δn(xn − p) + (1− δn)(PC(I − snA)zn − p)‖

≤ δn‖xn − p‖+ (1− δn)‖zn − p‖
≤ δn‖xn − p‖+ (1− δn)‖xn − p‖ = ‖xn − p‖,

which yields that

‖xn+1 − p‖ = ‖αn(u− p) + βn(xn − p) + γn(SPC(I − rnA)yn − p)‖
≤ αn‖u− p‖+ βn‖xn − p‖+ γn‖SPC(I − rnA)yn − p‖
≤ αn‖u− p‖+ βn‖xn − p‖+ γn‖yn − p‖
≤ αn‖u− p‖+ βn‖xn − p‖+ γn‖xn − p‖
= (1− αn)‖xn − p‖+ αn‖u− p‖
≤ max{‖xn − p‖, ‖u− p‖}.
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By simple inductions, we have

‖xn − p‖ ≤ max{‖x0 − p‖, ‖u− p‖}},
which gives that the sequence {xn} is bounded, and so are {yn} and {zn}. Put
ρn = PC(I − rnA)yn, θn = PC(I − snA)zn and ηn = PC(I − tnA)xn. The iterative
scheme (2.1) reduces to 




zn = ωnxn + (1− ωn)ηn,

yn = δnxn + (1− δn)θn,

xn+1 = αnu + βnxn + γnSρn.

Next, we compute
‖ηn − ηn+1‖ = ‖PC(I − tnA)xn − PC(I − tn+1A)xn+1‖

≤ ‖(I − tnA)xn − (I − tn+1A)xn+1‖
= ‖(xn − tnAxn)− (xn+1 − tnAxn+1) + (tn+1 − tn)Axn+1‖
≤ ‖xn − xn+1‖+ |tn+1 − tn|‖Axn+1‖,

(2.3)

‖θn − θn+1‖ = ‖PC(I − snA)zn − PC(I − sn+1A)zn+1‖
≤ ‖(I − snA)zn − (I − sn+1A)zn+1‖
= ‖(zn − snAzn)− (zn+1 − snAzn+1) + (sn+1 − sn)Azn+1‖
≤ ‖zn − zn+1‖+ |sn+1 − sn|‖Azn+1‖.

(2.4)

and
‖ρn − ρn+1‖ = ‖PC(I − rnA)yn − PC(I − rn+1A)yn+1‖

≤ ‖(I − rnA)yn − (I − rn+1A)yn+1‖
= ‖(yn − rnAyn)− (yn+1 − rnAyn+1) + (rn+1 − rn)Ayn+1‖
≤ ‖yn − yn+1‖+ |rn+1 − rn|‖Ayn+1‖.

(2.5)

Observing that {
zn = ωnxn + (1− ωn)ηn,

zn+1 = ωn+1xn+1 + (1− ωn+1)ηn+1,

we have

zn − zn+1 = ωn(xn − xn+1) + (1− ωn)(ηn − ηn+1) + (ηn+1 − xn+1)(ωn+1 − ωn),

which yields that

‖zn − zn+1‖ ≤ ωn‖xn − xn+1‖+ (1− ωn)‖ηn − ηn+1‖+ ‖ηn+1 − xn+1‖|ωn+1 − ωn|.
(2.6)

Substitution of (2.3) into (2.6) yields that

‖zn − zn+1‖ ≤ ‖xn − xn+1‖+ M1(|tn+1 − tn|+ |ωn+1 − ωn|), (2.7)

where M1 is an appropriate constant such that M1 = max{supn≥0 ‖Axn‖, supn≥0

‖ηn − xn‖}. Observing that{
yn = δnxn + (1− δn)θn,

yn+1 = δn+1xn+1 + (1− δn+1)θn+1,
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we have

yn − yn+1 = δn(xn − xn+1) + (1− δn)(θn − θn+1) + (θn+1 − xn+1)(δn+1 − δn),

which yields that,

‖yn − yn+1‖ ≤
δn‖xn − xn+1‖+ (1− δn)‖θn − θn+1‖+ ‖θn+1 − xn+1‖|δn+1 − δn|. (2.8)

Substituting (2.4) and (2.7) into (2.8), we get

‖yn−yn+1‖ ≤ ‖xn−xn+1‖+M2(|tn+1−tn|+|ωn+1−ωn|+|sn+1−sn|+|δn+1−δn|),
(2.9)

where M2 is an appropriate constant such that M2 = max{M1, supn≥0 ‖Azn‖,
supn≥0 ‖θn − xn‖}. Substituting (2.9) into (2.5), we obtain

