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AN ITERATIVE METHOD FOR VARIATIONAL
INEQUALITY PROBLEMS AND FIXED POINT
PROBLEMS IN HILBERT SPACES

Xiaolong Qin, Meijuan Shang and Yongfu Su

Abstract. In this paper, we introduce a new iterative scheme to investigate the problem
of finding a common element of the set of fixed points of a nonexpansive mapping and the set of
solutions of a variational inequality problem for a relaxed (v, r)-cocoercive, Lipschitz continuous
mapping. Our results improve and extend the corresponding results of many others.

1. Introduction and preliminaries

Variational inequalities introduced by Stampacchia [7] in the early sixties have
had a great impact and influence in the development of almost all branches of pure
and applied sciences. It is well known that the variational inequalities are equivalent
to the fixed point problems. This alternative equivalent formulation has been used
to suggest and analyze in variational inequalities. In particular, the solution of the
variational inequalities can be computed using the iterative projection methods. It
is well known that the convergence of a projection method requires the operator
to be strongly monotone and Lipschitz continuous. Gabay [1] has shown that the
convergence of a projection method can be proved for cocoercive operators. Note
that cocoercivity is a weaker condition than strong monotonicity.

Let H be a real Hilbert space, whose inner product and norm are denoted by
(-,-y and || - ||, respectively. Let C' be a nonempty closed convex subset of H and
A: C — H anonlinear map. Let Po be the projection of H onto the convex subset
C. The classical variational inequality problem is to find u € C such that

(Au,v —u) >0, (1.1)

for all v € C. Next, we denote the solution of the variational inequality (1.1) by
VI(C,A). We now recall some well-known concepts and results.
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LEMMA 1.1. For a given z € H, u € C satisfies the inequality
(u—z,v—u)>0, YveC,

if and only if uw = Poz. It is known that projection operator Po is nonerpansive.
It is also known that Pc satisfies

(w =y, Pox — Pcy) > ||Pox — Pey|® (1.2)
for x,y € H. Moreover, Pcx is characterized by the properties: Pox € C and
(x — Pox,Pox —y) >0 for ally € C.

Using Lemma 1.1, one can show that the variational inequality (1.1) is equiv-
alent to a fixed point problem.

LEMMA 1.2. The element u € C is a solution of the variational inequality
(1.1) if and only if u € C satisfies the relation u = Po(u — MNAu), where A >0 is a
constant.

It is clear from Lemma 1.2 that variational inequalities and the fixed point
problems are equivalent. This alternative equivalent formulation has played a sig-
nificant role in the studies of the variational inequalities and related optimization
problems.

Recall that the following definitions:
(1) A mapping A of C into H is called monotone if

(Au — Av,u —v) >0,

for all u,v € C.
(2) A is called p-strongly monotone, if each z,y € C, we have

<A{E - Ay,x - y> > ,uHx - yH27
for a constant v > 0. This implies that
Az — Ay[| = pllz -y,

that is, A is p-expansive and when p = 1, it is expansive.

(3) A is said to be y-cocoercive [10,11], if for each z,y € C, we have
(Az — Ay, z —y) > || Az — Ay|*, for a constant v > 0.

Clearly, every «-cocoercive map A is 1/v-Lipschitz continuous.

(4) A is called relaxed «y-cocoercive, if there exists a constant v > 0 such that
(A:B—Ay,:v—y> 2 (_V)HA:E_A:Usz VQj?yEC-

(5) A is said to be relaxed (7, r)-cocoercive, if there exist two constants v, r > 0
such that

(Az — Ay, z —y) > (—7)||Az — Ay||2 + iz — y||2, Va,y € C.
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(6) A mapping S : C — C is called nonexpansive if |Sz — Sy|| < ||lo — y|| for
all x,y € C. Next, we denote by F(.5) the set of fixed points of S.
(7) A set-valued mapping T: H — 2 is called monotone if for all z,y € H,
f €Tz and g € Ty imply (z —y, f —g) > 0. A monotone mapping T: H — 27
is maximal if the graph of G(T') of T is not properly contained in the graph of any
other monotone mapping. It is known that a monotone mapping T is maximal if
and only if for (z, f) € H x H, (x —y, f — g) > 0 for every (y,g) € G(T') implies
f € Tz. Let A be a monotone map of C' into H and let Ncv be the normal cone
toCatwveC,ie, Nov={wée€ H: {v—u,w) >0, Yu € C} and define
Av+ Nev, veCl
Tv =
{ 0, vé¢C.
Then T is maximal monotone and 0 € T if and only if v € VI(C, A); see [6].
For finding a common element of the set of fixed points of nonexpansive map-

pings and the set of solution of variational inequalities for a-cocoerceive map, Taka-
hashi and Toyoda [9] introduced the following iterative process:

