SZÁSZ-MIRAKJAN TYPE OPERATORS OF TWO VARIABLES PROVIDING A BETTER ESTIMATION ON $[0,1] \times [0,1]$

Fadime Dirik and Kamil Demirci

Abstract. This paper deals with a modification of the classical Szász-Mirakjan type operators of two variables. It introduces a new sequence of non-polynomial linear operators which hold fixed the polynomials $x^2 + \alpha x$ and $y^2 + \beta y$ with $\alpha, \beta \in [0, \infty)$ and we study the convergence properties of the new approximation process. Also, we compare it with Szász-Mirakjan type operators and show an improvement of the error of convergence in $[0, 1] \times [0, 1]$. Finally, we study statistical convergence of this modification.

1. Introduction

Most of the approximating operators, L_n , preserve $e_i(x) = x^i$, (i = 0, 1), i.e., $L_n(e_i; x) = e_i(x), n \in \mathbb{N}, i = 0, 1$, but $L_n(e_2; x) \neq e_2(x) = x^2$. Especially, these conditions hold for the operators given by Agratini [1], the Bernstein polynomials [4, 5] and the Szász-Mirakjan type operators [3, 14]. Agratini [2] has investigated a general technique to construct operators which preserve e_2 . Recently, King [13] presented a non-trivial sequence of positive linear operators defined on the space of all real-valued continuous functions on [0, 1] while preserving the functions e_0 and e_2 . Duman and Orhan [7] have studied King's results using the concept of statistical convergence. Recently, Duman and Özarslan [8] have investigated some approximation results on the Szász-Mirakjan type operators preserving $e_2(x) = x^2$.

The functions $f_0(x, y) = 1$, $f_1(x, y) = x$ and $f_2(x, y) = y$ are preserved by most of approximating operators of two variables, $L_{m,n}$, i.e., $L_{m,n}(f_0; x, y) =$ $f_0(x, y)$, $L_{m,n}(f_1; x, y) = f_1(x, y)$ and $L_{m,n}(f_2; x, y) = f_2(x, y)$, $m, n \in \mathbb{N}$, but $L_{m,n}(f_3; x, y) \neq f_3(x, y) = x^2 + y^2$. These conditions hold, specifically, for the Bernstein polynomials of two variables, the Szász-Mirakjan type operators of two variables. In this paper, we give a modification of the well-known Szász-Mirakjan type operators of two variables and show that this modification holds fixed some polynomials different from $f_i(x, y)$. The resulting approximation processes turn out to have an order of approximation at least as good as the one of Szász-Mirakjan

²⁰¹⁰ AMS Subject Classification: 41A25, 41A36.

Keywords and phrases: Szász-Mirakjan type operators, *A*-statistical convergence for double sequences, Korovkin-type approximation theorem, modulus of contiunity.

type operators of two variables in certain subsets of $[0, \infty) \times [0, \infty)$. Finally, we study A-statistical convergence of this modification.

We first recall the concept of A-statistical convergence for double sequences.

Let $A = (a_{j,k,m,n})$ be a four-dimensional summability matrix. For a given double sequence $x = (x_{m,n})$, the A-transform of x, denoted by $Ax := ((Ax)_{j,k})$, is given by

$$(Ax)_{j,k} = \sum_{(m,n) \in \mathbb{N}^2} a_{j,k,m,n} x_{m,n}$$

provided the double series converges in Pringsheim's sense for every $(j,k) \in \mathbb{N}^2$.

A two-dimensional matrix transformation is said to be regular if it maps every convergent sequence into a convergent sequence with the same limit. The well-known characterization for two-dimensional matrix transformations is known as Silverman-Toeplitz conditions (see, for instance, [12]). In 1926, Robison [18] presented a four-dimensional analog of the regularity by considering an additional assumption of boundedness. This assumption was made because a double Pringsheim convergent (*P*-convergent) sequence is not necessarily bounded. The definition and the characterization of regularity for four-dimensional matrices is known as Robison-Hamilton conditions, or briefly, RH-regularity (see [11, 18]).