‖ρn − ρn+1‖ ≤
M3(|tn+1− tn|+ |ωn+1−ωn|+ |sn+1−sn|+ |δn+1−δn|+ |rn+1−rn|)+‖xn−xn+1‖,

(2.10)

where M3 is an appropriate constant such that M3 = max{supn≥0 ‖Ayn‖,M2}. Put
ln = xn+1−βnxn

1−βn
. That is, xn+1 = (1− βn)ln + βnxn. Now, we compute ln+1 − ln.

Observing that

ln+1 − ln =
αn+1u + γn+1Sρn+1

1− βn+1
− αnu + γnSρn

1− βn

= (
αn+1

1− βn+1
− αn

1− βn
)u +

γn+1

1− βn+1
(Sρn+1 − Sρn)

+ (
γn+1

1− βn+1
− γn

1− βn
)Sρn,

(2.11)

we have

‖ln+1 − ln‖ ≤
| αn+1

1− βn+1
− αn

1− βn
|‖u‖+

γn+1

1− βn+1
‖ρn+1 − ρn‖+ | γn+1

1− βn+1
− γn

1− βn
|‖Sρn‖,

(2.12)

which combined with (2.10) yields that

‖ln+1 − ln‖ ≤ | αn+1

1− βn+1
− αn

1− βn
|‖u‖+

γn+1

1− βn+1
[‖xn − xn+1‖

+ M3(|tn+1 − tn|+ |ωn+1 − ωn|+ |sn+1 − sn|+ |δn+1 − δn|
+ |rn+1 − rn|)] + | γn+1

1− βn+1
− γn

1− βn
|‖Sρn‖

≤ | αn+1

1− βn+1
− αn

1− βn
|(‖u‖+ ‖Sρn‖)

+ ‖xn − xn+1‖+ M3(|tn+1 − tn|+ |ωn+1 − ωn|+ |sn+1 − sn|
+ |δn+1 − δn|+ |rn+1 − rn|).

(2.13)
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It follows that

‖ln+1 − ln‖ − ‖xn+1 − xn‖
≤ M3(|tn+1 − tn|+ |ωn+1 − ωn|+ |sn+1 − sn|+ |δn+1 − δn|+ |rn+1 − rn|)

+ (‖Sρn‖+ ‖u‖)| αn+1

1− βn+1
− αn

1− βn
|. (2.14)

Observe conditions (ii), (iv) and (vi) and take the limits as n →∞ to get

lim sup
n→∞

(‖ln+1 − ln‖ − ‖xn+1 − xn‖) ≤ 0.

We can obtain limn→∞ ‖ln−xn‖ = 0 easily by Lemma 1.4. It follows from condition
(iii) that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn)‖ln − xn‖ = 0. (2.15)

Observing that xn+1 − xn = αn(u− xn) + γn(Sρn − xn), we can easily get

lim
n→∞

‖Sρn − xn‖ = 0. (2.16)

For p ∈ F (S) ∩ V I(C, A), we have

‖ηn − p‖2 = ‖PC(I − tnA)xn − PC(I − tnA)p‖2
≤ ‖(xn − p)− tn(Axn −Ap)‖2
= ‖xn − p‖2 − 2tn〈xn − p,Axn −Ap〉+ t2n‖Axn −Ap‖2
≤ ‖xn − p‖2 − 2tn[−γ‖Axn −Ap‖2 + r‖xn − p‖2] + t2n‖Axn −Ap‖2
≤ ‖xn − p‖2 + 2tnγ‖Axn −Ap‖2 − 2tnr‖xn − p‖2 + t2n‖Axn −Ap‖2

≤ ‖xn − p‖2 + (2tnγ + t2n −
2tnr

µ2
)‖Axn −Ap‖2. (2.17)

Similarly, we have

‖θn − p‖2 ≤ ‖xn − p‖2 + (2snγ + s2
n −

2snr

µ2
)‖Azn −Ap‖2 (2.18)

and
‖ρn − p‖2 ≤ ‖xn − p‖2 + (2rnγ + r2

n −
2rnr

µ2
)‖Ayn −Ap‖2. (2.19)