Tpt1 = anTn + (1 — an)SPo(z, — A Azy) (1.3)
for every n =0,1,2,..., where A is a-cocoerceive, xg = x € C, {a,} is a sequence
in (0,1), and {\,} is a sequence in (0, 2«). They showed that, if F(S)NVI(C,A)
is nonempty, then the sequence {x,} generated by (1.3) converges weakly to some
z € F(S)NVI(C,A). On the other hand, for solving the variational inequality
problem in the finite-dimensional Euclidean space R" under the assumption that
a set C CR" is closed and convex, a mapping A of C' into R" is monotone and
k-Lipschitz-continuous and VI(C, A) is nonempty, Korpelevich [3] introduced the
following so-called extra-gradient method:

zg=x € C,
Yn = Po(x, — NAzy,), (1.4)
Tn+l = PC(:L‘TL - >\Ayn)7

foreveryn = 0,1,2,..., where A € (0,1/k). He proved that the sequences {z,,} and
{yn} generated by this iterative process converge to the same point z € VI(C, A).
Nadezhkina and Takahashi [4], Zeng and Yao [15] introduced some new iterative
schemes for finding elements in F(S) N VI(C, A) by combining (1.3) and (1.4).

Recently, Tiduka and Takahashi [2] proposed another iterative scheme as fol-
lowing:

Tnt1 = @nZ + (1 — o) SPe(xn, — M Azy) (1.5)
for every n =0,1,2,..., where A is a-cocoerceive, xg = x € C, {a,} is a sequence
in (0,1), and {A,} is a sequence in (0,2«a). They proved that the sequence {x,}
converges strongly to z € F(S)NVI(C, A).

Very recently, Yao and Yao [13], introduced the following iterative process:
rg € C' and

Yn = PC(I - AnA)‘Tnv
Tn4+1 = OpU + ﬁnxn + ’YnSPC(I - )\nA)yny n Z 07
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They also proved the sequence {z,} defined by about iterative process converges
strongly to some point z € F(S)NVI(C, A).

In this paper, we introduce a new iterative process for finding a common ele-
ment of the set of fixed points of a nonexpansive mapping and the set of solutions of
the variational inequalities for relaxed (v, r)-cocoercive mappings in a real Hilbert
space. The results are obtained in this paper improve and extend the recent ones
announced by Yao and Yao [13], Zeng and Yao [15], Iiduka and Takahashi [2] and
some others.

In order to prove our main results, we need the following lemmas.

LEMMA 1.3. (Osilike and Igbokwe [5]). Let (E,(-,-)) be an inner product
space. Then for all z,y,z € E and {an}, {Bn}, {7} € [0,1] with a, + B+ =1,
we have

lanz + Bny +ynz]|* <
anllzl® + Ballyll® + vl = anyallz = 2l1* = anBallz = ylI* = Bavnlly — 211

LEMMA 1.4 (Suzuki [8]). Let {z,} and {yn} be bounded sequences in a
Banach space X and let 5, be a sequence in [0,1] with 0 < liminf, ., B, <
limsup,, o Bn < 1. Suppose p11 = (1 — Bn)yn + Bntn for all integers n > 0
and

Hm sup([|yn+1 — Ynll — |2ns1 — @nl)) < 0.
n—oo
Then limy, o ||yn — 5|l = 0.

LeEMMA 1.5 (Xu [12]). Assume that {an} is a sequence of nonnegative real
numbers such that

an+1 S (1 - 'Yn)an + 671)
where vy, is a sequence in (0,1) and {6, } is a sequence such that
(1) 22021 = 005
(ii) limsup,,_, .o 6n/vn <0 or D07 | |6,] < oo.

