A COMMON FIXED POINT THEOREM FOR WEAKLY COMPATIBLE MAPPINGS IN NON-ARCHIMEDEAN MENGER PM-SPACES

Amit Singh, R.C. Dimri and Sandeep Bhatt

Abstract. In the present paper we prove a unique common fixed point theorem for four weakly compatible self maps in non-Archimedean Menger PM-spaces without using the notion of continuity. Our result generalizes and extends the results of Khan and Sumitra [M.A. Khan, Sumitra, A common fixed point theorem in non-Archimedean Menger PM-space, Novi Sad J. Math. 39 (1) (2009), 81–87] and others.

1. Introduction

Non-Archimedean probabilistic metric spaces and some topological preliminaries on them were first studied by Istrătescu and Crivăt [9] (see also [8]). Some fixed point theorems for mappings on non-Archimedean Menger spaces have been proved by Istrătescu [6, 7] as a result of the generalizations of some of the results of Sehgal and Bharucha-Reid [16] and Sherwood [17]. Achari [1] studied the fixed points of quasi-contraction type mappings in non-Archimedean PM-spaces and generalized the results of Istrătescu [7]. Recently Khan and Sumitra [13] proved a common fixed point theorem for three pointwise R-weakly commuting mappings in complete non-Archimedean Menger PM-spaces. In the present paper we prove a unique common fixed point theorem for four weakly compatible self maps in non-Archimedean Menger PM-spaces without using the notion of continuity. Our result generalizes and extends the results of Khan and Sumitra [13] and others.

2. Preliminaries

DEFINITION 2.1. [7, 9] Let X be any non-empty set and D be the set of all left continuous distribution functions. An ordered pair (X, F) is said to be non-Archimedean probabilistic metric space (N.A. PM-space) if F is a mapping from $X \times X$ into D satisfying the following conditions, where the value of F at $(x, y) \in X \times X$ is represented by $F_{x,y}$ or F(x, y) for all $x, y \in X$ such that

²⁰¹⁰ AMS Subject Classification: 47H10, 54H25.

 $Keywords\ and\ phrases:$ Non-Archimedean Menger PM-spaces; weakly compatible maps; common fixed point.

²⁸⁵

- (i) F(x, y; t) = 1 for all t > 0 if only if x = y;
- (ii) F(x, y; t) = F(y, x; t);
- (iii) F(x, y; 0) = 0;
- (iv) If $F(x, y; t_1) = F(y, z; t_2) = 1$ then $F(x, z; \max\{t_1, t_2\}) = 1$ for all $x, y, z \in X$.

DEFINITION 2.2. [14] A t-norm is a function $\Delta : [0,1] \times [0,1] \rightarrow [0,1]$ which is associative, commutative, non-decreasing in each coordinate and $\Delta(a,1) = a$ for all $a \in [0,1]$.

DEFINITION 2.3. [8, 10] A non-Archimedean Menger PM-space is an ordered triplet (X, F, Δ) , where Δ is a t-norm and (X, F) is an N.A. PM-space satisfying the following condition:

 $F(x, z; \max\{t_1, t_2\}) \ge \Delta(F(x, y; t_1), F(y, z; t_2)) \text{ for all } x, y, z \in X, t_1, t_2 \ge 0.$

For details of topological preliminaries on non-Archimedean Menger PMspaces, we refer to Cho, Ha and Chang [3].

DEFINITION 2.4. [2, 3] An N.A. Menger PM-space (X, F, Δ) is said to be of type $(C)_g$ if there exists a $g \in \Omega$ such that $g(F(x, z; t)) \leq g(F(x, y; t)) + g(F(y, z; t))$ for all $x, y, z \in X, t \geq 0$, where $\Omega = \{g \mid g : [0, 1] \rightarrow [0, \infty)$ is continuous, strictly decreasing with g(1) = 0 and $g(0) < \infty\}$.

DEFINITION 2.5. [2, 3] An N.A. Menger PM-space (X, F, Δ) is said to be of type $(D)_g$ if there exists a $g \in \Omega$ such that $g(\Delta(t_1, t_2)) \leq g(t_1) + g(t_2)$ for all $t_1, t_2 \in [0, 1]$.

REMARK 2.1. [2, 3] (i) If N.A. Menger PM-space is of type $(D)_g$ then (X, F, Δ) is of type $(C)_g$.

(ii) If (X, F, Δ) is N.A. Menger PM-space and $\Delta \ge \Delta(r, s) = \max(r+s-1, 1)$, then (X, F, Δ) is of type $(D)_g$ for $g \in \Omega$ and g(t) = 1 - t.

Throughout this paper (X, F, Δ) is a complete N.A. Menger PM-space with a continuous strictly increasing t-norm Δ .

