COMPACTNESS AND WEAK COMPACTNESS OF ELEMENTARY OPERATORS ON $B(l^2)$ INDUCED BY COMPOSITION OPERATORS ON l^2

Gyan Prakash Tripathi

Abstract. In this paper we have given simple proofs of some range inclusion results of elementary operators on $B(l^2)$ induced by composition operators on l^2 . By using these results we have characterized compact and weakly compact elementary operators on $B(l^2)$ induced by composition operators on l^2 .

1. Introduction

DEFINITION 1.1. Let $a = (a_1, a_2, \ldots, a_n)$ and $b = (b_1, b_2, \ldots, b_n)$ be *n*-tuples of elements in an algebra \mathcal{A} . The elementary operator $E_{a,b}$ on \mathcal{A} into itself associated with *a* and *b* is defined by $E_{a,b}(x) = a_1xb_1 + a_2xb_2 + \cdots + a_nxb_n$.

We denote by $M_{a,b}$ the elementary multiplication operator defined by $M_{a,b}(x) = axb$, $x \in \mathcal{A}$, $V_{a,b}(x) = axb - bxa$ for all $x \in \mathcal{A}$. For a fixed $a \in \mathcal{A}$, inner derivation δ_a is defined by $\delta_a(x) = ax - xa$. For fixed $a, b \in \mathcal{A}$, generalized derivation $\delta_{a,b}$ is defined by $\delta_{a,b}(x) = ax - xb$ for all $x \in \mathcal{A}$.

It is clear that δ_a and $\delta_{a,b}$ are elementary operators of length 2.

DEFINITION 1.2. Let X and Y be normed linear spaces and S be the closed unit ball in X. A linear operator $T: X \to Y$ is

(i) a finite rank operator if dimension of the range of T is finite.

- (ii) a compact operator if the closure of T(S) is compact in Y.
- (iii) a weakly compact operator if T(S) is weakly compact in Y.

DEFINITION 1.3. A Banach space X is said to have the approximation property if for every compact subset C of X and for every $\epsilon > 0$ there exists a finite rank operator $T \in B(X)$ such that $||Tx - x|| < \epsilon$ for each $x \in C$.

Research work is supported by CSIR(award no.9/13(951)/2000-EMR-1). 227

AMS Subject Classification: 47B33, 47B47.

 $Keywords\ and\ phrases:$ Compactness; composition operators; elementary operators; thin operators.

G. P. Tripathi

Since every Banach space with a Schauder basis has the approximation property [1], a separable Hilbert space has approximation property.

DEFINITION 1.4. Let l^2 be the Hilbert space of all square summable sequences of complex numbers under the standard inner product on it and ϕ be a function on \mathbb{N} into itself. We denote by χ_n , characteristic function of $\{n\}$. Let $A_n = \phi^{-1}(n)$ and let $\overline{A_n}$ denote the number of elements in A_n . The composition operator C_{ϕ} on l^2 is defined by $C_{\phi}(f) = f \circ \phi$ for all $f \in l^2$.

A necessary and sufficient condition that a function ϕ on \mathbb{N} into itself induces a composition operator on l^2 is the set $\left\{\overline{\overline{A_n}} : n \in \mathbb{N}\right\}$ is bounded, see [12].

In the direction of compactness of elementary operators, first study was done by Vala [15] in 1964. He proved that "On B(X) where X is a Banach space the mapping $T \mapsto ATB$ is compact if and only if A and B are compact operators". Vala defined an element a of a normed algebra \mathcal{A} as compact if the mapping $x \mapsto axa$ is compact. By using this notion of compactness K.Ylinen [16] proved that compact elements of C^* -algebra \mathcal{A} form a closed two sided ideal which is the closure of the finite elements of \mathcal{A} , i.e. those elements a, for which the map $x \mapsto axa$ is a finite rank operator. Akemann and Wright [3] obtained the necessary and sufficient condition for a C^* -algebra to admit a nonzero compact or weakly compact derivation. In 1977, Y.Ho [7] proved that derivation induced by non-scalars in B(H) is non-compact. In 1979, Fong and Sourour [5] characterized the compactness of elementary operators on B(H) where H is a separable Hilbert space. Precisely they showed that "An elementary operator on B(H) is compact if and only if it has a representation $E(X) = \sum_{i=1}^{n} A_i X B_i$, where each A_i and each B_i is compact".