Then lim,,_, o o, = 0.

2. Main results

THEOREM 2.1. Let H be a real Hilbert space, C' be a nonempty closed convex
subset of H and A: C — H be relazed (y,1)-cocoercive and p-Lipschitz continuous.
Let S: C — C be a nonexpansive mapping such that F(S) NVI(C,A) # 0. {z,}
is a sequence generated by the following algorithm: xo € C and

Zn = wpTy + (1 —wp)Po(I — t,A)x,,
Yn = OnZpn + (1 — 6p)Pc(I — spA)zp, (2.1)
Tnt1 = QU+ Bptn + 1 SPo(l — 1 A)yn, n >0,
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where {an}, {Bn}, {1}, {0n} and {w,} are sequences in (0,1). If {an}, {Bn},
{7}, {0n}, {wn}, {rn}, {sn} and {t,} are chosen such that

(1) an+Bn+9m =1;
(i) limy oo oy =0 and Y, a, = 00;
(iii) 0 < liminf, o B, < limsup,,_, . B < 1;
(iv) imy— oo |Tnt1 — 7ol = liMy—oo [Snt1 — Sn| = My oo [tnt1 — tn] = 0;
(V) {rn}, {sn}, {tn} C la,b] for some a,b with 0 < a < b < % and r > yp?;
(vi) limy,— oo 0y = limy, 0o wy, = 0.
Then {xy,} converges strongly to Pp(s)nvi(c,a)U-
Proof. First, we show the mapping I — s, A, [ —r, A and I —t, A are nonex-

pansive, respectively. Indeed, from the relaxed (v, r)-cocoercive and p-Lipschitzian
definition on T and condition (v), we have

(I = spA)x — (I — s, A)y|”
= [(z —y) — su(Az — Ay)|?
= [l = yl? = 2s0(z — y, Ax — Ay) + || Az — Ay
<z = yl* = 2su [yl Az — Ay|? + rlle — y|*] + sh | Az — Ay[>  (2.2)
< e = yl? + 2s0p®yllz = ylI* = 2surllz — y[I* + p?splle — ylf?
= (L4 25,17y — 28,7 + 153 |z — y?
<z -yl
which implies that the mapping I — s, A is nonexpansive, and so are I — t, A and
I—r, A. Next, we show the sequence {z,} is bounded. Letting p € F(S)NVI(C, A),
we have
[2n = pll = lwn (2 — p) + (1 — wn)(Pe(I — tnA)zn — )|
< wnlln = pll + (1 = wa)2n = pll = ll2n — pl.
It follows that
lyn = pll = 160 (zn —p) + (1 = 60) (P — snA)zn — )
< dnlln — pll + (1 = 6n)llzn — p|
< Onllzn —pll + (L= dn)llzn —pll = |z — pl,
which yields that
[#n41 = pll = llom (v —p) + Bnlzn —p) + 1 (SPe(I = rnA)yn — p|
< anllu = pl + Bullzn — pll + WllSPe(I = rmA)yn —p
< anllu = pll + Bullzn = pll + nllyn — pll
< amllu = pl| + Bullzn — 2l + llzn — ol
= (1= an)llzn — pll + anllu = p||
< max{||z, — pll, lu — pll}-
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By simple inductions, we have

|5 — pll < max{[|lzo — pl|, [[u - plI}},
which gives that the sequence {x,} is bounded, and so are {y,} and {z,}. Put
on =PI =1, A)yn, 0n = Po(I — s, A)z, and 0, = Po(I — t,A)x,. The iterative
scheme (2.1) reduces to
Zn = wpTy + (1 — wp) M,
Yn = OnTp + (1 — 6,)0,,
Tpt1 = Qnpt + BpZpn + Y SPn.
Next, we compute
11 = il = [Po(I = tnA)azn — Po(I = tn 1 A)zn |
< = thA)zn — (I = tpy1A) T ||

