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A COMMON FIXED POINT THEOREM FOR WEAKLY
COMPATIBLE MAPPINGS IN NON-ARCHIMEDEAN

MENGER PM-SPACES

Amit Singh, R.C. Dimri and Sandeep Bhatt

Abstract. In the present paper we prove a unique common fixed point theorem for four
weakly compatible self maps in non-Archimedean Menger PM-spaces without using the notion
of continuity. Our result generalizes and extends the results of Khan and Sumitra [M.A. Khan,
Sumitra, A common fixed point theorem in non-Archimedean Menger PM-space, Novi Sad J.
Math. 39 (1) (2009), 81–87] and others.

1. Introduction

Non-Archimedean probabilistic metric spaces and some topological preliminar-
ies on them were first studied by Istrătescu and Crivăt [9] (see also [8]). Some fixed
point theorems for mappings on non-Archimedean Menger spaces have been proved
by Istrătescu [6, 7] as a result of the generalizations of some of the results of Sehgal
and Bharucha-Reid [16] and Sherwood [17]. Achari [1] studied the fixed points
of quasi-contraction type mappings in non-Archimedean PM-spaces and general-
ized the results of Istrătescu [7]. Recently Khan and Sumitra [13] proved a common
fixed point theorem for three pointwise R-weakly commuting mappings in complete
non-Archimedean Menger PM-spaces. In the present paper we prove a unique com-
mon fixed point theorem for four weakly compatible self maps in non-Archimedean
Menger PM-spaces without using the notion of continuity. Our result generalizes
and extends the results of Khan and Sumitra [13] and others.

2. Preliminaries

Definition 2.1. [7, 9] Let X be any non-empty set and D be the set of
all left continuous distribution functions. An ordered pair (X, F ) is said to be
non-Archimedean probabilistic metric space (N.A. PM-space) if F is a mapping
from X × X into D satisfying the following conditions, where the value of F at
(x, y) ∈ X ×X is represented by Fx,y or F (x, y) for all x, y ∈ X such that
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(i) F (x, y; t) = 1 for all t > 0 if only if x = y;
(ii) F (x, y; t) = F (y, x; t);
(iii) F (x, y; 0) = 0;
(iv) If F (x, y; t1) = F (y, z; t2) = 1 then F (x, z; max{t1, t2}) = 1 for all x, y, z ∈ X.

Definition 2.2. [14] A t-norm is a function ∆ : [0, 1] × [0, 1] → [0, 1] which
is associative, commutative, non-decreasing in each coordinate and ∆(a, 1) = a for
all a ∈ [0, 1].

Definition 2.3. [8, 10] A non-Archimedean Menger PM-space is an ordered
triplet (X,F, ∆), where ∆ is a t-norm and (X,F ) is an N.A. PM-space satisfying
the following condition:

F (x, z;max{t1, t2}) ≥ ∆(F (x, y; t1), F (y, z; t2)) for all x, y, z ∈ X, t1, t2 ≥ 0.

For details of topological preliminaries on non-Archimedean Menger PM-
spaces, we refer to Cho, Ha and Chang [3].

Definition 2.4. [2, 3] An N.A. Menger PM-space (X,F, ∆) is said to be of
type (C)g if there exists a g ∈ Ω such that g(F (x, z; t)) ≤ g(F (x, y; t))+g(F (y, z; t))
for all x, y, z ∈ X, t ≥ 0, where Ω = {g | g : [0, 1] → [0,∞) is continuous, strictly
decreasing with g(1) = 0 and g(0) < ∞}.

Definition 2.5. [2, 3] An N.A. Menger PM-space (X,F, ∆) is said to be
of type (D)g if there exists a g ∈ Ω such that g(∆(t1, t2)) ≤ g(t1) + g(t2) for all
t1, t2 ∈ [0, 1].

Remark 2.1. [2, 3] (i) If N.A. Menger PM-space is of type (D)g then (X,F, ∆)
is of type (C)g.

