SUBSPACES OF CS-STARCOMPACT SPACES

Yan-Kui Song

Abstract. A space X is cs-starcompact if for every open cover \mathcal{U} of X, there exists a convergent sequence S of X such that $St(S,\mathcal{U}) = X$, where $St(S,\mathcal{U}) = \bigcup \{U \in \mathcal{U} : U \cap S \neq \emptyset\}$. In this note, we investigate the closed subspaces of cs-starcompact spaces.

1. Introduction

By a space, we mean a topological space. Let us recall that a space X is countably compact if every countable open cover of X has a finite subcover. Fleischman [4] defined a space X to be starcompact if for every open cover \mathcal{U} of X, there exists a finite subset F of X such that $St(F,\mathcal{U}) = X$, where $St(F,\mathcal{U}) = \bigcup \{ U \in \mathcal{U} : U \cap F \neq \emptyset \}$, and he proved that every countably compact space is starcompact. Conversely, van Douwen, Reed, Roscoe and Tree [2] proved that every Hausdorff starcompact space is countably compact, but this does not hold for T_1 -spaces (see [8, Example 2.5]). As generalizations of starcompactness, the following classes of spaces are given.

DEFINITION 1.1. A space X is cs-starcompact if for every open cover \mathcal{U} of X, there exists a convergent sequence S of X such that $St(S,\mathcal{U}) = X$.

DEFINITION 1.2. [5] A space X is $1\frac{1}{2}$ -starcompact if for every open cover \mathcal{U} of X, there exists a finite subset \mathcal{V} of \mathcal{U} such that $St(\cup \mathcal{V}, \mathcal{U}) = X$.

In [6], a cs-starcompact space is called star determined by convergent sequence and in [2], a $1\frac{1}{2}$ -starcompact space is called 1-starcompact. It is known [5] that these properties lie between countable compactness and pseudocompactness. From the above definitions, it is clear that every star-compact space is cs-starcompact and every cs-starcompact space is $1\frac{1}{2}$ -starcompact.

AMS Subject Classification: 54D20, 54G20.

Keywords and phrases: Countable compact; cs-starcompact.

The author acknowledges supports from the NSF of China (Grant No 10571081) and the National Science Foundation of Jiangsu Higher Education Institutions of China (Grant No 07KJB-110055)

Yan-Kui Song

In [6], van Mill, Tkachuk and Wilson discussed the relationship between csstar-compact spaces and related spaces. The purpose of this note is to investigate the closed subspaces of cs-starcompact spaces.

Thorough this paper, the cardinality of a set A is denoted by |A|. For a space X, the extent e(X) of X is defined as the smallest cardinal number κ such that the cardinality of every discrete closed subset of X is not greater than κ . Let ω denote the first infinite cardinal and \mathfrak{c} the cardinality of the set of all real numbers. For a cardinal κ , let κ^+ be the smallest cardinal greater than κ . As usual, a cardinal is the initial ordinal and an ordinal is the set of smaller ordinals. When viewed as a space, every cardinal has the usual order topology. For each pair of ordinals α , β with $\alpha < \beta$, we write $(\alpha, \beta) = \{\gamma : \alpha < \gamma < \beta\}$. Other terms and symbols that we do not define will be used as in [3].

2. Closed subspaces of cs-starcompact spaces

First, we give a machine that produces a Hausdorff cs-starcompact space. Let X be a Hausdorff separable space with $|X| = \kappa$. For every countable dense subset D of X, let T be D with the discrete topology and let

$$Y = T \cup \{\infty\}, \text{ where } \infty \notin T$$

be the one-point compactification of T. We define $S(X, D) = X \cup (Y \times \kappa^+)$ and we topologize S(X, D) as follows: $Y \times \kappa^+$ has the usual product topology and is an open subspace of S(X, D), and a basic neighborhood of a point x of X takes the form

$$G(U,\alpha) = U \cup ((U \cap T) \times (\alpha, \kappa^+)),$$

where U is a neighborhood of x in X and $\alpha < \kappa^+$. When it is not necessary to specify D, we simply write S(X) instead of S(X, D).

THEOREM 2.1. Let κ be a cardinal. Let X be a separable space with $|X| = \kappa$ and D a countable dense subset of X. Then, S(X, D) is cs-starcompact. Moreover, if X is a Hausdorff space, then so is S(X, D).