= 0 £ A) — (@01 — bz ) + (s — b Az]| O
<z = Zpsall + [tnsr — talllAzpga],

100 = i1l = [[Pc(I — $nA)zn — Po(I — snt14)zn41|
<N = snA)zn — (I = snp14) 24| (2.4)
= [[(zn — snAzn) — (2n41 — SnAzZnt1) + (Snt1 — 8n) Azn ||
< lzn = 2zn41ll + Isnt1 — salllAznia -

and

lpn = pny1ll = IPc(I = rnA)yn — Po(I = g1 A)ynia ||

<N =rpA)yn — (I = rpp1A)yna |l (2.5)

= 1(yn — "0 AYn) = Uns1 — "0 AYns1) + (Png1 — 70) AYna ||
< yn = Yntall + 1rnt1 = ral | Ayna |-
Observing that

Zp = WpTy + (1 - Wn)n'm
Zn+1 = Wn41Tn+1 + (1 - Wn+1)77n+17

we have
Zn T Zn4l1 = Wn(xn - $n+1) + (1 - wn)(nn - Tln+1) + (77n+1 - xn—i—l)(wn-&-l - Wn)v

which yields that

l2n — 2n41ll S wnllzn = Tnsall + A = wa) 90 = Dot | + 9011 — Toga | lwns1 — wnl
(2.6)
Substitution of (2.3) into (2.6) yields that

l2n = znt1ll < llon = Tnall + Mi([tns1 — ta] + lwngr — wal), (2.7)

where M is an appropriate constant such that M; = max{sup,,>q [[Az.|, sup,>q
19 — zn|}. Observing that

Yn+1 = 6n+1xn+l + (1 - 6n+1)9n+17
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we have

Yn = Ynt1 = 0n(Tn — Tpg1) + (1 = 00) (0 — Ong1) + (Ong1 — Zog1) (Onsr — 0n),
which yields that,

”yn - yn+1|| <
Onllwn — gl + (1= 8u) 100 — Onta || + [|0ns1 — Tng1[|[0n+1 — dnl. (2.8)
Substituting (2.4) and (2.7) into (2.8), we get
lyn = Ynt1ll < (|0 —Tnp1 ||+ Ma([tni1 —tn|+lwnt1 —wnl+[Snt1—n|+[0n1—0nl),
(2.9)

where My is an appropriate constant such that M, = max{M;,sup,q [[Azn|,
sup,,>q |0n — o, ||}. Substituting (2.9) into (2.5), we obtain

lon = prsall <

M3 ([tny1 —tn| +wnp1 —wnl| +|8p1 = Sn| +[0np1 = 00| +|Tnpr —7n]) + |20 —2nia]s
(2.10)

where M3 is an appropriate constant such that Ms = max{sup,,~ ||Aynl||, M2}. Put
[ — Znt1—Bntn -
n — 1-3

- . That is, p+1 = (1 — Bn)ln + Bnan. Now, we compute I, 41 — L.
Observing that

41U + Ynt4190n41 QU+ 10 Spn

lo1 —ln =
i 1- ﬂn—&-l 1- ﬂn
Qpt1 Qp Yn+1
— _ u+ Spni1 — Spn 2.11
(1—ﬂn+1 1—ﬂn) 1_ﬂn+1(p+1 Pn) (2.11)
Tn+1 Tn
+ ~ Spn,
(1_/6n+1 1_ﬁn) P
we have
||ln+1 - ln” S
Ap41 Qp Yn+1 Yn+1 Tn
- ull + ———|lPn — pnll + - S nls
ot = T2l + T2 o = gl |2 = S0

(2.12)
which combined with (2.10) yields that

Qn+1 Qnp Tn+1
ln 1= ln S - ul| + ——l|Tn — Tnt1
s =1l < |25 — 20l T2 s —

+ M3(|tn+1 - tn' + ‘wn+1 - wnl + |sn+1 - Sn| + |6n+1 - 6n|

Tn+1 Tn
+ |rpy1 —mal)] + - Spn
s =]+ 2 = S
On41 (70
<| |(llull + 1[Spnll)

1- ﬁn—i—l a 1- Bn
+ |7 = Tngall + Ma([tnt1 — tal + [wnt1 — wal + [Sng1 — snl
+ |5n+1 — 5n| + ‘TnJrl —Tn|)
(2.13)
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It follows that