It follows that

‖zn − p‖2 = ‖ωn(xn − p) + (1− ωn)(ηn − p)‖2

≤ ωn‖xn − p‖2 + (1− ωn)[‖xn − p‖2 + (2tnγ + t2n −
2tnr

µ2
)‖Axn −Ap‖2]

≤ ‖xn − p‖2 + (2tnγ + t2n −
2tnr

µ2
)‖Axn −Ap‖2 (2.20)

and
‖yn − p‖2 = ‖δn(xn − p) + (1− δn)(θn − p)‖2

≤ ‖xn − p‖2 + (2snγ + t2n −
2snr

µ2
)‖Azn −Ap‖2. (2.21)
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On the other hand, we have

‖xn+1 − p‖2 = ‖αn(u− p) + βn(xn − p) + γn(Sρn − p)‖2
≤ αn‖u− p‖2 + βn‖xn − p‖2 + γn‖Sρn − p‖2
≤ αn‖u− p‖2 + βn‖xn − p‖2 + γn‖ρn − p‖2.

(2.22)

Substituting (2.19) into (2.22) yields that

‖xn+1 − p‖2 ≤ αn‖u− p‖2 + βn‖xn − p‖2

+ γn(‖xn − p‖2 + (2rnγ + r2
n −

2rnr

µ
)‖Ayn −Ap‖2)

≤ αn‖u− p‖2 + ‖xn − p‖2 + (2rnγ + r2
n −

2rnr

µ2
)‖Ayn −Ap‖2.

(2.23)
It follows from condition (v) that

(
2ar

µ2
− 2bγ − b2)‖Ayn −Ap‖2

≤ αn‖u− p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2
= αn‖u− p‖2 + (‖xn − p‖+ ‖xn+1 − p‖)(‖xn − p‖ − ‖xn+1 − p‖)
≤ αn‖u− p‖2 + (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖.

(2.24)

Because of (2.15) and limn→∞ αn = 0, we have

lim
n→∞

‖Ayn −Ap‖ = 0. (2.25)

Using (2.22) again, we have

‖xn+1 − p‖2 ≤ αn‖u− p‖2 + βn‖xn − p‖2 + γn‖yn − p‖2. (2.26)

Substituting (2.21) into (2.26) yields that

‖xn+1− p‖2 ≤ αn‖u− p‖2 + ‖xn− p‖2 + (2snγ + t2n−
2snr

µ2
)‖Azn−Ap‖2). (2.27)

It follows from condition (v) that

(
2ar

µ
− 2bγ − b2)‖Azn −Ap‖2

≤ αn‖u− p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2
= αn‖u− p‖2 + (‖xn − p‖+ ‖xn+1 − p‖)(‖xn − p‖ − ‖xn+1 − p‖)
≤ αn‖u− p‖2 + (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖.

(2.28)

From (2.15) and limn→∞ αn = 0, we have

lim
n→∞

‖Azn −Ap‖ = 0. (2.29)

In a similar way, we can prove

lim
n→∞

‖Ayn −Ap‖ = 0. (2.30)
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Observe that
‖ρn − p‖2 = ‖PC(I − rnA)yn − PC(I − rnA)p‖2

≤ 〈(I − rnA)yn − (I − rnA)p, ρn − p〉
=

1
2
{‖(I − rnA)yn − (I − rnA)p‖2 + ‖ρn − p‖2

− ‖(I − rnA)yn − (I − rnA)p− (ρn − p)‖2}
≤ 1

2
{‖yn − p‖2 + ‖ρn − p‖2 − ‖(yn − ρn)− rn(Ayn −Ap)‖2}

=
1
2
{‖xn − p‖2 + ‖ρn − p‖2 − ‖yn − ρn‖2 − r2

n‖Ayn −Ap‖2

+ 2rn〈yn − ρn, Ayn −Ap〉},
which yields that

‖ρn − p‖2 ≤ ‖xn − p‖2 − ‖yn − ρn‖2 + 2rn〈yn − ρn, Ayn −Ap〉. (2.31)

Similarly, we can prove

‖θn − p‖2 ≤ ‖xn − p‖2 − ‖zn − θn‖2 + 2sn〈zn − θn, Azn −Ap〉 (2.32)

and

‖ηn − p‖2 ≤ ‖xn − p‖2 − ‖xn − ηn‖2 + 2tn〈xn − ηn, Axn −Ap〉. (2.33)