(ii) If (X, F,∆) is N.A. Menger PM-space and ∆ ≥ ∆(r, s) = max(r+s−1, 1),
then (X, F,∆) is of type (D)g for g ∈ Ω and g(t) = 1− t.

Throughout this paper (X, F, ∆) is a complete N.A. Menger PM-space with a
continuous strictly increasing t-norm ∆.

Let φ : [0,∞) → [0,∞) be a function satisfying the condition

φ is upper semi-continuous from the right and φ(t) < t for t > 0. (Φ)

Definition 2.6. [2, 3] A sequence {xn} in the N.A. Menger PM-space
(X,F, ∆) converges to x if and only if for each ε > 0, λ > 0 there exists M(ε, λ)
such that g(F (xn, x; ε)) < g(1− λ) for all n > M .

Definition 2.7. [3] A sequence {xn} in the N.A. Menger PM-space is a
Cauchy sequence if and only if for each ε > 0, λ > 0 there exists M(ε, λ) such that
g(F (xn, xn+p; ε)) < g(1− λ) for all n > M and p ≥ 1.

Example 2.1. [3] Let X be any set with at least two elements. If we define
F (x, x; t) = 1 for all x ∈ X, t > 0 and F (x, y; t) = {0 if t ≤ 1 and 1 if t > 1},
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where x, y ∈ X, x 6= y, then (X,F, ∆) is the N.A. Menger PM-space with ∆(a, b) =
min(a, b) or (a.b).

Example 2.2. [3] Let X = R be the set of real numbers equipped with metric
defined as d(x, y) = |x− y|. Set F (x, y; t) = t

t+d(x,y) . Then (X, F,∆) is an N.A.
Menger PM-space with ∆ as continuous t-norm satisfying ∆(r, s) = min(r, s) or
(r.s).

Lemma 2.1. [3] If a function φ : [0,∞) → [0,∞) satisfies the condition (Φ),
then we get
(i) for all t ≥ 0, limn→∞ φn(t) = 0, where φn(t) is the n-th iteration of φ(t),

(ii) if {tn} is a non-decreasing sequence of real numbers and tn+1 ≤ φ(tn), n =
1, 2, . . . , then limn→∞ tn = 0. In particular, if t ≤ φ(t), for each t ≥ 0, then
t = 0.

Lemma 2.2. [3] Let {yn} be a sequence in X such that limn→∞ F (yn, yn+1; t) =
1 for each t > 0. If {yn} is not a Cauchy sequence in X, then there exist ε0 > 0,
t0 > 0, and two sequences {mi} and {ni} of positive integers such that
(i) mi > ni + 1 and ni →∞ as i →∞.

(ii) F (ymi , yni ; t0) < 1− ε0 and F (ymi−1, yni ; t0) ≥ 1− ε0, i = 1, 2, . . .

Definition 2.8. [10] Let A,S : X → X be mappings. A and S are said to
be compatible if limn→∞ g(F (ASxn, SAxn; t)) = 0 for all t > 0, when {xn} is a
sequence in X such that limn→∞Axn = z = limn→∞ Sxn for some z ∈ X.

Definition 2.9. [11, 12] Let A,S : X → X be mappings. A and S are said to
be weakly compatible if they commute at coincidence points. That is, if Ax = Sx
implies that ASx = SAx, for x in X.

3. Main results

Theorem 3.1. Let (X, F, ∆) be a complete N.A. Menger PM-space and
A,B, S, T : X → X be mappings satisfying
(i) A(X) ⊆ T (X), B(X) ⊆ S(X),

(ii) the pairs {A,S} and {B, T} are weakly compatible and
(iii) g(F (Ax,By; t)) ≤ φ[max{g(F (Sx, Ty; t)), g(F (Sx, Ax; t)), g(F (Ty, By; t)),

1
2 (g(F (Sx, By; t)) + g(F (Ty,Ax; t)))}],

for every x, y ∈ X, where φ satisfies the condition (Φ). Then A,B, S and T have
a unique common fixed point in X.