In the same paper they conjectured that there is no nonzero compact elementary operator on Calkin algebra, which was independently affirmed by Apostal and Fialkow [2], B. Magajna [9] and by M. Mathieu [8]. M. Mathieu generalized above results on C^* -algebra. Saksman and Tylli [13] studied compact and weakly compact elementary operators for a large class of Banach spaces. Now we state some known results which are useful in our context.

THEOREM 1.1. [3, Theorem 3.1] Let δ be a derivation on B(H). The following are equivalent:

- (i) δ is weakly compact.
- (ii) The range of δ is contained in K(H).
- (iii) $\delta = \delta_T$ with $T \in K(H)$.

THEOREM 1.2. [8, Proposition 3.2] Let $A = (A_1, A_2, \ldots, A_n)$ and $B = (B_1, B_2, \ldots, B_n)$ be n-tuples of elements in B(H) and $E_{A,B}(X) = \sum_{i=1}^n A_i X B_i$. If the set $\{B_1, B_2, \ldots, B_n\}$ is linearly independent modulo K(H), then the following are equivalent:

- (a) $E_{A,B}$ is weakly compact.
- (b) $A_i \in K(H)$ for all $1 \le i \le n$.

THEOREM 1.3. [8, Corollary 3.9] A non-zero elementary operator on a prime C^* -algebra \mathcal{A} is compact if and only if there are linearly independent subsets $\{A_1, A_2, \ldots, A_n\}$ and $\{B_1, B_2, \ldots, B_n\}$ in $K(\mathcal{A})$ such that $E(X) = \sum_{i=1}^n A_i X B_i$. Here $K(\mathcal{A})$ is the ideal of all compact elements in \mathcal{A} .

Now we state a result due to E. Saksman.

THEOREM 1.4. [11, Proposition 5] Let X be a reflexive Banach space with approximation property. Assume that A and B are n-tuples of operators on X. Then the elementary operator $E_{A,B}$ on B(X) is weakly compact if and only if $E_{A,B}(X) \subseteq K(X)$.

Now we state some results about composition operators on l^2 , which are useful in our context.

THEOREM 1.5. [6] Let C_{ϕ} and C_{ψ} be two composition operators on l^2 . Then $C_{\phi} - C_{\psi}$ is a finite rank operator if and only if $\phi(n) = \psi(n)$ for all but finitely many $n \in \mathbb{N}$.

THEOREM 1.5. [6] The difference of two composition operators $C_{\phi} - C_{\psi}$ is compact if and only if $C_{\phi} - C_{\psi}$ is a finite rank operator.

2. Main Results

In this section we shall characterize compact and weakly compact elementary operators on $B(l^2)$ induced by composition operators on l^2 .

THEOREM 2.1. Let $C_{\phi} = (C_{\phi_1}, C_{\phi_2}, \dots, C_{\phi_n})$ and $C_{\psi} = (C_{\psi_1}, C_{\psi_2}, \dots, C_{\psi_n})$ be n-tuples of composition operators on l^2 . The elementary operator $E_{C_{\phi}, C_{\psi}}(X) = \sum_{i=1}^n C_{\phi_i} X C_{\psi_i}$ is never weakly compact, hence never compact.

First we shall prove a lemma.

LEMMA 2.1. Sum of a finite number of composition operators on l^2 is not compact.

Proof. Let $C_{\phi_1}, C_{\phi_2}, \ldots, C_{\phi_n}$ be the composition operators on l^2 and let $M = \{n_i : \phi_1^{-1}(n_i) \text{ is nonempty}\}$. Clearly M is an infinite subset of \mathbb{N} and $\{\chi_{n_i}\}_{n_i \in M}$ is a weakly convergent sequence of orthonormal vectors in l^2 . We have

$$(C_{\phi_1} + C_{\phi_2} + \dots + C_{\phi_k})(\chi_{n_i}) = \chi_{\phi_1^{-1}(n_i)} + \dots + \chi_{\phi_k^{-1}(n_i)}$$

It follows that

$$\|(C_{\phi_1} + \dots + C_{\phi_k})(\chi_{n_i})\|^2 = \|\chi_{\phi_1^{-1}(n_i)} + \dots + \chi_{\phi_k^{-1}(n_i)}\|^2 \ge \overline{\phi^{-1}(n_i)} \ge 1$$

for $n_i \in M$. Therefore $\{(C_{\phi_1} + C_{\phi_2} + \dots + C_{\phi_k})(\chi_{n_i})\}_{n_i \in M}$ does not converge strongly to zero in l^2 . Hence $(C_{\phi_1} + C_{\phi_2} + \dots + C_{\phi_k})$ is not compact.