Let $\phi: [0,\infty) \to [0,\infty)$ be a function satisfying the condition

 ϕ is upper semi-continuous from the right and $\phi(t) < t$ for t > 0. (Φ)

DEFINITION 2.6. [2, 3] A sequence $\{x_n\}$ in the N.A. Menger PM-space (X, F, Δ) converges to x if and only if for each $\epsilon > 0$, $\lambda > 0$ there exists $M(\epsilon, \lambda)$ such that $g(F(x_n, x; \epsilon)) < g(1 - \lambda)$ for all n > M.

DEFINITION 2.7. [3] A sequence $\{x_n\}$ in the N.A. Menger PM-space is a Cauchy sequence if and only if for each $\epsilon > 0$, $\lambda > 0$ there exists $M(\epsilon, \lambda)$ such that $g(F(x_n, x_{n+p}; \epsilon)) < g(1 - \lambda)$ for all n > M and $p \ge 1$.

EXAMPLE 2.1. [3] Let X be any set with at least two elements. If we define F(x, x; t) = 1 for all $x \in X$, t > 0 and $F(x, y; t) = \{0 \text{ if } t \leq 1 \text{ and } 1 \text{ if } t > 1\}$,

where $x, y \in X, x \neq y$, then (X, F, Δ) is the N.A. Menger PM-space with $\Delta(a, b) = \min(a, b)$ or (a.b).

EXAMPLE 2.2. [3] Let X = R be the set of real numbers equipped with metric defined as d(x, y) = |x - y|. Set $F(x, y; t) = \frac{t}{t + d(x, y)}$. Then (X, F, Δ) is an N.A. Menger PM-space with Δ as continuous t-norm satisfying $\Delta(r, s) = \min(r, s)$ or (r,s).

LEMMA 2.1. [3] If a function $\phi : [0, \infty) \to [0, \infty)$ satisfies the condition (Φ) , then we get

- (i) for all $t \ge 0$, $\lim_{n\to\infty} \phi^n(t) = 0$, where $\phi^n(t)$ is the n-th iteration of $\phi(t)$,
- (ii) if $\{t_n\}$ is a non-decreasing sequence of real numbers and $t_{n+1} \leq \phi(t_n)$, $n = 1, 2, \ldots$, then $\lim_{n\to\infty} t_n = 0$. In particular, if $t \leq \phi(t)$, for each $t \geq 0$, then t = 0.

LEMMA 2.2. [3] Let $\{y_n\}$ be a sequence in X such that $\lim_{n\to\infty} F(y_n, y_{n+1}; t) = 1$ for each t > 0. If $\{y_n\}$ is not a Cauchy sequence in X, then there exist $\epsilon_0 > 0$, $t_0 > 0$, and two sequences $\{m_i\}$ and $\{n_i\}$ of positive integers such that

- (i) $m_i > n_i + 1$ and $n_i \to \infty$ as $i \to \infty$.
- (*ii*) $F(y_{m_i}, y_{n_i}; t_0) < 1 \epsilon_0$ and $F(y_{m_i-1}, y_{n_i}; t_0) \ge 1 \epsilon_0$, i = 1, 2, ...

DEFINITION 2.8. [10] Let $A, S : X \to X$ be mappings. A and S are said to be compatible if $\lim_{n\to\infty} g(F(ASx_n, SAx_n; t)) = 0$ for all t > 0, when $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Ax_n = z = \lim_{n\to\infty} Sx_n$ for some $z \in X$.

DEFINITION 2.9. [11, 12] Let $A, S : X \to X$ be mappings. A and S are said to be weakly compatible if they commute at coincidence points. That is, if Ax = Sx implies that ASx = SAx, for x in X.

3. Main results

THEOREM 3.1. Let (X, F, Δ) be a complete N.A. Menger PM-space and $A, B, S, T: X \to X$ be mappings satisfying

- (i) $A(X) \subseteq T(X), B(X) \subseteq S(X),$
- (ii) the pairs $\{A, S\}$ and $\{B, T\}$ are weakly compatible and

$$\begin{array}{l} (iii) \ \ g(F(Ax, By; t)) \leq \phi[\max\{g(F(Sx, Ty; t)), g(F(Sx, Ax; t)), g(F(Ty, By; t)), \\ \frac{1}{2}(g(F(Sx, By; t)) + g(F(Ty, Ax; t)))\}], \end{array}$$

for every $x, y \in X$, where ϕ satisfies the condition (Φ). Then A, B, S and T have a unique common fixed point in X.