Proof. Since A(X) ⊆ T (X), for any x0 ∈ X, there exists a point x1 ∈ X such
that Ax0 = Tx1. Since B(X) ⊆ S(X), for this x1, we can choose a point x2 ∈ X
such that Bx1 = Sx2 and so on. Inductively, we can define a sequence {yn} in X
such that

y2n = Ax2n = Tx2n+1, y2n+1 = Bx2n+1 = Sx2n+2 for n = 1, 2, . . . (1)
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Let Mn = g(F (Axn, Bxn+1; t)) = g(F (yn, yn+1; t)) for n = 1, 2, . . . . Then

M2n = g(F (Ax2n, Bx2n+1; t))

≤ φ[max{g(F (Sx2n, Tx2n+1; t)), g(F (Sx2n, Ax2n; t)), g(F (Tx2n+1, Bx2n+1; t)),
1
2 (g(F (Sx2n, Bx2n+1; t)) + g(F (Tx2n+1, Ax2n; t))}]

≤ φ[max{g(F (y2n−1, y2n; t)), g(F (y2n−1, y2n; t)), g(F (y2n, y2n+1; t)),
1
2 (g(F (y2n−1, y2n+1; t)) + g(F (y2n, y2n; t)))}]

≤ φ[max{g(F (y2n−1, y2n; t)), g(F (y2n−1, y2n; t)), g(F (y2n, y2n+1; t)),
1
2 (g(F (y2n−1, y2n; t)) + g(F (y2n, y2n+1; t)))}]

i.e.
M2n ≤ φ[max{M2n−1, M2n−1,M2n, 1

2 (M2n−1 + M2n)}] (2)

If M2n > M2n−1 then by (2) M2n ≥ φ(M2n), a contradiction. If M2n−1 > M2n

then by (2) M2n ≤ φ(M2n−1). So by Lemma 2.1, we have limn→∞M2n = 0, i.e.,

lim
n

g(F (Ax2n, Bx2n+1; t)) = 0 i.e. lim
n

g(F (y2n, y2n+1; t)) = 0.

Similarly, we can show that

lim
n

g(F (Bx2n+1, Ax2n+2; t)) = 0 i.e. lim
n

g(F (y2n+1, y2n+2; t)) = 0.

Thus we have limn g(F (Axn, Bxn+1; t)) = 0 for all t > 0, i.e.

lim
n

g(F (yn, yn+1; t)) = 0 for all t > 0. (3)

Before proceeding with the proof of the theorem, we first prove the following
claim:

Claim. Let A,B, S and T : X → X be maps satisfying (i), (ii) and (iii) and
{yn} be defined by (1) such that

lim
n

g(F (yn, yn+1; t)) = 0 (4)

for all n. Then {yn} is a Cauchy sequence.
Proof of Claim. Since g ∈ Ω, it follows that limn→∞ F (yn, yn+1; t) = 1 for each

t > 0 if and only if limn→∞ g(F (yn, yn+1; t)) = 1 for each t > 0.
By Lemma 2.2, if {yn} is not a Cauchy sequence in X, there exists ε0 > 0,

t0 > 0 and two sequences {mi} and {ni} of positive integers such that
(A) mi > ni + 1 and ni →∞ as i →∞;
(B) g(F (ymi , yni ; t0)) > g(1− ε0) and g(F (ymi−1, yni ; t0)) ≤ g(1− ε0), i = 1, 2, . . . .

Since g(t) = 1− t, we have

g(1− ε0) < g(F (ymi , yni ; t0))

≤ g(F (ymi , ymi−1; t0)) + g(F (ymi−1, yni ; t0))

≤ g(F (ymi , ymi−1; t0)) + g(1− ε0). (5)
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As i →∞ in (5) we have

lim
n→∞

g(F (ymi
, yni

; t0)) = g(1− ε0). (6)

On the other hand, we have

g(1− ε0) < g(F (ymi
, yni

; t0))

≤ g(F (yni
, yni+1; t0)) + g(F (ymi

, yni+1; t0)) (7)

Now consider g(F (ymi
, yni+1; t0)) in (7) and assume that both mi and ni are even.