G. P. Tripathi

Proof of Theorem 2.1. We have $E_{C_{\phi},C_{\psi}}(I) = C_{\phi_1}C_{\psi_1} + \cdots + C_{\phi_n}C_{\psi_n}$. Due to the fact that composition of two composition operators is a composition operator, by above lemma we get $E_{C_{\phi},C_{\psi}}(I) \notin K(l^2)$. Since l^2 has approximation property, $E_{C_{\phi},C_{\psi}}$ is not weakly compact by Theorem 1.4. Hence $E_{C_{\phi},C_{\psi}}$ is not compact.

Now we give simple proofs of some range inclusion results on elementary operators induced by composition operators on l^2 . Here recall that an operator $T \in B(H)$ of the form scalar plus compact is called thin.

THEOREM 2.2. Let $\delta_{C_{\phi}}$ be an inner derivation on $B(l^2)$ defined by $\delta_{C_{\phi}}(X) = C_{\phi}X - XC_{\phi}$. Then

(i) If C_{ϕ} is a thin composition operator then $R(\delta_{C_{\phi}}) \subseteq F(l^2)$.

(ii) If C_{ϕ} is not a thin composition operator on l^2 then $R(\delta_{C_{\phi}}) \not\subseteq K(l^2)$.

Proof. (i) Let C_{ϕ} be a thin composition operator on l^2 . From Theorem 1.5 it follows that $C_{\phi} = I + F_{\phi}$, where F_{ϕ} is a finite rank operator on l^2 . Now

$$\delta_{C_{\phi}}(X) = C_{\phi}X - XC_{\phi} = (I + F_{\phi})X - X(I + F_{\phi})$$
$$= F_{\phi}X - XF_{\phi} \in F(l^2), \text{ for each } X \in B(l^2).$$

Thus $R(\delta_{C_{\phi}}) \subseteq F(l^2)$.

(ii) Suppose C_{ϕ} is not a thin operator. Let M_w be a multiplication operator on l^2 defined by $M_w(f) = \sum_{j=1}^{\infty} w_j f(j) \chi_j$ for each $f \in l^2$, where w is a weight function with $w_j\{0,1\}$, and we will define the sequence w_j later. We shall show that $C_{\phi}M_w^* - M_w^*C_{\phi} \notin K(l^2)$.

Now
$$(C_{\phi}M_w^* - M_w^*C_{\phi})^* = -(C_{\phi}^*M_w - M_wC_{\phi}^*)$$
. We have
 $(C_{\phi}^*M_w - M_wC_{\phi}^*)(\chi_j) = C_{\phi}^*M_w(\chi_j) - M_wC_{\phi}^*(\chi_j) = C_{\phi}^*(w_j\chi_j) - M_w(\chi_{\phi(j)})$

$$= w_j \chi_{\phi(j)} - w_{\phi(j)} \chi_{\phi(j)} = (w_j - w_{\phi(j)}) \chi_{\phi(j)}$$

Since C_{ϕ} is not thin, $M = \{n \in \mathbb{N} : \phi(j) \neq j\}$ is an infinite subset of \mathbb{N} by Theorem (1.5).

For some $n_1 \in M$, define $w_{n_1} = 1$ and $w_{\phi(n_1)} = 0$, suppose $\phi(n_1) = m_1$. Now there is $n_2 \in M - (\{n_1\} \cup \phi^{-1}(m_1))$. Define $w_{n_2} = 1$ and $w_{\phi(n_2)} = 0$, suppose $\phi(n_2) = m_2$. Similarly there is an $n_3 \in M - (\{n_1, n_2\} \cup (\bigcup_{i=1}^2 \phi^{-1}(n_i)))$.

Define $w_{n_3} = 1$ and $w_{\phi(n_3)} = 0$; suppose $\phi(n_3) = m_3$. In this way inductively we can get $n_k \in M - (\{n_1, n_2, \dots, n_k\} \cup (\bigcup_{i=1}^{k-1} \phi^{-1}(n_i)))$.