Recall that a four-dimensional matrix $A = (a_{j,k,m,n})$ is said to be *RH*-regular if it maps every bounded *P*-convergent sequence into a *P*-convergent sequence with the same *P*-limit. The Robison-Hamilton conditions state that a four-dimensional matrix $A = (a_{j,k,m,n})$ is *RH*-regular if and only if

(i)
$$P - \lim_{j,k} a_{j,k,m,n} = 0$$
 for each $(m,n) \in \mathbb{N}^2$,

(*ii*)
$$P - \lim_{j,k} \sum_{(m,n) \in \mathbb{N}^2} a_{j,k,m,n} = 1,$$

(*iii*)
$$P - \lim_{j,k} \sum_{m \in \mathbb{N}} |a_{j,k,m,n}| = 0$$
 for each $n \in \mathbb{N}$,

(iv)
$$P - \lim_{j,k} \sum_{n \in \mathbb{N}} |a_{j,k,m,n}| = 0$$
 for each $m \in \mathbb{N}$,

- (v) $\sum_{(m,n)\in\mathbb{N}^2} |a_{j,k,m,n}|$ is *P*-convergent for each $j,k\in\mathbb{N}$,
- (vi) there exist finite positive integers A and B such that $\sum_{m,n>B} |a_{j,k,m,n}| < A$ holds for every $(j,k) \in \mathbb{N}^2$.

Now let $A = (a_{j,k,m,n})$ be a non-negative RH-regular summability matrix, and let $K \subset \mathbb{N}^2$. Then A-density of K is given by

$$\delta_A^{(2)}{K} := P - \lim_{j,k} \sum_{(m,n) \in K} a_{j,k,m,n}$$

provided that the limit on the right-hand side exists in Pringsheim's sense. A real double sequence $x = (x_{m,n})$ is said to be A-statistically convergent to a number L if, for every $\varepsilon > 0$,

$$\delta_A^{(2)}\{(m,n)\in\mathbb{N}^2:|x_{m,n}-L|\geq\varepsilon\}=0$$

In this case, we write $st_{(A)}^2 - \lim_{m,n} x_{m,n} = L$. Clearly, a *P*-convergent double sequence is *A*-statistically convergent to the same value but its converse is not always true. Also, note that an *A*-statistically convergent double sequence need not to be bounded. For example, consider the double sequence $x = (x_{m,n})$ given by

$$x_{m,n} = \begin{cases} mn, & \text{if } m \text{ and } n \text{ are squares,} \\ 1, & \text{otherwise.} \end{cases}$$

We should note that if we take $A = C(1, 1) := [c_{j,k,m,n}]$, the double Cesáro matrix, defined by

$$c_{j,k,m,n} = \begin{cases} \frac{1}{jk}, & \text{if } 1 \le m \le j \text{ and } 1 \le n \le k, \\ 0, & \text{otherwise,} \end{cases}$$

then C(1, 1)-statistical convergence coincides with the notion of statistical convergence for double sequence, which was introduced in [15, 16]. Finally, if we replace the matrix A by the identity matrix for four dimensional matrices, then A-statistical convergence reduces to the Pringsheim convergence, which was introduced in [17].

By C(D), we denote the space of all continuous real valued functions on Dwhere $D = [0, \infty) \times [0, \infty)$. By E_2 , we denote the space of all real valued functions of exponential type on D. More precisely, $f \in E_2$ if and only if there are three positive finite constants c, d and α with the property $|f(x, y)| \leq \alpha e^{cx+dy}$. Let L be a linear operator from $C(D) \cap E_2$ into $C(D) \cap E_2$. Then, as usual, we say that Lis a positive linear operator provided that $f \geq 0$ implies $L(f) \geq 0$. Also, we denote the value of L(f) at a point $(x, y) \in D$ by L(f; x, y).