Then, by (iii), we have

g(F (ymi , yni+1; t0)) = g(F (Axmi , Bxni+1; t0))

≤ φ[max{g(F (Sxmi , Txni+1; t0)), g(F (Sxmi , Axmi ; t0)), g(F (Txni+1, Bxni+1; t0)),
1
2 (g(F (Sxmi

, Bxni+1; t0)) + g(F (Txni+1, Axmi
; t0)))}]

≤ φ[max{g(F (ymi−1, yni
; t0)), g(F (ymi−1, ymi

; t0)), g(F (yni
, yni+1; t0)),

1
2 (g(F (ymi−1, yni+1; t0)) + g(F (yni , ymi ; t0)))}]

Letting i →∞ in above equation, we have

g(1− ε0) ≤ φ[max{g(1− ε0), 0, 0, g(1− ε0)}],
i.e. g(1 − ε0) ≤ φ(g(1 − ε0)), which is a contradiction. Hence the sequence {yn}
defined by (1) is a Cauchy sequence, which concludes the proof of the claim.

Since X is complete, then the sequence {yn} converges to a point z in
X and so the subsequences limn→∞Ax2n, limn→∞Bx2n+1, limn→∞ Sx2n and
limn→∞ Tx2n+1 of {yn} also converge to the limit z.

Since B(X) ⊆ S(X), there exists a point u ∈ X such that z = Su. Then,
using (iii), we have

g(F (Au, z; t)) ≤ g(F (Au,Bx2n−1)) + g(F (Bx2n−1, z))

≤ φ[max{g(F (Su, Tx2n−1; t)), g(F (Su, Au; t)), g(F (Tx2n−1, Bx2n−1; t)),
1
2 (g(F (Su, Bx2n−1)) + g(F (Tx2n−1, Au)))}]

Letting n →∞, we get

g(F (Au, z; t)) ≤ φ[max{g(z, z; t)), g(F (z,Au; t)), g(F (z, z; t)),
1
2 (g(F (z, z; t)) + g(F (z, Au; t)))}]

= φ[max{0, g(F (z, Au; t)), 0, 1
2 (0 + g(F (z, Au; t)))}]

≤ φ(g(F (Au, z; t)))

for all t > 0, which implies that g(F (Au, z; t)) = 0 for all t > 0 by Lemma 2.1.
Therefore Au = Su = z. Since A(X) ⊆ T (X), there exists a point v in X such
that z = Tv. Again using (iii), we have

g(F (z, Bv; t)) = g(F (Au,Bv; t))
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≤ φ[max{g(Su, Tv; t)), g(F (Su,Au; t)), g(F (Tv, Bv; t)),
1
2 (g(F (Su, Bv; t)) + g(F (Tu, Au; t)))}]

≤ φ[max{g(z, z; t)), g(F (z, z; t)), g(F (z, Bv; t)),
1
2 (g(F (z,Bv; t)) + g(F (z, z; t)))}]

= φ[max{0, 0, g(F (z, Bv; t)), 1
2 (g(F (z,Bv; t)) + 0)}]

≤ φ(g(F (Bv, z; t))) for all t > 0,

which implies that g(F (Bv, z; t)) = 0 for all t > 0 by Lemma 2.1. Therefore
Bv = Tv = z. Since A and S are weakly compatible mappings, ASz = SAz i.e.
Az = Sz. Now we show that z is a fixed point of A. If Az 6= z, then by (iii), we
have

g(F (Az, z; t)) = g(F (Az, Bv; t)) ≤ φ[max{g(F (Sz, Tv; t)), g(F (Sz, Az; t)),

g(F (Tv, Bv; t)), 1
2 (g(F (Sz, Bv)) + g(F (Tv, Az)))}]

≤ φ[max{g(F (Az, z; t)), 0, 0, 1
2 (g(F (Az, z)) + g(F (z, Az)))}]

≤ φ(g(F (Az, z; t))) for all t > 0,

which implies that g(F (Az, z; t)) = 0 for all t > 0 by Lemma 2.1. Therefore Az = z.
Hence Az = Sz = z.