1 = lall = [[Znt1 — 2nl|
< M3([tny1 — tal + |lwng1 — wal + [Sng1 = Snl + [0ng1 — Onl + 701 — 7al)
an+1 Oy
+ ([|Spnll + JJu - . 2.14
(ISpnll + 1l ”)|1—ﬁn+1 e (2.14)
Observe conditions (ii), (iv) and (vi) and take the limits as n — oo to get
limsup(|llnt1 = Inll = llZnt1 — 2all) < 0.
We can obtain lim,, . ||l, —zy|| = 0 easily by Lemma 1.4. It follows from condition
(iif) that
lim ||2p+1 — 2] = lim (1 — Bn)||ln — 2al = 0. (2.15)
n—oo n—oo

Observing that ©,4+1 — T = an(u — ) + Y (Spn — x,), we can easily get
lim ||Spn —zn| =0. (2.16)
For p € F(S)NVI(C, A), we have
1112 = plI* = | Po(I = tnA)zn — Po(I = t, A)p|?
< (@0 — p) — tn(Az, — Ap)|?
= [lzn — pl* = 2tn(zn — p, Axp — Ap) + t3|| Az, — Ap|?
< Nwn — plI? = 2t [ Azn — Ap||* + rl|zn — plI*] + £ ]| Az, — Apl|®
<wn =l + 207y [| Az — Ap|1* = 2b0 7|2y — pl|* + £5]| Az, — Ap]?
2t,r

< lzn = plI* + 2tay + 15, — 7)”14»% — AplP*. (217)
Similarly, we have
28,1
10 = pl1? < llzn — plI* + (2807 + 57, — 2 )| Az, — Ap|? (2.18)
and 9
T
lpn = plI* < llzn = plI* + @ray + 75 — 2 )| Ayn — Apl|*. (2.19)

It follows that

20 = plI* = llwn(zn = p) + (1 = wn) (10 — p)II?

2t,r
< wplln = pl* + (1 —wn)[llan = plI? + 2ty + £ - 2 )| Az, — Apl|]
9 9 2tpr 9
< lzn —pll” + Ctay + 85, — 2 Az, — Apl| (2.20)

and ) )
Hyn _p” = H(Sn(xn _p) + (1 - 6n)(9n _p)H

28,7
2 )| Az, — Ap]|*.

(2.21)

< lan = pl* + 2sny + 17 —



An iterative method for variational inequality problems ... 115

On the other hand, we have
2041 = plI* = llan(u = p) + Bu(zn =) + m(Spn — p)|>
< anllu = pl* + Bullzn = pl* +mllSpn —pI*  (2:22)
< anllu = pl* + Bullzn = pl* +vnllpn — plI*.
Substituting (2.19) into (2.22) yields that

lzns1 = pl* < anllu = pl* + Bullen —pl®

e = oI + @y 72 = 225 Ly, — AplP)
< atnllu = pIP + e =PI + @ry + 72 = 220 Ay — Apl.
g (2.23)
It follows from condition (v) that
(25— 2y~ 1) Ay — AplP?
W
< aullu = I + 1 = pI? = lanss = p? (224
= anllu = plI* + (lzn = pll + 12541 = PID (20 = pll = ll2ns1 = pll)
< anllu = pl* + (lzn = pll + llznt1 = piDllzn = 2l
Because of (2.15) and lim,,_,o o, = 0, we have
Jim[|Ay, — Ap[| = 0. (2.25)
Using (2.22) again, we have
|41 = pl* < anllw = plI? + Bullwn = plI* + vallyn — . (2.:26)

Substituting (2.21) into (2.26) yields that

28,7
241 = plI* < anllu—pl* + [z, —pl|* + (25,7 + 17 — 2 )| Az — Apl|*). (2.27)

It follows from condition (v) that

2
(5 =2 =¥l Az — p?

< apllu = p|* + | = plI* = [|#ns1 — pl? (2.28)
= anllu = plI* + (lzn = pll + 2041 = PID (25 = pll = ll2ns1 = pll)
< anllu = pl* + (lzn = pll + 2041 = pID 270 = znta -
From (2.15) and lim,,_,+ o, = 0, we have
nllrr;o |Az, — Ap|| = 0. (2.29)
In a similar way, we can prove

lim ||Ay, — Ap|| = 0. (2.30)
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Observe that
lpn = plI* = | Po(I = 1 A)yn — Po(I — r, A)p||?