Now fix a, b > 0. For the proof of the our approximation results we use the lattice homomorphism $H_{a,b}$, which maps $C(D) \cap E_2$ into $C(E) \cap E_2$, defined by $H_{a,b}(f) = f|_E$, where $E = [0, a] \times [0, b]$ and $f|_E$ denotes the restriction of the domain f to the rectangle E. The space C(E) is equipped with the supremum norm

$$||f|| = \sup_{(x,y)\in E} |f(x,y)|, \quad (f\in C(E)).$$

Hence, from the Korovkin-type approximation theorem for double sequences of positive linear operators of two variables which is introduced by Dirik and Demirci [6] the following results follow.

THEOREM 1. [6] Let $A = (a_{j,k,m,n})$ be a non-negative RH-regular summability matrix. Let $\{L_{m,n}\}$ be a double sequence of positive linear operators acting from $C(D) \cap E_2$ into itself. Assume that the following conditions hold:

$$st_{(A)}^2 - \lim_{m,n} L_{m,n}(f_i; x, y) = f_i(x, y), \text{ uniformly on } E, \ (i = 0, 1, 2, 3),$$

where $f_0(x, y) = 1$, $f_1(x, y) = x$, $f_2(x, y) = y$ and $f_3(x, y) = x^2 + y^2$. Then, for all $f \in C(D) \cap E_2$, we have

$$st^{2}_{(A)} - \lim_{m,n} L_{m,n}(f; x, y) = f(x, y), \text{ uniformly on } E.$$

2. Construction of the operators

Szász-Mirakjan type operators introduced by Favard [9] is the following:

$$S_{m,n}(f;x,y) = e^{-mx} e^{-ny} \sum_{s=0}^{\infty} \sum_{t=0}^{\infty} f\left(\frac{s}{m}, \frac{t}{n}\right) \frac{(mx)^s}{s!} \frac{(ny)^t}{t!},$$
 (2.1)

where $(x, y) \in D$ and $f \in C(D) \cap E_2$. It is clear that

$$\begin{split} S_{m,n}(f_0; x, y) &= f_0(x, y), \\ S_{m,n}(f_1; x, y) &= f_1(x, y), \\ S_{m,n}(f_2; x, y) &= f_2(x, y), \\ S_{m,n}(f_3; x, y) &= f_3(x, y) + \frac{x}{m} + \frac{y}{n} \end{split}$$

where $f_0(x,y) = 1$, $f_1(x,y) = x$, $f_2(x,y) = y$ and $f_3(x,y) = x^2 + y^2$. Then, we observe that $P - \lim_{m,n} S_{m,n}(f_i; x.y) = f_i(x,y)$, uniformly on E, where i = 0, 1, 2, 3. If we replace the matrix A by double identity matrix in Theorem 1, then we immediately get the classical result. Hence, for the $S_{m,n}$ operators given by (2.1), we have, for all $f \in C(D) \cap E_2$,

$$P - \lim_{m,n} S_{m,n}(f; x, y) = f(x, y), \text{ uniformly on } E.$$

For each integer $k \in \mathbb{N}$, let $r_k \colon [0, \infty) \times X \to \mathbb{R}$ be the function defined by

$$r_k(\gamma, z) := \frac{-(k\gamma + 1) + \sqrt{(k\gamma + 1)^2 + 4k^2(z^2 + \gamma z)}}{2k}$$
(2.2)

where if z is the first variable of the following operator, then X = [0, a] and if z is the second variable of the following operator, then X = [0, b]. Let

$$H_{m,n}^{\alpha,\beta}(f;x,y) = S_{m,n}(f;r_m(\alpha,x),r_n(\beta,y)) = e^{-mr_m(\alpha,x)}e^{-nr_n(\beta,y)} \sum_{s=0}^{\infty} \sum_{t=0}^{\infty} f\left(\frac{s}{m},\frac{t}{n}\right) \frac{(mr_m(\alpha,x))^s}{s!} \frac{(nr_n(\beta,y))^t}{t!}$$
(2.3)

where $\alpha, \beta \in [0, \infty)$, for $f \in C(D) \cap E_2$.

