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BOUNDEDNESS IN TOPOLOGICAL SPACES

Giuseppe Di Maio1 and Ljubǐsa D. R. Kočinac2

Abstract. We investigate abstract boundedness in a topological space and demonstrate
the importance of this notion in selection principles theory. Some applications to function spaces
and hyperspaces are given. This approach sheds more light on several results scattered in the
literature.

1. Introduction

The notion of abstract boundedness in a topological space was introduced and
studied by S.T. Hu in 1949 [9]. A modified version of his notion is a useful tool in
investigation of different hyperspace topologies, including the Hausdorff-Bourbaki,
Attouch-Wets, bounded (proximal) Vietoris and Wijsman topology (see [20, p. 53],
[6]). For instance, in [6] it was shown that the boundedness in a metric space
generated by closed balls is a powerful device for investigation of the Wijsman
hyperspace topology and offers deeper and simpler proofs without epsilonetics.

A family B of nonempty closed subsets of a space X is said to be an ab-
stract boundedness, or simply boundedness, if it is closed for finite unions, closed
hereditary and contains all singletons. The families CL(X), F(X) and K(X) of
all nonempty closed, all nonempty finite and all nonempty compact subsets of a
Hausdorff topological space X, the family of all (totally) bounded subsets of a
metric or uniform space are examples of boundedness. But there are other impor-
tant examples of boundedness: the family of closed countably compact (Lindelöf,
Čech-complete, zero-dimensional, meager, nowhere dense, topologically bounded)
subsets of a space.

If B is a boundedness in a space X and U is an open cover of X, then U is said to
be a B-cover if each B ∈ B is contained in an element of U and X /∈ U . (Therefore,
we have X /∈ B and X is infinite.) In particular, F(X)-covers are called ω-covers.
U is called a γ-cover [8] (γB-cover) if it is infinite and each x ∈ X (each B ∈ B) is
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not contained in at most finitely many elements of U . For a given boundedness B
in a space denote by OB (Γ, ΓB) the collection of all B-covers (γ-covers, γB-covers),
while Ω is the collection of ω-covers of the space. Observe that each infinite subset
of a γ-cover (γB-cover) is still a γ-cover (γB-cover). So, we may suppose that such
covers are countable. Each set from B is contained in infinitely many elements of
a B-cover of the space.

In this paper B will be a fixed boundedness in a space X. We consider on-
ly Hausdorff spaces in which each B-cover contains a countable B-subcover; such
spaces are called B-Lindelöf. F(X)-Lindelöf spaces are called ω-Lindelöf.

Our approach allows us to unify and extend many results that appear in the
literature (see, for example, [2, 3, 4, 5, 12, 16, 21]).

2. Notation and terminology

We use the usual topological notation and terminology, mainly as in [7]. We
also need notation concerning selection principles, games and partition relations
(see [10, 14, 15, 17, 18, 19, 22, 25, 26]).

Let A and B be collections whose elements are families of subsets of an infinite
set X. Then:

1. ([11, 24]) S1(A,B) denotes the selection principle:
• For each sequence (An : n ∈ N) of elements ofA there is a sequence (bn : n ∈ N)

such that for each n ∈ N, bn ∈ An and {bn : n ∈ N} ∈ B.
2. ([11, 24]) Sfin(A,B) denotes the selection hypothesis:

• For each sequence (An : n ∈ N) of elements of A there is a sequence (Bn :
n ∈ N) of finite (not necessarily non-empty) sets such that for each n ∈ N,
Bn ⊂ An and

⋃
n∈NBn is an element of B.

3. The symbol G1(A,B) [24] denotes an infinitely long game for two players,
ONE and TWO, which play a round for each positive integer. In the n-th round
ONE chooses a set An ∈ A, and TWO responds by choosing an element bn ∈ An.
TWO wins a play (A1, b1; · · · ; An, bn; · · · ) if {bn : n ∈ N} ∈ B; otherwise, ONE
wins.

Recall that a strategy of a player is a function σ from the set of all finite
sequences of moves of player’s opponent into the set of legal moves of the strategy
owner.