Similarly, as B and T are weakly compatible mappings, we have Bz = Tz = z,
since by (iii), we have

g(F (z, Bz; t)) = g(F (Az,Bz; t)) ≤ φ[max{g(F (Sz, Tz; t)), g(F (Sz, Az; t)),

g(F (Tz,Bz; t)), 1
2 (g(F (Sz, Bz)) + g(F (Tz, Az)))}]

≤ φ[max{g(F (z, Bz; t)), 0, 0, 1
2 (g(F (z, Bz)) + g(F (Bz, z)))}]

≤ φ(g(F (Bz, z; t))) for all t > 0,

which implies that g(F (Bz, z; t)) = 0 for all t > 0 by Lemma 2.1. Therefore Bz = z.
Hence Bz = Tz = z.

Thus Az = Bz = Sz = Tz = z, that is, z is a common fixed point of A,B, S
and T .

Finally, in order to prove the uniqueness of z, suppose that w is another com-
mon fixed point of A,B, S and T . Then by (iii), we have

g(F (z, w; t)) = g(F (Az, Bw; t)) ≤ φ[max{g(F (Sz, Tw; t)), g(F (Sz, Az; t)),

g(F (Tw, Bw; t)), 1
2 (g(F (Sz, Bw; t)) + g(Tw, Az; t)))}]

≤ φ(g(F (z, w; t))) for all t > 0,

which implies that g(F (z, w; t)) = 0 for all t > 0 by Lemma 2.1. Hence z = w.
Therefore z is a unique common fixed point of A,B, S and T .
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Corollary 3.1. Let A,S, T : X → X be the mappings satisfying
(i) A(X) ⊆ S(X) ∩ T (X),

(ii) the pairs {A,S} and {A, T} are weakly compatible and
(iii) g(F (Ax,Ay; t)) ≤ φ[max{g(F (Sx, Ty; t)), g(F (Sx,Ax; t)), g(F (Ty, Ay; t))

1
2 (g(F (Sx, Ay; t)) + g(F (Ty, Ax; t)))}],

for every x, y ∈ X, where φ satisfies the condition (Φ). Then A,S and T have a
unique common fixed point in X.

Corollary 3.2. Let A,S : X → X be the mappings satisfying
(i) A(X) ⊆ S(X),

(ii) the pair {A, S} is weakly compatible and
(iii) g(F (Ax,Ay; t)) ≤ φ[max{g(F (Sx, Sy; t)), g(F (Sx, Ax; t)), g(F (Sy, Ay; t))

1
2 (g(F (Sx, Ay; t)) + g(F (Sy, Ax; t)))}],

for every x, y ∈ X, where φ satisfies the condition (Φ). Then A and S have a
unique common fixed point in X.

We can also derive the following results from Theroem 3.1.

Corollary 3.3. Let S and T be two continuous self-maps of a complete N.A.
Menger PM-space (X,F, ∆). Let A be a self-map satisfying
(i) {A,S} and {A, T} are pointwise R-weakly commuting and A(X) ⊆ S(X) ∩

T (X),
(ii) g(F (Ax,Ay; t)) ≤ φ[max{g(F (Sx, Ty; t)), g(F (Sx,Ax; t)), g(F (Sx,Ay; t)),

g(F (Ty, Ay; t))}],
for every x, y ∈ X, where φ satisfies the condition (Φ). Then A,S and T have a
unique common fixed point in X.

Taking T = S in Corollary 3.3 we get the following corollary unifying Vasuki’s
theorem [20], which in turn also generalizes the result of Pant [15].