Hence, in the special case $\lim_{\alpha\to\infty} r_m(\alpha, x) = x$ and $\lim_{\alpha\to\infty} r_n(\beta, y) = y$, the operator $H_{m,n}^{\alpha,\beta}$ becomes the classical Szász-Mirakjan type operators which is given by (2.1).

It is clear that $H_{m,n}^{\alpha,\beta}$ are positive and linear. It is easy to see that

$$\begin{aligned}
H_{m,n}^{\alpha,\beta}(f_{0};x,y) &= f_{0}(x,y), \\
H_{m,n}^{\alpha,\beta}(f_{1};x,y) &= r_{m}(\alpha,x), \\
H_{m,n}^{\alpha,\beta}(f_{2};x,y) &= r_{n}(\beta,y), \\
H_{m,n}^{\alpha,\beta}(f_{1}^{2};x,y) &= r_{m}^{2}(\alpha,x) + \frac{r_{m}(\alpha,x)}{m}, \\
H_{m,n}^{\alpha,\beta}(f_{2}^{2};x,y) &= r_{n}^{2}(\beta,y) + \frac{r_{n}(\beta,y)}{n}.
\end{aligned}$$
(2.4)

From the definition of r_k one can check the validity of the following.

PROPOSITION 1. The operators $H_{m,n}^{\alpha,\beta}$ hold fixed the polynomials $f_1^2 + \alpha f_1$ and $f_2^2 + \beta f_2$, i.e.

$$H_{m,n}^{\alpha,\beta}(f_1^2 + \alpha f_1; x, y) = x^2 + \alpha x \text{ and } H_{m,n}^{\alpha,\beta}(f_2^2 + \beta f_2; x, y) = y^2 + \beta y$$

Now, we give the following result using Theorem 1 for A = I, which is the double identity matrix.

THEOREM 2. Let $H_{m,n}^{\alpha,\beta}$ denote the sequence of positive linear operators given by (2.3). If

$$P - \lim_{m,n} H_{m,n}^{\alpha,\beta}(f_1; x, y) = x, \quad P - \lim_{m,n} H_{m,n}^{\alpha,\beta}(f_2; x, y) = y, \text{ uniformly on } E,$$

then, for all $f \in C(D) \cap E_2$, $P - \lim_{m,n} H_{m,n}^{\alpha,\beta}(f;x,y) = f(x,y)$, uniformly on E,

where $\alpha, \beta \in [0, \infty)$.

Proof. For $\alpha, \beta \in [0, \infty)$, $H_{m,n}^{\alpha,\beta}(f_1; x, y)$ converges to x as m, n (in any manner) tends to infinity. Also, we get

$$r_{m,n}(\alpha) = \sup_{(x,y)\in E} |x - H_{m,n}^{\alpha,\beta}(f_1; x, y)|$$

= $a - \frac{-(m\alpha + 1) + \sqrt{(m\alpha + 1)^2 + 4m^2(a^2 + \alpha a)}}{2m}.$

Since $r_{m,n}(\alpha)$ and $r_{m,n}(\beta)$ converge to 0 as $m, n \to \infty$, the convergence is uniform on *E*. From (2.4), Proposition 1 and Theorem 1 for A = I, which is the double identity matrix, the proof is completed.

3. Comparison with Szász-Mirakjan type operators

In this section, we estimate the rates of convergence of the operators $H_{m,n}^{\alpha,\beta}(f;x,y)$ to f(x,y) by means of the modulus of continuity. Thus, we show that our estimations are more powerful than those obtained by the operators given by (2.1) on D.

By $C_B(D)$ we denote the space of all continuous and bounded functions on D. For $f \in C_B(D) \cap E_2$, the modulus of continuity of f, denoted by $\omega(f; \delta)$, is defined as

 $\omega(f;\delta) = \sup\{|f(u,v) - f(x,y)| : \sqrt{(u-x)^2 + (v-y)^2} < \delta, \ (u,v), (x,y) \in D\}.$ Then it is clear that for any $\delta > 0$ and each $(x,y) \in D$

$$|f(u,v) - f(x,y)| \le \omega(f;\delta) \left(\frac{\sqrt{(u-x)^2 + (v-y)^2}}{\delta} + 1\right).$$