4. [24] For positive integers n and m the ordinary partition symbol A → (B)n
m

denotes the statement:
• For each A ∈ A and for each function f : [A]n → {1, · · · , m} there are a set

B ⊂ A, B ∈ B, and an i ∈ {1, · · · ,m} such that for each Y ∈ [B]n, f(Y ) = i.
Here [A]n denotes the set of n-element subsets of A. We call f a “coloring”

and say that “B is homogeneous of color i for f”.
5. [16] The symbol αi(A,B), i = 2, 3, 4, denotes the following selection hy-

pothesis:
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For each sequence (An : n ∈ N) of infinite elements of A there is an element
B ∈ B such that:
• α2(A,B): for each n ∈ N the set An ∩B is infinite;
• α3(A,B): for infinitely many n ∈ N the set An ∩B is infinite;
• α4(A,B): for infinitely many n ∈ N the set An ∩B is nonempty.

3. General results on boundedness

In this section we consider boundedness in an arbitrary Hausdorff topological
space. Let us begin with a result whose proof is quite similar to the proofs of
Theorem 1.1 in [11] or Theorem 5 in [13].

Proposition 3.1. For a space X the following are equivalent:
(1) X satisfies Sfin(OB,Γ);
(2) X satisfies S1(OB, Γ).

Theorem 3.2. For a B-Lindelöf space X the following are equivalent:
(1) X satisfies α2(OB, Γ);
(2) X satisfies α3(OB, Γ);
(3) X satisfies α4(OB, Γ);
(4) X satisfies S1(OB, Γ);
(5) ONE has no winning strategy in the game G1(OB, Γ);
(6) For all n,m ∈ N, X satisfies OB → (Γ)n

m.

Proof. (3) ⇒ (4): Let (Un : n ∈ N) be a sequence of B-covers of X. Assume
that for each n ∈ N we have Un = {Un,m : m ∈ N}. For every n ∈ N define

Vn = {U1,m1 ∩ · · · ∩ Un,mn : n < m1 < m2 < · · · < mn, i ≤ n} \ {∅}.
Then each Vn is a B-cover of X. By (3) and the fact that each infinite subset of a
γ-cover is also a γ-cover, there is an increasing sequence n1 < n2 < · · · in N and a
γ-cover V = {Vni : i ∈ N} such that for each i ∈ N, Vni ∈ Vni . Let for each i ∈ N,

Vni = U1,m1 ∩ · · · ∩ Uni,mni
, j ≤ ni.

Put n0 = 0. For each i ≥ 0 and each n with ni < n ≤ ni+1 let Wn be the n-th
coordinate in the representation of Vni+1 :

Wn = Un,mni+1
.

For each n ∈ N, Wn ∈ Un and the set W := {Wn : n ∈ N} is a γ-cover of X.
Therefore, X satisfies S1(OB,Γ).

(4) ⇒ (5): Let σ be a strategy for ONE in G1(OB,Γ) and let the first move of
ONE be a B-cover σ(∅) = {U(1), U(2), · · · , U(n), · · · }. Suppose that for each finite
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sequence s of natural numbers of length at most m, Us has been already defined.
Then define {U(n1,··· ,nm,k) : k ∈ N} to be the set

σ(U(n1), U(n1,n2), · · · , U(n1,··· ,nm)) \ {U(n1), U(n1,n2), · · · , U(n1,··· ,nm)}.
Because each set from B belongs to infinitely many elements of a B-cover, we
have that for each s a finite sequence of natural numbers, the set {Us_(n) : n ∈
N} is a B-cover. Apply (4) and for each s choose ns ∈ N such that {Us_(ns) :
s a finite sequence of natural numbers} is a γ-cover of X. Then inductively define
a sequence n1 = n∅, nk+1 = n(n1,··· ,nk), for k ≥ 1. Then

U(n1), U(n1,n2), · · · , U(n1,··· ,nk), · · ·
is a γ-cover of X. Since it is actually a sequence of moves of TWO in a play of the
game G1(OB, Γ), σ is not a winning strategy for ONE.