< <(I - TnA)yn - (I - TnA)pa Pn _p>
1

= U = d)yn — (I ~ rnA)pl” + [lpn — plI”
— (I = rpA)yn — (I = A)p — (pn — P)II°}
1

S §{||yn _pH2 + ||pn _pH2 - ||(yn - pn) - Tn(Ayn - Ap)||2}
1

= tlln —pl? + llon — PI* = llyn — pull® = 72l Ayn — Apl|?

+ 2Tn<yn - pnszn - Ap>}a
which yields that

lpn = plI* < llzn = 2l = Y0 = pull* + 21y — pus Ayn — Ap). (2.31)
Similarly, we can prove

167, — p||2 < lzy _pHZ —l2n — 9n||2 + 285 (25 — On, Azn, — Ap) (2.32)
and

70 = plI* < llwn = pI* = 20 = 10l|* + 20 (@0 — a0, Azy — Ap). (2.33)

Substituting (2.31) into (2.22) yields that
lzns1 = plI* < anllu = plI? + llon = plI* = Yallyn — pul®
+ 29,7n <yn — Py Ayn — Ap>),
which implies that
Yullygn = pull® < anllu = pl* + |z — plI* = lznss — pII?
< anllu = pl* + (lon = pll + lzn41 = pD 2041 — za
+ 2907 Y — pullllAyn — Apl.
Observing that (2.15), (2.25) and lim,,_,o o, = 0, we have
lim ”yn - an =0. (234)
n—oo
Using (2.22) again, we have
lzns1 = pl* < anllu = plI? + Bullwn = plI* + vl — ol
< anllu = pl* + Bullen = plI* +vullyn — 2l

< anllu = pll* + (Bn + W) 2n = pII* +vn(1 = 6,)110n — pl|>.
(2.35)
Substituting (2.32) into (2.35) yields that
lzns1 = plI* < anllu =l + 2 — plf?
— V(1= 3,) (120 = Onl* = 280 (20 — On, Azn — Ap)),
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which implies that

(1= 82)12n — 0l < ol = pl12 + (lm — bl + frmss — Pl zn — o
+ 27, (1 — 5n)5n||zn - enHHAZn - Ap”

From conditions (ii), (v), (2.15) and (2.29), we obtain

lim ||z, —0,] =0. (2.36)
Similarly, we can prove that
lim |z, —n,| = 0. (2.37)

On the other hand, we observe
1Spn = pull < [1Spn — znll + 12 = 0nll + (190 — zull
+ llzn = Onll + 1100 = ynll + llyn — paull.
It follows from condition (vi), (2.16), (2.34), (2.36) and (2.37) that
Jim [[Spn = pa| = 0. (2.38)

Next, we show
limsup(u — ¢, 2, — q) <0,

where ¢ = Pp(synv1(c,a)u- To show it, we choose a subsequence {py, } of {p,} such
that

limsup(u — g, Spp — q) = lim {u = ¢, Spn; — q)-

As {pn,} is bounded, we have that there is a subsequence {pnij} of {pn, } converges
weakly to p. We may assume that without loss of generality that p,, — p. Observ-
ing (2.38), we have Sp,;, — p. Hence we have p € F(S)NVI(C, A). Indeed, let us
first show that p € VI(C, A). Put

{ Awi + Nowy, wy €C
Tw1 =
[Z), w1 ¢ C.
Since A is relaxed (7, r)-cocoercive and condition (v), we have
(Az — Ay, x —y) > (=) Az — Ay|* + rllz —ylI* = (r — yp?) o = y[* > 0,

which yields that A is monotone. Thus T' is maximal monotone. Let (w1, ws) €
G(T). Since wy — Awy € New; and p,, € C, we have

(w1 — pn,wy — Awy) > 0.
On the other hand, from p,, = Pc(I — r,A)y,, we have
<’LU1 — PnsPn — (I - 'rnA)yn> > 0

and hence
Pn — Yn

n

<w1 — Pn, + Ayn> > 0.
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It follows that