Proof. If S = S(X, D) then it is easy to see that X is a closed subset of S and S is Hausdorff if X is Hausdorff.

We show that S is cs-starcompact. To this end, let \mathcal{U} be an open cover of S. Without loss of generality, we assume that \mathcal{U} consists of basic open sets of S. For each $x \in X$, there exists a $U_x \in \mathcal{U}$ such that $x \in U_x$. Hence, there exist $\alpha_x < \kappa^+$ and an open neighborhood V_x of x in X such that $G(V_x, \alpha_x) \subseteq U_x$. If we put $\alpha_0 = \sup\{\alpha_x : x \in X\}$, then $\alpha_0 < \kappa^+$, since $|X| < \kappa^+$. Let $F_1 = Y \times \{\alpha_0\}$. Then, F_1 is a convergent sequence of $S(X, \kappa)$. Since $U_x \cap F_1 \neq \emptyset$ for every $x \in X$, we have

$$X \subseteq St(F_1, \mathcal{U}).$$

On the other hand, since Y is compact and κ^+ is countably compact, the space $Y \times \kappa^+$ is countably compact, and hence there exists a finite subset F_2 of $Y \times \kappa^+$ such that

$$Y \times \kappa^+ \subseteq St(F_2, \mathcal{U}).$$

If we put $S' = F_1 \cup F_2$, then S' is a convergent sequence of S and $S = St(S', \mathcal{U})$, which shows that S is cs-starcompact. This completes the proof.

COROLLARY 2.2. Every Hausdorff separable space can be represented in a Hausdorff cs-starcompact space as a closed subspace.

It is well-known that the extent of every countably compact space is countable. However, a similar result does not hold for cs-starcompactness. In fact, the following example shows that the extent of a cs-starcompact space may be equal 2^{c} .

For a Tychonoff space X, let βX denote the Čech-Stone compactification of X. We construct an example of a Hausdorff cs-starcompact space X such that $e(X) = 2^{\mathfrak{c}}$ by using an example from [1]. We include the construction here for the sake of completeness.

EXAMPLE 2.3. There exists a Hausdorff cs-starcompact space X such that $e(X) = 2^{\mathfrak{c}}$.

Proof. Let $Y = \beta \omega$. We define another topology on Y as follows: every point of ω is isolated and a basic neighborhood of a point $x \in \beta \omega \setminus \omega$ takes the from

 $\{x\} \cup (U_x \cap \omega),$

where U_x is a neighborhood of x in $\beta\omega$. Clearly, Y is Hausdorff and separable, since ω is a countable dense subspace of Y. Since $\beta\omega \setminus \omega$ is discrete and closed in X with $|\beta\omega \setminus \omega| = 2^{\mathfrak{c}}$, we have $e(Y) = 2^{\mathfrak{c}}$, which completes the construction.

Let X = S(Y). Then $\beta \omega \setminus \omega$ is discrete and closed in X by the construction of X, hence $e(X) = 2^{\mathfrak{c}}$. The space X is cs-starcompact by Theorem 2.1, which completes the proof.

In [6], van Mill, Tkachuk and Wilson showed that the Tychonoff plank is csstarcompact, which shows that a closed subset of a cs-starcompact space need not be cs-starcompact. In fact, an example below shows that cs-starcompactness is not preserved by passing to a regular closed subset. We will need the following lemma from [5].

LEMMA 2.4. If a regular space X contains a closed discrete subspace Y such that $|Y| = |X| \ge \omega$, then X is not $1\frac{1}{2}$ -starcompact (hence, not cs-starcompact.)

EXAMPLE 2.5. There exists a Hausdorff cs-starcompact space X with a regular-closed subset which is not cs-starcompact.

Proof. Let $S_1 = \omega \cup \mathcal{R}$ be the Isbell-Mrówka space [7], where \mathcal{R} is a maximal almost disjoint family of infinite subsets of ω with $|\mathcal{R}| = \mathfrak{c}$. Then, S_1 is separable, since ω is countable dense in S_1 while it is not cs-starcompact by Lemma 2.4. If $S_2 = S(S_1)$ then S_2 is cs-starcompact by Theorem 2.1.