(5) ⇒ (6): It follows from [18, Th. 1] because OB is a persistent family in
terminology of [18].

(6) ⇒ (4): Let (Un : n ∈ N) be a sequence of countable B-covers of X and
suppose that for each n, Un = {Un;m : m ∈ N}. Consider the set V of all nonempty
sets of the form U1;n ∩ Un;k, n, k ∈ N. It is understood that V is a B-cover of X.
Define f : [V]2 → {1, 2} by

f({U1;n1 ∩ Un1;k, U1;n2 ∩ Un2;m}) =
{

1, if n1 = n2,

2, otherwise.

As OB → (Γ)22 is satisfied there are j ∈ {1, 2} and a collection H ⊂ V, H ∈ Γ,
homogeneous for f of color j. Consider two possibilities:

(i) j = 1: Then there is some n such that H ⊂ U1,n for each H ∈ H. But,
this means that H is not a γ-cover of X and we have a contradiction; so, this case
is impossible.

(ii) j = 2: For each H ∈ H choose, whenever it is possible, Un;kn to be the
second coordinate in the chosen representation of H; otherwise let Un;kn be an
arbitrary element in Un. Let G be the set of all Un,kn ’s chosen in this way. Then G
is a γ-cover of X witnessing for (Un : n ∈ N) that X satisfies S1(OB,Γ).

(5) ⇒ (1): Let (Un : n ∈ N) be a sequence of B-covers of X and let for each
n ∈ N, Un = {Un,m : m ∈ N}. Define the following strategy σ for ONE. In the
first round ONE plays σ(∅) = U1. Assuming that the set U1,mi1

∈ U1 is TWO’s
response, ONE plays σ(U1,mi1

) = V(1, mi1) = {U1,m : m > mi1}, still a B-cover of
X. If TWO chooses a set U1,mi2

∈ V(1,mi1), then ONE plays σ(U1,mi1
, U1,mi2

) =
V(1,mi2) = {U1,m : m > mi2}; this set is still a B-cover of X. Then TWO chooses
a set U1,mi3

∈ σ(U1,mi1
, U1,mi2

). And so on. (By this procedure we actually form
a sequence of B-covers from each Un and apply (5) to these new B-covers.)

Since σ is not a winning strategy for ONE, there is a σ-play

σ(∅), U1,mi1
; σ(U1,mi1

), U1,mi2
; σ(U1,mi1

, U1,mi2
), U1,mi3

; · · ·
lost by ONE. That means that the sequence V consisting of TWO’s moves is a γ-
cover of X. Of course, it contains infinitely many elements from each Un, n ∈ N, and
thus V witnesses for the original sequence (Un : n ∈ N) that X satisfies α2(OB,Γ).
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In a quite similar way one proves the following theorem.

Theorem 3.3. For a B-Lindelöf space X the following are equivalent:
(1) X satisfies α2(OB, ΓB);
(2) X satisfies α3(OB, ΓB);
(3) X satisfies α4(OB, ΓB);
(4) X satisfies S1(OB, ΓB);
(5) ONE has no winning strategy in the game G1(OB, ΓB);
(6) For all n,m ∈ N, X satisfies OB → (ΓB)n

m.

We also have the following result.

Theorem 3.4. For a space X the following statements are equivalent:
(1) X satisfies α2(ΓB,Γ);
(2) X satisfies α3(ΓB,Γ);
(3) X satisfies α4(ΓB,Γ);
(4) X satisfies S1(ΓB,Γ);
(5) ONE has no winning strategy in the game G1(ΓB, Γ) on X.

Proof. We must prove (3) ⇒ (4) ⇒ (5) ⇒ (1).
(3) ⇒ (4): Let (Un : n ∈ N) be a sequence of γB-covers of X, and Un = {Un,m :

m ∈ N}. For all n,m ∈ N define

Vn,m = U1,m ∩ U2,m ∩ · · · ∩ Un,m.