(w1 = pp;, wa) > (w1 — pn,, Awr) > (w1 — pp,, Aw)
pni - ynl
> <’UJ1 - pniaAwl - M - Aynz>

= <w1 — Pn;s Awl - Apn1> + <w1 — Pnys Apnl - Ayn1>

- <w1 — Pnys + Aynb>

pm - yni >
Tn.

i

- <w1 — Pnys
Pn; — Yn; )

Tn.

i

Z <’lU1 - pn;7Ap'fL7 - Ay'n7> - <’UJ1 - pnw

which implies that (w; — p,ws) > 0 as i — oo. We have p € T~'0 and hence
p € VI(C, A). Next, let us show p € F(S). Since Hilbert spaces are Opial’s spaces,
from (2.38), we have

liminf ||p,, — p|| < liminf ||p,, — Sp|| = liminf ||pn, — Spn, + Spn, — SD||
71— 00 71— 00 71— 00
< tim nf [|Sp, — Spll < limint o0, — pl
11— 00 1—00

which derives a contradiction. Thus, we have p € F(S). On the other hand, we
have

lim sup(u — ¢, z, — ¢) = limsup(u — q, Spp, — ¢) = lim (v — q, Spn, — q)
=(u—qp—q) <0.
It follows that
lzns1 — Q||2 = (ant + Bnn + YnSpn — ¢, Tng1 — q)
an (U — ¢, Tn1 — q) + BnlTn — ¢, Tns1 — q)
+ 'Vn<5pn —q,Tn4+1 — Q>

1
< apfu—q,Tpy1 —q) + §ﬁn(||$n - Q||2 +|Znt1 — Q||2)

1
+ 5 (190n = all* + llznt1 = a*)

< = ¢ 5ns1 = ) + 300 (5n = al* + nss — al)
+ 59l = >+ onsr — al?)
< nlu = 4,211 — ) + 5Pnln — al* + fnsr — )
+ Snlan = alP + lzss — alP)
< = 7nss — 0) + (1= @)z = alP + s — ),

2
which yields that

lzn41 = gll* < (1= an)llzn — glf* + 20m (u — ¢, 2ns1 — q). (2.40)
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By Lemma 1.5, we can conclude the desired conclusion easily. This completes the
proof. m

As corollaries of Theorem 2.1, we have the following results immediately.

COROLLARY 2.2. Let H be a real Hilbert space, C' be a nonempty closed conver
subset of H and A : C — H be relaxed (v, r)-cocoercive and p-Lipschitz continuous.
Let S: C — C be a nonezpansive mapping such that F(S)NVI(C,A) # 0. {z,}
is a sequence generated by the following algorithm: xy € C and

yn = Po(I — snA)xny,
Tpt1 = At + BpZn + ¥ SPo(l — rnA)yn, n >0,

where {an}, {Bn} and {v,} are three sequences in (0,1). If {an}, {Bn}, {0}, {rn}
and {s,} are chosen such that

(i) O‘n""ﬁn +m =1
(i) limy oo a =0 and D07 | ay = 00;
(iii) 0 < liminf, o B < limsup,,_, . Gn < 1;
(1V) lim,, .o |Tn+1 - Tn| = limy, oo |3n+1 - Snl =0
(v) {rn}, {sn} C la,b] for some a,b with 0 <a <b< 2(%3”2) and r > yu?.

Then {xy,} converges strongly to Pp(s)nvi(c,a)U-

COROLLARY 2.3. Let H be a real Hilbert space, C' be a nonempty closed conver

subset of H and A : C — H be relaxed (7, r)-cocoercive and p-Lipschitz continuous.
Let S: C — C be a nonezpansive mapping such that F(S)NVI(C,A) # 0. {z,}
is a sequence generated by the following algorithm:

Tpt1l = QU + /ann + Wnsxna

where {an}, {Bn} and {v.} are three sequences in (0,1). If {an}, {Bn} and {vn}
are chosen such that
(1) an+Bn+m =1;
(i) limy—oo 0y =0 and Y., | a, = 00;
(iii) 0 < liminf, o By <limsup,,_,. Bn < 1.
Then {x,} converges strongly to Pp(syu.
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