Substituting (2.31) into (2.22) yields that

‖xn+1 − p‖2 ≤ αn‖u− p‖2 + ‖xn − p‖2 − γn‖yn − ρn‖2
+ 2γnrn〈yn − ρn, Ayn −Ap〉),

which implies that

γn‖yn − ρn‖2 ≤ αn‖u− p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2
+ 2γnrn〈yn − ρn, Ayn −Ap〉

≤ αn‖u− p‖2 + (‖xn − p‖+ ‖xn+1 − p‖)‖xn+1 − xn‖
+ 2γnrn‖yn − ρn‖‖Ayn −Ap‖.

Observing that (2.15), (2.25) and limn→∞ αn = 0, we have

lim
n→∞

‖yn − ρn‖ = 0. (2.34)

Using (2.22) again, we have

‖xn+1 − p‖2 ≤ αn‖u− p‖2 + βn‖xn − p‖2 + γn‖ρn − p‖2
≤ αn‖u− p‖2 + βn‖xn − p‖2 + γn‖yn − p‖2
≤ αn‖u− p‖2 + (βn + γnδn)‖xn − p‖2 + γn(1− δn)‖θn − p‖2.

(2.35)
Substituting (2.32) into (2.35) yields that

‖xn+1 − p‖2 ≤ αn‖u− p‖2 + ‖xn − p‖2
− γn(1− δn)(‖zn − θn‖2 − 2sn〈zn − θn, Azn −Ap〉),
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which implies that

γn(1− δn)‖zn − θn‖2 ≤ αn‖u− p‖2 + (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖
+ 2γn(1− δn)sn‖zn − θn‖‖Azn −Ap‖

From conditions (ii), (v), (2.15) and (2.29), we obtain

lim
n→∞

‖zn − θn‖ = 0. (2.36)

Similarly, we can prove that

lim
n→∞

‖xn − ηn‖ = 0. (2.37)

On the other hand, we observe

‖Sρn − ρn‖ ≤ ‖Sρn − xn‖+ ‖xn − ηn‖+ ‖ηn − zn‖
+ ‖zn − θn‖+ ‖θn − yn‖+ ‖yn − ρn‖.

It follows from condition (vi), (2.16), (2.34), (2.36) and (2.37) that

lim
n→∞

‖Sρn − ρn‖ = 0. (2.38)

Next, we show
lim sup

n→∞
〈u− q, xn − q〉 ≤ 0,

where q = PF (S)∩V I(C,A)u. To show it, we choose a subsequence {ρni} of {ρn} such
that

lim sup
n→∞

〈u− q, Sρn − q〉 = lim
i→∞

〈u− q, Sρni − q〉.

As {ρni} is bounded, we have that there is a subsequence {ρnij
} of {ρni} converges

weakly to p. We may assume that without loss of generality that ρni ⇀ p. Observ-
ing (2.38), we have Sρnj ⇀ p. Hence we have p ∈ F (S) ∩ V I(C, A). Indeed, let us
first show that p ∈ V I(C, A). Put

Tw1 =
{

Aw1 + NCw1, w1 ∈ C

∅, w1 /∈ C.

Since A is relaxed (γ, r)-cocoercive and condition (v), we have

〈Ax−Ay, x− y〉 ≥ (−γ)‖Ax−Ay‖2 + r‖x− y‖2 ≥ (r − γµ2)‖x− y‖2 ≥ 0,

which yields that A is monotone. Thus T is maximal monotone. Let (w1, w2) ∈
G(T ). Since w2 −Aw1 ∈ NCw1 and ρn ∈ C, we have

〈w1 − ρn, w2 −Aw1〉 ≥ 0.

On the other hand, from ρn = PC(I − rnA)yn, we have

〈w1 − ρn, ρn − (I − rnA)yn〉 ≥ 0

and hence
〈w1 − ρn,

ρn − yn

rn
+ Ayn〉 ≥ 0.
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It follows that
〈w1 − ρni