Then for each n the set Vn = {Vn,m : m ∈ N} is a γB-cover of X. By (3) applied
to the sequence (Vn : n ∈ N) there is an increasing sequence n1 < n2 < · · · in
N and a γ-cover V = {Vni,mi : i ∈ N} such that for each i ∈ N, Vni,mi ∈ Vni .
Let n0 = 0. For each i ≥ 0, each j with ni < j ≤ ni+1 and each Vni+1,mi+1 =
U1,mi+1 ∩ · · · ∩ Uni+1,mi+1 put

Wj = Uj,mi+1 .

For each j ∈ N, Wj ∈ Uj and the set {Wj : j ∈ N} belongs to Γ. Therefore, X
satisfies S1(ΓB, Γ).

(4) ⇒ (5): Let σ be a strategy for ONE in G1(ΓB, Γ). Let the first move of
ONE be σ(∅) = {U(1), U(2), · · · , U(n), · · · }, a γB-cover of X. Suppose that for each
finite sequence s of natural numbers of length ≤ m, Us has been defined. Define
now {U(n1,··· ,nm,k) : k ∈ N} as the set

σ(U(n1), U(n1,n2), · · · , U(n1,··· ,nm)) \ {U(n1), U(n1,n2), · · · , U(n1,··· ,nm)}.
Clearly, we have that for each finite sequence s of natural numbers, the set
{Us_(n) : n ∈ N} is a γB-cover of X. By (4) for each s we may choose ns ∈ N such
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that {Us_(ns) : s a finite sequence of natural numbers} is a γ-cover of X. Define
inductively the sequence n1 = n∅, nk+1 = n(n1,··· ,nk), for k ≥ 1. Then the sequence

U(n1), U(n1,n2), · · · , U(n1,··· ,nk), · · ·
of moves of TWO is in fact a γ-cover of X which shows that σ is not a winning
strategy for ONE in the game G1(ΓB, Γ).

(5) ⇒ (1): Let (Un : n ∈ N) be a sequence of γB-covers of X; suppose
Un = {Un,m : m ∈ N}, n ∈ N. A strategy σ for ONE will be defined in this
way. ONE’s first move is σ(∅) = U1. Let U1,mi1

∈ U1 be TWO’s response.
Then ONE looks at the γB-cover V(1,mi1) = {U1,m : m > mi1} and plays
σ(U1,mi1

) = V(1,mi1). If TWO takes a set U1,mi2
∈ V(1,mi1), then ONE plays

σ(U1,mi1
, U1,mi2

) = V(1,mi2) = {U1,m : m > mi2}, still a γB-cover of X. TWO
chooses a set U1,mi3

∈ σ(U1,mi1
, U1,mi2

), and so on as in the proof of Theorem 3.2.
σ is not a winning strategy for ONE, so that there exists a σ-play

σ(∅), U1,mi1
; σ(U1,mi1

), U1,mi2
; σ(U1,mi1

, U1,mi2
), U1,mi3

; · · ·
lost by ONE. In other words, TWO’s moves U1,mi1

, U1,mi2
, U1,mi3

, · · · form a se-
quence which is a γ-cover of X and, obviously, it contains infinitely many elements
from each Un, n ∈ N. So, that sequence shows that (1) holds.

Similarly one proves the following theorem.

Theorem 3.5. For a space X the following statements are equivalent:
(1) X satisfies α2(ΓB,ΓB);
(2) X satisfies α3(ΓB,ΓB);
(3) X satisfies α4(ΓB,ΓB);
(4) X satisfies S1(ΓB,ΓB);
(5) ONE has no winning strategy in the game G1(ΓB, ΓB) played on X.

We omit the proof of the following statement.

Theorem 3.6. For a space X and n, k ∈ N the following are equivalent:
(1) S1(OB,OB);
(2) X satisfies OB → (OB)n

k .