After some simple calculations, for any double sequence $\{L_{m,n}\}$ of positive linear operators on $C_B(D) \cap E_2$, we can write, for $f \in C_B(D) \cap E_2$,

$$|L_{m,n}(f;x,y) - f(x,y)| \le \omega(f;\delta) \Big\{ L_{m,n}(f_0;x,y) + \frac{1}{\delta^2} L_{m,n}((u-x)^2 + (v-y)^2;x,y) \Big\} + |f(x,y)| |L_{m,n}(f_0;x,y) - f_0(x,y)|.$$
(3.1)

Now we have the following:

THEOREM 3. If $H_{m,n}^{\alpha,\beta}$ is defined by (2.1), then for every $f \in C_B(D) \cap E_2$, $(x,y) \in D$ and any $\delta > 0$, we have

$$|H_{m,n}^{\alpha,\beta}(f;x,y) - f(x,y)| \le \omega(f,\delta) \Big\{ 1 + \frac{1}{\delta^2} (2x^2 + \alpha x - H_{m,n}^{\alpha,\beta}(f_1;x,y)(\alpha + 2x)) + \frac{1}{\delta^2} (2y^2 + \beta y - H_{m,n}^{\alpha,\beta}(f_2;x,y)(\beta + 2y)) \Big\}.$$
 (3.2)

Furthermore, when (3.2) holds,

 $2x^{2} + \alpha x - H_{m,n}^{\alpha,\beta}(f_{1}; x, y)(\alpha + 2x) + 2y^{2} + \beta y - H_{m,n}^{\alpha,\beta}(f_{2}; x, y)(\beta + 2y) \ge 0$ for $(x, y) \in D$.

REMARK 1. For the Szász-Mirakjan type operators given by (2.1), we may write from (3.1) that for every $f \in C_B(D) \cap E_2$, $m, n \in \mathbb{N}$,

$$|S_{m,n}(f;x,y) - f(x,y)| \le \omega(f,\delta) \{1 + \frac{1}{\delta^2} (\frac{x}{m} + \frac{y}{n})\}.$$
(3.3)

The estimate (3.2) is better than the estimate (3.3) if and only if

$$2x^{2} + \alpha x - H_{m,n}^{\alpha,\beta}(f_{1};x,y)(\alpha+2x) + 2y^{2} + \beta y - H_{m,n}^{\alpha,\beta}(f_{2};x,y)(\beta+2y) \le \frac{x}{m} + \frac{y}{n}, \quad (3.4)$$

 $(x, y) \in D$. Thus, the order of approximation towards a given function $f \in C_B(D) \cap E_2$ by the sequence $H_{m,n}^{\alpha,\beta}$ will be at least as good as that of $S_{m,n}$ whenever the following function $\phi_{m,n}^{\alpha,\beta}(x, y)$ is non-negative:

$$\begin{split} \phi_{m,n}^{\alpha,\beta}(x,y) &= \\ &= \frac{x}{m} + \frac{y}{n} - 2x^2 - \alpha x + H_{m,n}^{\alpha,\beta}(f_1;x,y)(\alpha + 2x) - 2y^2 - \beta y + H_{m,n}^{\alpha,\beta}(f_2;x,y)(\beta + 2y). \end{split}$$

The non-negativity of $\phi_{m,n}^{\alpha,\beta}(x,y)$ is obviously fulfilled at those points (x,y) where simultaneously

$$H_{m,n}^{\alpha,\beta}(f_1; x, y)(\alpha + 2x) - 2x^2 - \alpha x + \frac{x}{m} \ge 0$$

and

$$H_{m,n}^{\alpha,\beta}(f_2; x, y)(\beta + 2y) - 2y^2 - \beta y + \frac{y}{n} \ge 0.$$

Some calculations state the validity of these inequalities when and only when (x, y) lies in the subset of D given by the rectangle

$$\left[0,\frac{2\alpha m+\alpha+2}{2\alpha m+1}\right]\times\left[0,\frac{2\beta n+\beta+2}{2\beta n+1}\right].$$