Corollary 3.4. Let (X, F,∆) be a complete N.A. Menger PM-space and S
be a continuous self-mapping of X. Let A be another self-mapping of X satisfying
that
(i) {A,S} is R-weakly commuting with A(X) ⊆ S(X),

(ii) g(F (Ax,Ay, a; t)) ≤ φ[max{g(F (Sx, Sy; t)), g(F (Sx,Ax; t)), g(F (Sx,Ay; t)),
g(F (Sy, Ay; t))}],

for each x, y ∈ X and φ satisfies the condition (Φ). Then A and S have a unique
common fixed point.

Remark 3.1. In Theorem 3.1, if S and T are continuous and pairs {A,S}
and {B, T} are compatible instead of condition (ii), the theorem remains true.

Remark 3.2. In our generalization the inequality condition (iii) satisfied by
the mappings A, B, S and T is stronger than that of Theorem 2 of Khan and
Sumitra [13] and Theorem 1.9 of Vasuki [20].



292 A. Singh, R. C. Dimri, S. Bhatt

Example 3.1. Let X = R and A,S, T : X → X be mappings such that
S(x) = 2x− 1,

T (x) =





−1− x, x < 0
2x− 1, 0 ≤ x < 1
x+1
2 , x ≥ 1

and A(x) =
{

0, x = −1
x2, x 6= −1

Then we see that
(i) {A,S} and {A, T} are point-wise R-weakly commuting.
(ii) A(X) ⊆ S(X) ∩ T (X).
(iii) 1 is the unique common fixed point of A,S and T .
(iv) g(F (Ax,Ay; t)) ≤ φ[max{g(F (Sx, Ty; t)), g(F (Sx,Ax; t)),

g(F (Sx, Ay; t)), g(F (Ty,Ay; t))}], for every x, y ∈ X is also true.

4. An application

Theorem 4.1. Let (X,F, ∆) be a complete N. A. Menger PM-space and
A,B, S and T be mappings from the product X ×X to X such that

A(X × {y}) ⊆ T (X × {y}), B(X × {y}) ⊆ S(X × {y}),
g(F (A(T (x, y), y), T (A(x, y), y); t)) ≤ g(F (A(x, y), T (x, y); t)),

g(F (B(S(x, y), y), S(B(x, y), y); t)) ≤ g(F (B(x, y), S(x, y); t)), (8)

for all t > 0. If S and T are continuous with respect to their direct argument and

g(F (A(x, y),B(x′, y′); t)) ≤ φ[max{g(F (S(x, y), T (x′, y′); t)),

g(F (S(x, y), A(x, y); t)), g(F (T (x′, y′), B(x′, y′); t)),
1
2 (g(F (S(x, y), B(x′, y′); t)) + g(F (T (x′, y′), A(x, y); t)))}] (9)

for all t > 0 and x, y, x′, y′ in X, then there exists only one point b in X such that

A(b, y) = S(b, y) = B(b, y) = T (b, y) ∀y ∈ X.

Proof. By (8) and (9),

g(F (A(x, y),B(x′, y′); t)) ≤ φ[max{g(F (S(x, y), T (x′, y′); t)),

g(F (S(x, y), A(x, y); t)), g(F (T (x′, y′), B(x′, y′); t)),
1
2 (g(F (S(x, y), B(x′, y′); t)) + g(F (T (x′, y′), A(x, y); t)))}]

for all t > 0, therefore by Theorem 3.1, for each y in X, there exists only one x(y)
in X such that

A(x(y), y) = S(x(y), y) = B(x(y), y) = T (x(y), y) = x(y),
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for every y, y′ in X and

g(F (x(y),x(y′); t)) = g(F (A(x(y), y), A(x(y′), y′); t))

≤ φ[max{g(F (A(x, y), A(x′, y′); t)), g(F (A(x, y), A(x, y); t)),

g(F (T (x′, y′), A(x′, y′); t)),
1
2 (g(F (A(x, y), A(x′, y′); t)) + g(F (A(x′, y′), A(x, y); t)))}]

= g(F (x(y), x(y′); t)).

This implies that x(y) = x(y′) and hence x(·) is some constant b ∈ X so that

A(b, y) = b = T (b, y) = S(b, y) = B(b, y) ∀y ∈ X.
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