Define $w_{n_k} = 1$ and $w_{\phi(n_k)} = 0$; suppose $\phi(n_k) = m_k$. Define $w_j = 0$ for $j \in \mathbb{N} - (\{m_1, m_2, \dots, \} \cup (\{n_1, n_2, \dots, \}))$. Thus $w_j - w_{\phi(j)} = 1$ for infinitely many $j \in \mathbb{N}$. Let $M_1 = \{j \in M : w_j - w_{\phi(j)} = 1\}$. Clearly M_1 is an infinite subset of \mathbb{N} . Now we have $\|(C_{\phi}^*M_w - M_wC_{\phi}^*)(\chi_j)\| \ge 1$ for all $j \in M_1$. It follows that $C_{\phi}^*M_w - M_wC_{\phi}^*$ is not compact and so $C_{\phi}M_w^* - M_w^*C_{\phi}$ is not compact. Hence $R(\delta_{C_{\phi}}) \nsubseteq K(l^2)$.

COROLLARY 2.1. $R(\delta_{C_{\phi}}) \subseteq K(l^2)$ if and only if $R(\delta_{C_{\phi}}) \subseteq F(l^2)$ if and only if C_{ϕ} is thin.

230

THEOREM 2.3. Let C_{ϕ} and C_{ψ} be two composition operators on l^2 and $\delta_{C_{\phi},C_{\psi}}$ be the generalized derivation on $B(l^2)$ defined by $\delta_{C_{\phi},C_{\psi}} = C_{\phi}X - XC_{\psi}$. Then $R(\delta_{C_{\phi},C_{\psi}}) \subset F(l^2)$ if and only if C_{ϕ} and C_{ψ} are thin operators.

Proof. Let C_{ϕ} and C_{ψ} be two thin composition operators on l^2 . Then $C_{\phi} = I + F_{\phi}$ and $C_{\psi} = I + F_{\psi}$ for some finite rank operator F_{ϕ} and F_{ψ} . We get $\delta_{C_{\phi},C_{\psi}} = C_{\phi}X - XC_{\psi} \in F(l^2)$, for all $X \in B(l^2)$. Thus $R(\delta_{C_{\phi},C_{\psi}}) \subseteq F(l^2)$.

Conversely, suppose $R(\delta_{C_{\phi},C_{\psi}}) \in F(l^2)$ i.e. $C_{\phi}X - XC_{\psi} \in F(l^2)$ for all $X \in B(l^2)$. In particular $\delta_{C_{\phi},C_{\psi}}(I) = C_{\phi} - C_{\psi} \in F(l^2)$ i.e. $C_{\phi} - C_{\psi} = F, F \in F(l^2)$. It follows that $\delta_{C_{\phi}}(X) \in F(l^2)$ for all $X \in B(l^2)$ which implies that C_{ϕ} is thin by Corollary 2.1. Therefore $C_{\psi} = C_{\phi} - F$ is also thin. Thus both C_{ϕ} and C_{ψ} are thin operators on l^2 .

By Corollary 2.1 and the above Theorem, we have the following corollary.

COROLLARY 2.2. $R(\delta_{C_{\phi},C_{\psi}}) \subseteq K(l^2)$ if and only if C_{ϕ} and C_{ψ} are thin.

EXAMPLE 2.1. Let A = 2I + K and B = I + K, $K \in K(l^2)$ be two thin operators. $\delta_{A,B}(I) = (2I + K)I - (I + K) = I \notin K(l^2)$.

This shows that Theorem 2.3 may not be true for general thin operators.

THEOREM 2.4. Let C_{ϕ} and C_{ψ} be two composition operators on l^2 and $V_{C_{\phi},C_{\psi}}$ be an elementary operator on $B(l^2)$ defined by $V_{C_{\phi},C_{\psi}}(X) = C_{\phi}XC_{\psi} - C_{\psi}XC_{\phi}$. Then $R(V_{C_{\phi},C_{\psi}}) \subseteq F(l^2)$ if and only if $C_{\phi} - C_{\psi}$ is a finite rank operator.

Proof. We have $V_{C_{\phi},C_{\psi}}(X) = C_{\phi}XC_{\psi} - C_{\psi}XC_{\phi}$. Suppose $C_{\phi} - C_{\psi} = F$, where F is a finite rank operator on l^2 . Then $V_{C_{\phi},C_{\psi}}(X) = FXC_{\psi} - C_{\phi}XF \in F(l^2)$ for all $X \in B(l^2)$. Thus $R(V_{C_{\phi},C_{\psi}}) \subseteq F(l^2)$.