We shall consider now another class of spaces.
The symbol Ufin(ΓB,OB) denotes the selection principle:

• For each sequence (Un : n ∈ N) of γB-covers of X there is a sequence (Vn : n ∈
N) such that each Vn is a finite subset of Un, and either {∪Vn : n ∈ N} is a
B-cover for X, or for some n ∈ N, X = ∪Vn.
An open cover U of a space X is said to be large if each point of X belongs to

infinitely many elements of U . A countable large cover U of X is B-weakly groupable
if there is a partition of U into infinitely many finite, pairwise disjoint subsets Un
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such that each B ∈ B is contained in ∪Un for some n ∈ N. Let ΛB−wgp denote the
family of B-weakly groupable large covers of a space.

Theorem 3.7. For a space X the following assertions are equivalent:
(1) X has property Ufin(ΓB,OB);
(2) X has property Sfin(ΓB,ΛB−wgp);
(3) For each sequence (Un : n ∈ N) of γB-covers of X there is a sequence (Vn : n ∈
N) such that for each n ∈ N, Vn is a finite subset of Un, Vn’s are pairwise disjoint
and for each B ∈ B there exists some n ∈ N with B ⊂ ∪Vn.

Proof. (1) ⇒ (2): Let (Un : n ∈ N) be a sequence of γB-covers of X. Because
each infinite subset of a γB-cover is also a γB-cover one can suppose that Un’s are
pairwise disjoint. Moreover, without loss of generality, we may assume that for
each n ∈ N, no finite subset of Un is a cover of X.

Apply (1) to find a sequence (Vn : n ∈ N) of finite sets such that for each
n ∈ N, Vn ⊂ Un and {∪Vn : n ∈ N} is a B-cover of X. This implies that

⋃
n∈N Vn is

a large cover of X, while its partition {Vn : n ∈ N} shows that
⋃

n∈N Vn is in fact
B-weakly groupable.

(2) ⇒ (3): Let (Un : n ∈ N) be a sequence of (countable) γB–covers of X.
As in (1) ⇒ (2) one can suppose that Un’s are pairwise disjoint. For n ∈ N let
Un = {Un,m : m ∈ N}. Define new γB-covers Vn, n ∈ N, as follows:

Vn = {U1,m ∩ U2,m ∩ · · · ∩ Un,m : m ∈ N} \ {∅}.
We again may suppose that Vn1 ∩ Vn2 = ∅ for n1 6= n2.

Apply (2) to the sequence (Vn : n ∈ N) and choose a sequence (Wn : n ∈ N) of
finite sets such that for each n ∈ N, Wn ⊂ Vn (so Wn’s are pairwise disjoint) and⋃

n∈NWn is a B-weakly groupable large cover of X. This means that
⋃

n∈NWn =⋃
n∈N Sn, where Sn’s are finite, pairwise disjoint and each B ∈ B is contained in

∪Sn for some n ∈ N.
Because sets Wn and Sn are finite, there are p ∈ N such that W1 ∩ Sq = ∅ for

q > p. Let p1 be the smallest such natural number. Define T1 to be the set of all
U1,m such that U1,m is a term in the above representation of a member of Sq for
some q ≤ p1. Let p2 > p1 be the minimal natural number such that W2 ∩ Sq = ∅
whenever q > p2. Let T2 be the set of all U2,m such that U2,m is a term in the
representation of an element of Sq for some q ≤ p2. And so on.

The obtained sequence (Tn : n ∈ N) is such that for each n ∈ N Tn is a finite
subset of Un, and thus Tn1 ∩ Tn2 = ∅ for n1 6= n2. We are going to prove that the
sequence (Tn : n ∈ N) witnesses that (3) is satisfied.

Let B ∈ B. There is n ∈ N with B ⊂ ∪Sn. Choose the smallest k such that
n ≤ pk. Then (W1 ∪ · · · ∪ Wk−1) ∩ Sn = ∅. It follows that each element S in Sn

has in its representation a set of the form Uk,j (note that such elements are in Tk)
and therefore we have ∪Sn ⊂ ∪Tk. It follows B ⊂ ∪Tk which means that (3) holds.