We can consider that $S_1 \cap S_2 = \emptyset$. Since $|\mathcal{R}| = \mathfrak{c}$, we can enumerate \mathcal{R} as $\{r_{\alpha} : \alpha < \mathfrak{c}\}$. Let $f : \mathcal{R} \to \mathcal{R}$ be a map defined by $f(r_{\alpha}) = r_{\alpha}$ for each $\alpha < \mathfrak{c}$. Let X be the quotient space obtained from the discrete sum $S_1 \oplus S_2$ by identifying r_{α} of S_1 with r_{α} of S_2 for each $\alpha < \mathfrak{c}$. Let $\pi : S_1 \oplus S_2 \to X$ be the quotient map.

Yan-Kui Song

Let $Y = \pi(S_1)$. It is easy to check that Y is a regular closed in X, however, it is not cs-starcompact, since it is homeomorphic to S_1 .

Next, we show that X is cs-starcompact. For this end, let \mathcal{U} be an open cover of X. Since $\pi(S_2)$ is cs-starcompact, there exists a convergent sequence F_1 of $\pi(S_2)$ such that $\pi(S_2) \subseteq St(F_1, \mathcal{U})$. On the other hand, since $\pi(S_1)$ is homeomorphic to S_1 , every infinite subset of $\pi(\omega)$ has an accumulation point in $\pi(S_1)$. We claim that there exists a finite subset F_2 of $\pi(\omega)$ such that $\pi(\omega) \subseteq St(F_2, \mathcal{U})$. For, if $\pi(\omega) \notin St(B, \mathcal{U})$ for any finite subset B of $\pi(\omega)$ then by induction, we can define a sequence $\{x_n : n \in \omega\}$ in $\pi(\omega)$ such that

$$x_n \notin St(\{x_i : i < n\}, \mathcal{U})$$
 for each $n \in \omega$.

By the property of $\pi(\omega)$ mentioned above, the sequence $\{x_n : n \in \omega\}$ has a limit point x' in $\pi(S_1)$. Pick $U \in \mathcal{U}$ such that $x' \in U$. Choose $n < m < \omega$ such that $x_n \in U$ and $x_m \in U$. Then $x_m \in St(\{x_i : i < m\}, \mathcal{U})$, which contradicts the definition of the sequence $\{x_n : n \in \omega\}$. Let $S = F_1 \cup F_2$. Then S is a convergent sequence of X and $X = St(S, \mathcal{U})$. Hence X is cs-starcompact, which completes the proof. \blacksquare

REMARK. We give below the list of questions that we could not answer while working on this paper.

- (1) Can every Tychonoff separable space be represented in a Tychonoff cs-starcompact space as a closed subspace?
- (2) Can the extent of a Hausdorff cs-starcompact space be greater than $2^{\mathfrak{c}}$ and the extent of a Tychonoff cs-starcompact space X equal \mathfrak{c} or be greater than \mathfrak{c} ?
- (3) which closed subspaces of Tychonoff cs-starcompact spaces are cs-starcompact?

ACKNOWLEDGEMENT. The author is most grateful to the referee for his kind help and valuable comments.

REFERENCES

- A.V. Arhangel'skii and I.Y. Gordienko, *Relatively locally finite Hausdorff spaces*, Questions Answers Gen. Topology., **12** (1994), 15–25.
- [2] E.K. van Douwen, G.M. Reed, A.W. Roscoe and I.J. Tree, *Star covering properties*, Topology Appl. 39 (1991), 71–103.
- [3] R. Engelking, General Topology, Revised and completed edition, Heldermann Verlag, Berlin, 1989.
- [4] W.M. Fleischman, A new extension of countable compactness, Fund. Math. 67 (1970), 1–7.
- [5] M.V. Matveev, A survey on star-covering properties, Topological Atlas 330, 1998.
- [6] J. van Mill, V.V. Tkachuk and R.G. Wilson, Classes defined by stars and neighbourhood assignments, Topology Appl. 154.
- [7] S. Mrówka, On complete regular spaces, Fund. Math. 41 (1954), 105–106.
- [8] Y-K. Song, On countable star-covering properties, Applied General Topology 8, 2 (2007), 249–258.

(received 26.02.2008, in revised form 08.07.2008)

Institute of Mathematics, School of Mathematics and Computer Sciences, Nanjing Normal University, Nanjing, 210097, P.R of China

E-mail: songyankui@njnu.edu.cn