Conversely, suppose $C_{\phi} - C_{\psi}$ is not a finite rank operator, i.e. $\phi(n) \neq \psi(n)$ for infinitely many $n \in \mathbb{N}$, by Theorem 1.5.. Let M_w be a multiplication operator on l^2 defined by $M_w(f) = \sum_{j=1}^{\infty} w_j f(j) \chi_j$, where w is a weight function with $w_j \{0, 1\}$, and we will define the sequence w_j later. We shall show that $C_{\phi}^* M_w C_{\psi}^* - C_{\psi}^* M_w C_{\psi}^* \notin K(l^2)$.

$$(C_{\phi}^{*}M_{w}C_{\psi}^{*} - C_{\psi}^{*}M_{w}C_{\phi}^{*})(\chi_{k}) = (C_{\phi}^{*}M_{w}C_{\psi}^{*})(\chi_{k}) - (C_{\psi}^{*}M_{w}C_{\phi}^{*})(\chi_{k})$$

= $C_{\phi}^{*}M_{w}(\chi_{\psi(k)}) - C_{\psi}^{*}M_{w}(\chi_{\phi(k)}) = C_{\phi}^{*}(w_{\psi(k)}\chi_{\psi(k)}) - C_{\psi}^{*}(w_{\phi(k)}\chi_{\phi(k)})$
= $w_{\psi(k)}\chi_{(\phi\circ\psi)(k)} - w_{\phi(k)}\chi_{(\psi\circ\phi)(k)}$

Now

$$\| (C_{\phi}^* M_w C_{\psi}^* - C_{\psi}^* M_w C_{\phi}^*)(\chi_k) \|^2$$

= $|w_{\psi(k)}|^2 + |w_{\phi(k)}|^2 - (w_{\psi(k)} \overline{w}_{\phi(k)} + w_{\phi(k)} \overline{w}_{\psi(k)}) \langle \chi_{(\phi \circ \psi)(k)}, \chi_{(\psi \circ \phi)(k)} \rangle$

If $\phi \circ \psi(k) \neq \psi \circ \phi(k)$, then

$$\|(C_{\phi}^*M_wC_{\psi}^* - C_{\psi}^*M_wC_{\phi}^*)(\chi_k)\|^2 = |w_{\psi(k)}|^2 + |w_{\phi(k)}|^2.$$
(1)

G. P. Tripathi

If $\phi \circ \psi(k) = \psi \circ \phi(k)$, then

$$\|(C_{\phi}^*M_wC_{\psi}^* - C_{\psi}^*M_wC_{\phi}^*)(\chi_k)\|^2 = \|w_{\phi(k)} - w_{\psi(k)}\|^2.$$
(2)

Now $M = \{n \in \mathbb{N} : \phi(n) \neq \psi(n)\}$ is an infinite subset of \mathbb{N} . For some $n_1 \in M$, define $w_{\phi(n_1)} = 1$ and $w_{\psi(n_1)} = 0$, suppose $\phi(n_1) = l_1$ and $\psi(n_1) = m_1$. Now there is some $n_2 \in M - (\phi^{-1}(l_1) \cup \phi^{-1}(m_1) \cup \psi^{-1}(l_1) \cup \psi^{-1}(m_1))$. Define $w_{\phi(n_2)} = 1$ and $w_{\psi(n_2)} = 0$, suppose $\phi(n_2) = l_2$ and $\psi(n_2) = m_2$. Now there is some

$$n_3 \in M - \left(\bigcup_{i=1}^2 \phi^{-1}(l_i)\right) \cup \left(\bigcup_{i=1}^2 \phi^{-1}(m_i)\right) \cup \left(\bigcup_{i=1}^2 \psi^{-1}(l_i)\right) \cup \left(\bigcup_{i=1}^2 \psi^{-1}(m_i)\right).$$

Define $w_{\phi(n_3)} = 1$ and $w_{\psi(n_3)} = 0$, suppose $\phi(n_3) = l_3$ and $\psi(n_3) = m_3$.

In this way inductively we can find

$$n_k \in M - \left(\bigcup_{i=1}^{k-1} \phi^{-1}(l_i)\right) \cup \left(\bigcup_{i=1}^{k-1} \phi^{-1}(m_i)\right) \cup \left(\bigcup_{i=1}^{k-1} \psi^{-1}(l_i)\right) \cup \left(\bigcup_{i=1}^{k-1} \psi^{-1}(m_i)\right).$$

Define $w_n = 0$ for $n \in \mathbb{N} - (\{l_i : i \in \mathbb{N}\}) \cup \{m_i : i \in \mathbb{N}\})$. Clearly $w_{\phi(n)} - w_{\psi(n)} = 1$ for infinitely many $n \in \mathbb{N}$, and so $M_1 = \{n \in M : w_{\phi(n)} - w_{\psi(n)} = 1\}$ is an infinite subset of M.