(3) ⇒ (1): It is clear by the definition of Ufin(ΓB,OB).
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4. Boundedness and function spaces

All spaces in this section are assumed to be Tychonoff. For a boundedness B
in a space X, by Cb(X) we denote the space of continuous real-valued functions on
X in the topology whose basic open sets are of the form

W (B1, . . . , Bn; V1, . . . , Vn) := {f ∈ C(X) : f(Bi) ⊂ Vi, i = 1, . . . , n},
where B1, . . . , Bn ∈ B and V1 . . . , Vn are open in R. For a function f ∈ Cb(X), a
set B ∈ B and a positive real number ε we let

W (f ; B; ε) := {g ∈ Cb(X) : |g(x)− f(x)| < ε, ∀x ∈ B}.
The standard local base of a point f ∈ Cb(X) consists of the sets W (f ; B; ε), where
B is a set from B and ε is a positive real number.

The symbol 0 denotes the constantly zero function in Cb(X). The space Cb(X)
is homogeneous so that we may consider the point 0 when studying local properties
of Cb(X).

For a space X and a point x ∈ X the symbol Ωx denotes the set {A ⊂ X \{x} :
x ∈ A}.

A space X has countable fan tightness if for each x ∈ X we have that
Sfin(Ωx, Ωx) holds. X has countable strong fan tightness if for each x ∈ X the
selection principle S1(Ωx, Ωx) holds.

Theorem 4.1. If a Tychonoff space X has property S1(OB,OB), then Cb(X)
has countable strong fan tightness.

Proof. Let (An : n ∈ N) be a sequence of subsets of Cb(X) the closures of
which contain 0. Fix n. For every B ∈ B the neighborhood W = W (0; B; 1/n) of 0
intersects An so that there exists a function fB,n ∈ An such that |fB,n(x)| < 1/n
for each x ∈ B. Since fB,n is a continuous function there are neighborhoods Ox,
x ∈ B, such that for UB,n =

⋃
x∈BOx ⊃ B we have fB,n(UB,n) ⊂ (−1/n, 1/n). Let

Un = {UB,n : B ∈ B}. For each n ∈ N, Un is a B-cover of X. Applying that X is an
S1(OB,OB)-set, choose UBn,n ∈ Un, n ∈ N, such that {UBn,n : n ∈ N} is a B-cover
of X. Look at the corresponding functions fBn,n in An.

Let us show 0 ∈ {fBn,n : n ∈ N}. Let W = W (0; C; ε), C ∈ B, be a neighbor-
hood of 0 in Cb(X) and let m be a natural number such that 1/m < ε. Since C ∈ B
there is j ∈ N, j ≥ m such that one can find a UBj ,j with C ⊂ UBj ,j . We have

fBj ,j(C) ⊂ fBj ,j(UBj ,j) ⊂ (−1/j, 1/j) ⊂ (−1/m, 1/m) ⊂ (−ε, ε),

i.e. fBj ,j ∈ W .
In a similar way one proves the following theorem.

Theorem 4.2. If a Tychonoff space X has property Sfin(OB,OB), then Cb(X)
has countable fan tightness.
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Let us point out that for some boundedness the converses of Theorems 4.1 and
4.2 are also true (see, for example, [23, 1, 12]). But we have not yet investigated
other significant cases for which the converse holds.

Recall now the following definition. A space X has countable T -tightness if for
each uncountable regular cardinal ρ and each increasing sequence (Aα : α < ρ) of
closed subsets of X, the set ∪{Aα : α < ρ} is closed.

Theorem 4.3. If a Tychonoff space X satisfies the condition

(∗) for each uncountable regular cardinal ρ and each increasing sequence (Uα : α <
ρ) of families of open subsets of X such that

⋃
α<ρ Uα is a B-cover of X there

is a β < ρ so that Uβ is a B-cover of X,

then Cb(X) has countable T -tightness.

Proof. Let (Aα : α < ρ) be an increasing sequence of closed subsets of Cb(X),
with ρ a regular uncountable cardinal. We shall prove that the set A :=

⋃
α<ρ Aα

is closed. Let f ∈ A. For each n ∈ N and each set B ∈ B the neighborhood
W (f ; B; 1/n) of f intersects A. Put

Un,α = {(f − g)←(−1/n, 1/n) : g ∈ Aα}

and
Un =

⋃
α<ρ

Un,α.