, w2〉 ≥ 〈w1 − ρni
, Aw1〉 ≥ 〈w1 − ρni

, Aw1〉
− 〈w1 − ρni

,
ρni

− yni

rni

+ Ayni
〉

≥ 〈w1 − ρni
, Aw1 − ρni

− yni

rni

−Ayni
〉

= 〈w1 − ρni
, Aw1 −Aρni

〉+ 〈w1 − ρni
, Aρni

−Ayni
〉

− 〈w1 − ρni
,
ρni − yni

rni

〉

≥ 〈w1 − ρni , Aρni −Ayni〉 − 〈w1 − ρni ,
ρni

− yni

rni

〉

which implies that 〈w1 − p, w2〉 ≥ 0 as i → ∞. We have p ∈ T−10 and hence
p ∈ V I(C,A). Next, let us show p ∈ F (S). Since Hilbert spaces are Opial’s spaces,
from (2.38), we have

lim inf
i→∞

‖ρni
− p‖ < lim inf

i→∞
‖ρni

− Sp‖ = lim inf
i→∞

‖ρni
− Sρni

+ Sρni
− Sp‖

≤ lim inf
i→∞

‖Sρni
− Sp‖ ≤ lim inf

i→∞
‖ρni

− p‖
which derives a contradiction. Thus, we have p ∈ F (S). On the other hand, we
have

lim sup
n→∞

〈u− q, xn − q〉 = lim sup
n→∞

〈u− q, Sρn − q〉 = lim
i→∞

〈u− q, Sρni − q〉
= 〈u− q, p− q〉 ≤ 0.

(2.39)

It follows that
‖xn+1 − q‖2 = 〈αnu + βnxn + γnSρn − q, xn+1 − q〉

= αn〈u− q, xn+1 − q〉+ βn〈xn − q, xn+1 − q〉
+ γn〈Sρn − q, xn+1 − q〉

≤ αn〈u− q, xn+1 − q〉+
1
2
βn(‖xn − q‖2 + ‖xn+1 − q‖2)

+
1
2
γn(‖Sρn − q‖2 + ‖xn+1 − q‖2)

≤ αn〈u− q, xn+1 − q〉+
1
2
βn(‖xn − q‖2 + ‖xn+1 − q‖2)

+
1
2
γn(‖ρn − q‖2 + ‖xn+1 − q‖2)

≤ αn〈u− q, xn+1 − q〉+
1
2
βn(‖xn − q‖2 + ‖xn+1 − q‖2)

+
1
2
γn(‖xn − q‖2 + ‖xn+1 − q‖2)

≤ αn〈u− q, xn+1 − q〉+
1
2
(1− αn)(‖xn − q‖2 + ‖xn+1 − q‖2),

which yields that

‖xn+1 − q‖2 ≤ (1− αn)‖xn − q‖2 + 2αn〈u− q, xn+1 − q〉. (2.40)
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By Lemma 1.5, we can conclude the desired conclusion easily. This completes the
proof.

As corollaries of Theorem 2.1, we have the following results immediately.

Corollary 2.2. Let H be a real Hilbert space, C be a nonempty closed convex
subset of H and A : C → H be relaxed (γ, r)-cocoercive and µ-Lipschitz continuous.
Let S : C → C be a nonexpansive mapping such that F (S) ∩ V I(C,A) 6= ∅. {xn}
is a sequence generated by the following algorithm: x0 ∈ C and{

yn = PC(I − snA)xn,

xn+1 = αnu + βnxn + γnSPC(I − rnA)yn, n ≥ 0,

where {αn}, {βn} and {γn} are three sequences in (0, 1). If {αn}, {βn}, {γn}, {rn}
and {sn} are chosen such that
(i) αn + βn + γn = 1;
(ii) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iv) limn→∞ |rn+1 − rn| = limn→∞ |sn+1 − sn| = 0;

(v) {rn}, {sn} ⊂ [a, b] for some a, b with 0 < a < b < 2(r−γµ2)
µ2 and r > γµ2.

Then {xn} converges strongly to PF (S)∩V I(C,A)u.

Corollary 2.3. Let H be a real Hilbert space, C be a nonempty closed convex
subset of H and A : C → H be relaxed (γ, r)-cocoercive and µ-Lipschitz continuous.
Let S : C → C be a nonexpansive mapping such that F (S) ∩ V I(C,A) 6= ∅. {xn}
is a sequence generated by the following algorithm:

xn+1 = αnu + βnxn + γnSxn,

where {αn}, {βn} and {γn} are three sequences in (0, 1). If {αn}, {βn} and {γn}
are chosen such that
(i) αn + βn + γn = 1;
(ii) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Then {xn} converges strongly to PF (S)u.
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