Now for $n \in M_1$, by equations (1) and (2), we have

$$\|(C_{\phi}^*M_wC_{\psi}^* - C_{\psi}^*M_wC_{\phi}^*)(\chi_n)\|^2 \ge 1,$$

which implies that $C^*_{\phi}M_wC^*_{\psi} - C^*_{\psi}M_wC^*_{\phi}$ and so $C^*_{\phi}M_wC^*_{\psi} - C^*_{\psi}M_wC^*_{\phi}$ is not compact on l^2 .

Thus $R(V_{C_{\phi},C_{\psi}}) \nsubseteq F(l^2)$. Hence the proof.

As a consequence of the proof of Theorem 2.4, we have the following corollary.

COROLLARY 2.3. $R(V_{C_{\phi},C_{\psi}}) \subseteq K(l^2)$ if and only if $C_{\phi} - C_{\psi}$ is compact.

In view of Theorem 1.4 and Corollaries 2.1, 2.2 and 2.3 we have the following characterization of weakly compact elementary operators on l^2 .

THEOREM 2.5. Let C_{ϕ} and C_{ψ} be two composition operators on l^2 . Then

(i) $\delta_{C_{\phi}}$ is weakly compact if and only if C_{ϕ} is a thin operator on l^2 .

(ii) $\delta_{C_{\phi},C_{\phi}}$ is weakly compact if and only if C_{ϕ} and C_{ψ} are thin operators on l^2 .

(iii) $V_{C_{\phi},C_{\psi}}$ is weakly compact if and only if $C_{\phi} - C_{\psi}$ is a compact operator on l^2 .

ACKNOWLEDGEMENTS. 1. The author is grateful to Prof. Nand Lal for his helpful suggestions and discussions.

2. The author is grateful to the referee for his helpful suggestions.

REFERENCES

232

Y.A. Abramovich and C.D. Aliprentis, An invitation to Operator Theory, GTM 50, AMS Providence, Rhodes Island 2002.

Compactness and weak compactness of elementary operators on $B(l^2)$

- [2] C. Apostol and L. Fialkow, Structural properties of elementary operators, Canad. J. Math. 38 (1986), 1485–1524.
- [3] A. Akemann and S.Wright, Compact and weakly compact derivations of C^{*}-algebras, Pacific J. Math. 85 (1979), 253–259.
- [4] R.G. Douglas and C.Pearcy, A characterization of thin operators, Acta. Sci. Math. 29 (1968), 295–297.
- [5] K. Fong and A.R. Sourour, On the operator identity $\sum A_k X B_k = 0$, Canad. J. Math. **31** (1979), 845–857.
- [6] G.P. Tripathi and N. Lal, Thin composition operators and compact differences of composition operators on l², J. Indian Math. Soc. 75, 3–4 (2007), 147–154.
- [7] Y. Ho, A note on derivations, Bull. Inst. Math. Acad. Sinica 5 (1977), 1-5.
- [8] M. Mathieu, Elementary operators on prime C*-algebras II, Glasgow Math. J. 30 (1988), 275–284.
- [9] B. Magajna, A system of operator equations, Canad. Math. Bull. 30 (1987), 200–209.
- [10] S. Mecheri, On range of elementary operators, Integral Equations Operator Theory 53 (2005), 403–409.
- [11] E. Saksman, Weak compactness and weak essential spectra of elementary operators, Indiana Univ. Math. J. 44 (1995), 165–188.
- [12] R.K. Singh and J.S. Manhas, Composition Operators on Function Spaces, North Holland, 1993.
- [13] E. Saksman and H.O. Tylli, The Apostol-Fialkow formula for elementary operators on Banach spaces, J. Funct. Analysis 161 (1999), 1–26.
- [14] S.K. Tsui, Compact derivations on von Neumann algebras, Canad. Math. Bull. 24 (1981), 87–90.
- [15] K. Vala, On compact sets of compact operators, Ann. Acad. Sci. Fenn. Ser A. I 351 (1964).
- [16] K. Ylinen, Compact and finite dimensional elements of normed algebras, Ann. Acad. Sci. Fenn. Ser A. I 428 (1968).
- [17] K. Ylinen, Weakly completely continuously elements of C*-algebras, Proc. Amer. Math. Soc. 52 (1975), 323–326.

(received 02.07.2008, in revised form 14.04.2009)

Department of Mathematics, SGR PG College, Dobhi, Jaunpure-222149, INDIA *E-mail*: gptbhu@yahoo.com