Let us check that for each n ∈ N, Un is a B-cover of X. Let B be a set from B.
The neighborhood W := W (f ; B; 1/n) of f intersects A, i.e. there is g ∈ A such
that |f(x)− g(x)| < 1/n for all x ∈ B; this means B ⊂ (f − g)←(−1/n, 1/n) ∈ Un.

By (∗) there is Un,βn ⊂ Un which is a B-cover of X. Put β0 = sup{βn : n ∈ N}.
Since ρ is a regular uncountable cardinal, β0 < ρ. It is easy to verify that for each
n the set Un,β0 is a B-cover of X. Let us show that f ∈ Aβ0 . Take a neighborhood
W (f ; C; ε), C ∈ B, of f and let m be a positive integer such that 1/m < ε. Since
Um,β0 is a B-cover of X one can find g ∈ Aβ0 such that C ⊂ (f − g)←(−1/m, 1/m).
Then g ∈ W (f ; C; 1/m) ∩ Aβ0 ⊂ W (f ;C; ε) ∩ Aβ0 , i.e. f ∈ Aβ0 = Aβ0 and thus
f ∈ A. So, A is closed.

A space X is called a selectively strictly A-space [21] if for each sequence (An :
n ∈ N) of subsets of X and each point x ∈ X such that x ∈ An \ An for each
n ∈ N, there is a sequence (Cn : n ∈ N), where for each n Cn ⊂ An, and x ∈⋃

n∈N Cn \
⋃

n∈N Cn.

Let us say that a space X has property SB(X) if for each sequence (Un : n ∈ N)
of B-covers of X there is a sequence (Vn : n ∈ N) such that Vn ⊂ Un for each n, no
Vn is a B-cover of X, and

⋃
n∈N Vn is a B-cover for X.

Theorem 4.4. If a Tychonoff space X has the property SB(X), then Cb(X)
is a selectively strictly A-space.
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Proof. Let (An : n ∈ N) be a sequence of subsets of Cb(X) with 0 ∈ An \ An,
n ∈ N. For each n ∈ N let

Un = {f←(−1/n, 1/n) : f ∈ An}.
It is easy to see that for each n, Un is a B-cover of X.

Case 1: X ∈ Un for infinitely many n.

Then there exist an increasing sequence n1 < n2 < · · · < nk < . . . in N and
fnk

∈ Ank
, k ∈ N, such that f←nk

(−1/nk, 1/nk) = X. Put Cnk
= {fnk

}, k ∈ N, and
Cn = ∅ for n 6= nk, k ∈ N. Then 0 ∈ ⋃

n∈N Cn \
⋃

n∈N Cn.

Case 2: X ∈ Un for finitely many n.

Without loss of generality one may suppose that X /∈ Un for each n. Using
the fact that X has property SB(X), choose a sequence (Vn : n ∈ N) as in the
definition of the property SB(X). For each V ∈ Vn pick a function fV ∈ An with
V = f←V (−1/n, 1/n) and put Cn = {fV : V ∈ Vn}. Let us show that (Cn : n ∈ N)
is the required sequence of subsets of An’s.

First, 0 /∈ Cn, n ∈ N. Otherwise, the fact 0 ∈ Cm for some m would imply
that the corresponding Vm is a B-cover of X which is a contradiction.

Let now W = W (0, B, 1/n), with B ∈ B, be a neighborhood of 0. Since⋃
n∈N Vn is a B-cover of X there is m > n such that for some V ∈ Vm we have

B ⊂ V = f←V (−1/m, 1/m), and fV ∈ Cm. Clearly, fV ∈ W and so 0 ∈ ⋃
n∈N Cn

which completes the proof.

5. Boundedness and hyperspaces

Let B be a fixed boundedness in a space X. If A is a subset of X and A a
family of subsets of X, then we write

A+ = {B ∈ B : B ⊂ A}, A+ = {A+ : A ∈ A}.
The upper Vietoris topology τV + on B is the topology whose basic sets are of the
form U+, U open in X.

We need the following lemma.