As $m, n \to \infty$, the endpoints of these intervals decrease to 1 and 1, respectively. As a consequence the order of approximation of $H_{m,n}^{\alpha,\beta}f$ towards f is at least as good as the order of approximation to f given by $S_{m,n}$ whenever (x, y) lies in $[0, 1] \times [0, 1]$. Szász-Mirakjan type operators of two variables

4. A-statistical convergence

Gadjiev and Orhan [10] have investigated the Korovkin-type approximation theory via statistical convergence. In this section, using the concept of A-statistical convergence for double sequence, we give the Korovkin-type approximation theorem for the $H_{m,n}^{\alpha,\beta}$ operators given by (2.3). The Korovkin-type approximation theorem is given by Theorem 1 and Proposition 1 as follows:

THEOREM 4. Let $A = (a_{j,k,m,n})$ be a non-negative RH-regular summability matrix. Let $H_{m,n}^{\alpha,\beta}$ be the double sequence of positive linear operators given by (2.3). If

$$st_{(A)}^2 - \lim_{m,n} H_{m,n}^{\alpha,\beta}(f_1; x, y) = x, \ st_{(A)}^2 - \lim_{m,n} H_{m,n}^{\alpha,\beta}(f_2; x, y) = y, \ uniformly \ on \ E$$

then, for all $f \in C(D) \cap E_2$,

$$st^{2}_{(A)} - \lim_{m,n} H^{\alpha,\beta}_{m,n}(f;x,y) = f(x,y), \text{ uniformly on } E.$$

Now, we choose a subset K of \mathbb{N}^2 such that $\delta^{(2)}_A(K)=1.$ Define function sequences $\{r^*_m(\alpha,x)\}$ and $\{r^*_n(\beta,y)\}$ by

$$r_{m}^{*}(\alpha, x) = \begin{cases} 0, & (m, n) \notin K \\ \frac{-(m\alpha+1) + \sqrt{(m\alpha+1)^{2} + 4m^{2}(x^{2} + \alpha x)}}{2m}, & (m, n) \in K \\ 0, & (m, n) \notin K \\ \frac{-(n\beta+1) + \sqrt{(n\beta+1)^{2} + 4n^{2}(y^{2} + \beta y)}}{2n}, & (m, n) \in K \end{cases}$$
(4.1)

It is clear that $r_m^*(\alpha, x)$ and $r_n^*(\beta, y)$ are continuous and exponential-type on $[0, \infty)$. We now turn our attention to $\{H_{m,n}^{\alpha,\beta}\}$ given by (2.3) with $\{r_m(\alpha, x)\}$ and $\{r_n(\beta, y)\}$ replaced by $\{r_m^*(\alpha, x)\}$ and $\{r_n^*(\beta, y)\}$ where $r_m^*(\alpha, x)$ and $r_n^*(\beta, y)$ are defined by (4.1). Observe that $\{H_{m,n}^{\alpha,\beta}\}$ is a positive linear operator and

$$H_{m,n}^{\alpha,\beta}(f_1;x,y) = r_m^*(\alpha,x), \quad H_{m,n}^{\alpha,\beta}(f_2;x,y) = r_n^*(\beta,y),$$
(4.2)

and

$$\begin{aligned} H_{m,n}^{\alpha,\beta}(f_1^2; x, y) &= \begin{cases} r_m^2(\alpha, x) + \frac{r_m(\alpha, x)}{m}, & (m, n) \in K\\ 0, & \text{otherwise} \end{cases} \\ H_{m,n}^{\alpha,\beta}(f_2^2; x, y) &= \begin{cases} r_n^2(\beta, y) + \frac{r_n(\beta, y)}{n}, & (m, n) \in K\\ 0, & \text{otherwise} \end{cases} \end{aligned}$$
(4.3)

Since $\delta_A^{(2)}(K) = 1$, we obtain

$$st_{(A)}^{2} - \lim_{m,n} H_{m,n}^{\alpha,\beta}(f_{1}; x, y) = x, \quad st_{(A)}^{2} - \lim_{m,n} H_{m,n}^{\alpha,\beta}(f_{2}; x, y) = y, \text{ uniformly on } E$$
(4.4)

and

$$st_{(A)}^2 - \lim_{m,n} H_{m,n}^{\alpha,\beta}(f_1^2 + f_2^2; x, y) = x^2 + y^2$$
, uniformly on E. (4.5)

The relations (4.2)–(4.5) and Theorem 1 yield the following:

F. Dirik, K. Demirci

THEOREM 5. Let $A = (a_{j,k,m,n})$ be a non-negative RH-regular summability matrix and let $\{H_{m,n}^{\alpha,\beta}\}$ denote the double sequence of positive linear operators given by (2.3) with $\{r_m(\alpha, x)\}$ and $\{r_n(\beta, y)\}$ replaced by $\{r_m^*(\alpha, x)\}$ and $\{r_n^*(\beta, y)\}$ where $r_m^*(\alpha, x)$ and $r_n^*(\beta, y)$ are defined by (4.1). Then, for all $f \in C(D) \cap E_2$, we have

$$st_{(A)}^2 - \lim_{m,n} H_{m,n}^{\alpha,\beta}(f;x,y) = f(x,y), \text{ uniformly on } E.$$

We note that $r_m^*(\alpha, x)$ and $r_n^*(\beta, y)$ in Theorem 5 do not satisfy the conditions of Theorem 2.

REFERENCES

- O. Agratini, Linear operators that preserve some test functions, Internat. J. Math. Analysis, Vol. 2006, Article 94136, 1–11.
- [2] O. Agratini, On a sequence of linear and positive operators, Facta Universitatis (Niš), Ser. Mat. Inform. 14 (1999), 41–48.
- [3] P.N. Agrawal, H.S. Kasana, On simultaneous approximation by Szász-Mirakjan operators, Bull. Inst. Math. Acad. Sinica 22 (1994), 181–188.
- [4] F. Altomare, M. Campiti, Korovkin-type Approximation Theory and its Application, in: Walter de Gruyter Studies in Math., vol. 17, de Gruyter&Co., Berlin, 1994.
- [5] C. Bardaro, P.L. Butzer, R.L. Stens, G. Vinti, Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals, Analysis (Munich), 23 (2003), 299–340.
- [6] F. Dirik, K. Demirci, Korovkin type approximation theorem for functions of two variables in statistical sense, Turk J. Math. 34 (2010), 73–83.
- [7] O. Duman, C. Orhan, An abstract version of the Korovkin approximation theorem, Publ. Math. Debrecen 69 (2006), 33–46.
- [8] O. Duman, M.A. Özarslan, Szász-Mirakjan type operators providing a better error estimation, Appl. Math. Lett. 20 (2007), 1184–1188.
- [9] J. Favard, Sur les multiplicateurs d'interpolation, J. Math. Pures Appl. 23 (1944), 219–247.
- [10] A.D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2002), 129–138.
- [11] H.J. Hamilton, Transformations of multiple sequences, Duke Math. J. 2 (1936), 29–60.
- [12] G.H. Hardy, Divergent Series, London: Oxford Univ. Press 1949.
- [13] J.P. King, Positive linear operators which preserve x², Acta Math. Hungar. 99 (2003), 203–208.
- [14] P.P. Korovkin, Linear operators and the theory of approximation, India, Delhi, 1960.
- [15] F. Moricz, Statistical convergence of multiple sequences, Arch. Math. (Basel) 81 (2004), 82–89.
- [16] Mursaleen, O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), 223–231.
- [17] A. Pringsheim, Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann. 53 (1900), 289–321.
- [18] G.M. Robison, Divergent double sequences and series, Amer. Math. Soc. Transl. 28 (1926), 50-73.

(received 10.02.2010; in revised form 22.04.2010)

Sinop University, Faculty of Arts and Sciences, Department of Mathematics, 57000 Sinop, Turkey *E-mail*: fdirik@sinop.edu.tr, kamild@sinop.edu.tr