Lemma 5.1. For a space X and an open cover W of (B, τV+) the follow-
ing holds: W is an ω-cover of (B, τV+) if and only if U(W) := {U ⊂ X :
U is open in X and U+ ⊂ W for some W ∈ W} is a B-cover of X.

Proof. Let W be an ω-cover of (B, τV+) and let B ∈ B. Then there exists
W ∈ W such that B ∈ W and thus there is an open set U ⊂ X with B ∈ U+ ⊂ W .
Clearly, U ∈ U(W). On the other hand, B ⊂ U , i.e. U(W) is a B-cover of X.

Conversely, let U(W) be a B-cover of X and let {B1, · · · , Bm} be a finite
subset of (B, τV+). Then B =

⋃m
i=1 Bi is in B and thus B is contained in some

U ∈ U(W); pick W ∈ W such that U+ ⊂ W . From Bi ⊂ U for each i ≤ m,
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it follows {B1, · · · , Bm} ⊂ U+ ⊂ W which just means that W is an ω-cover of
(B, τV+).

Theorem 5.2. A space X is B-Lindelöf if and only if (B, τV+) is ω-Lindelöf.

Proof. Let X be a B-Lindelöf space and let W be an ω-cover of (B, τV+). By
Lemma 5.1, U(W) is a B-cover of X. Choose a countable family {Ui : i ∈ N} ⊂
U(W) which is a B-cover of X. For each i ∈ N choose Wi ∈ W such that U+

i ⊂ Wi.
Again by Lemma 5.1 {Wi : i ∈ N} ⊂ W is an ω-cover of (B, τV+).

Let us show the converse. Let U be a B-cover of X. It is easy to check that
U+ is an ω-cover of (B, τV+). Choose a countable collection {U+

i : i ∈ N} ⊂ U+

which is an ω-cover of (B, τV+). Then {Ui : i ∈ N} ⊂ U is a B-cover of X, i.e. X is
a B-Lindelöf space.

Theorem 5.3. For a B-Lindelöf space X the following are equivalent:
(1) (B, τV+) satisfies S1(Ω,Γ);
(2) X satisfies S1(OB, ΓB).

Proof. (1) ⇒ (2): Let (Un : n ∈ N) be a sequence of B-covers of X. Then
(U+

n : n ∈ N) is a sequence of ω-covers of (B, τV+). To check this, fix n and let
{B1, · · · , Bm} be a finite subset of B. Then B = B1 ∪ · · · ∪ Bm is in B and thus
there is U ∈ U with B ⊂ U . This means that for each i ≤ m, Bi ⊂ U , i.e. Bi ∈ U+.
Therefore {B1, · · · , Bm} ⊂ U+ and Un is an ω-cover of B. By (1) for each n, one
can choose an element U+

n in U+
n such that the set U+ = {U+

n : n ∈ N} is a γ-cover
of (B, τV+). Let us prove that {Un : n ∈ N} is a γB-cover of X. Let B ∈ B. Then
there is n0 ∈ N such that for each n ≥ n0 we have B ∈ U+

n , i.e. B ⊂ Un. It shows
that {Un : n ∈ N} is indeed a γB-cover of X, i.e. that (2) holds.

(2) ⇒ (1): Let (Wn : n ∈ N) be a sequence of ω-covers of (B, τV+). For each
n let

Un = {U ⊂ X : U is open in X and U+ ⊂ W for some W ∈ Wn}.
It is easy to prove that each Un is a B-cover of X. Apply (2) to the sequence
(Un : n ∈ N) to find a sequence (Un : n ∈ N) such that for each n ∈ N, Un ∈ Un

and the set U = {Un : n ∈ N) is a γB-cover of X. For each Un ∈ U take an element
Wn ∈ Wn with U+

n ⊂ Wn. We claim that {Wn : n ∈ N} is a γ-cover of (B, τV+)
which witnesses for (Wn : n ∈ N) that (1) is satisfied. Let B ∈ B. Then there is n0

such that for each n ≥ n0, B ⊂ Un, i.e. B ∈ U+
n ⊂ Wn.
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