Proof. Since $A(X) \subseteq T(X)$, for any $x_0 \in X$, there exists a point $x_1 \in X$ such that $Ax_0 = Tx_1$. Since $B(X) \subseteq S(X)$, for this x_1 , we can choose a point $x_2 \in X$ such that $Bx_1 = Sx_2$ and so on. Inductively, we can define a sequence $\{y_n\}$ in X such that

$$y_{2n} = Ax_{2n} = Tx_{2n+1}, \quad y_{2n+1} = Bx_{2n+1} = Sx_{2n+2} \text{ for } n = 1, 2, \dots$$
(1)

Let
$$M_n = g(F(Ax_n, Bx_{n+1}; t)) = g(F(y_n, y_{n+1}; t))$$
 for $n = 1, 2, ...$ Then

$$\begin{aligned} M_{2n} &= g(F(Ax_{2n}, Bx_{2n+1}; t)) \\ &\leq \phi[\max\{g(F(Sx_{2n}, Tx_{2n+1}; t)), g(F(Sx_{2n}, Ax_{2n}; t)), g(F(Tx_{2n+1}, Bx_{2n+1}; t)) \\ &\qquad \frac{1}{2}(g(F(Sx_{2n}, Bx_{2n+1}; t)) + g(F(Tx_{2n+1}, Ax_{2n}; t)))\}] \\ &\leq \phi[\max\{g(F(y_{2n-1}, y_{2n}; t)), g(F(y_{2n-1}, y_{2n}; t)), g(F(y_{2n}, y_{2n+1}; t)), \\ &\qquad \frac{1}{2}(g(F(y_{2n-1}, y_{2n+1}; t)) + g(F(y_{2n}, y_{2n}; t)))g(F(y_{2n}, y_{2n+1}; t)), \\ &\qquad \frac{1}{2}(g(F(y_{2n-1}, y_{2n}; t)) + g(F(y_{2n-1}, y_{2n}; t)), g(F(y_{2n}, y_{2n+1}; t)), \\ &\qquad \frac{1}{2}(g(F(y_{2n-1}, y_{2n}; t)) + g(F(y_{2n}, y_{2n+1}; t)))g(F(y_{2n-1}, y_{2n+1}; t))) \end{bmatrix} \end{aligned}$$

i.e.

$$M_{2n} \le \phi[\max\{M_{2n-1}, M_{2n-1}, M_{2n}, \frac{1}{2}(M_{2n-1} + M_{2n})\}]$$
(2)

If $M_{2n} > M_{2n-1}$ then by (2) $M_{2n} \ge \phi(M_{2n})$, a contradiction. If $M_{2n-1} > M_{2n}$ then by (2) $M_{2n} \le \phi(M_{2n-1})$. So by Lemma 2.1, we have $\lim_{n\to\infty} M_{2n} = 0$, i.e.,

$$\lim_{n} g(F(Ax_{2n}, Bx_{2n+1}; t)) = 0 \text{ i.e. } \lim_{n} g(F(y_{2n}, y_{2n+1}; t)) = 0.$$

Similarly, we can show that

$$\lim_{n} g(F(Bx_{2n+1}, Ax_{2n+2}; t)) = 0 \text{ i.e. } \lim_{n} g(F(y_{2n+1}, y_{2n+2}; t)) = 0.$$

Thus we have $\lim_{n \to \infty} g(F(Ax_n, Bx_{n+1}; t)) = 0$ for all t > 0, i.e.

$$\lim_{n} g(F(y_n, y_{n+1}; t)) = 0 \quad \text{for all } t > 0.$$
(3)

Before proceeding with the proof of the theorem, we first prove the following claim:

CLAIM. Let A, B, S and $T: X \to X$ be maps satisfying (i), (ii) and (iii) and $\{y_n\}$ be defined by (1) such that

$$\lim_{n} g(F(y_n, y_{n+1}; t)) = 0$$
(4)

for all n. Then $\{y_n\}$ is a Cauchy sequence.

Proof of Claim. Since $g \in \Omega$, it follows that $\lim_{n \to \infty} F(y_n, y_{n+1}; t) = 1$ for each t > 0 if and only if $\lim_{n \to \infty} g(F(y_n, y_{n+1}; t)) = 1$ for each t > 0.

By Lemma 2.2, if $\{y_n\}$ is not a Cauchy sequence in X, there exists $\epsilon_0 > 0$, $t_0 > 0$ and two sequences $\{m_i\}$ and $\{n_i\}$ of positive integers such that

(A) $m_i > n_i + 1$ and $n_i \to \infty$ as $i \to \infty$;

(B) $g(F(y_{m_i}, y_{n_i}; t_0)) > g(1 - \epsilon_0)$ and $g(F(y_{m_i-1}, y_{n_i}; t_0)) \le g(1 - \epsilon_0), i = 1, 2, \dots$ Since g(t) = 1 - t, we have

$$g(1 - \epsilon_0) < g(F(y_{m_i}, y_{n_i}; t_0))$$

$$\leq g(F(y_{m_i}, y_{m_i-1}; t_0)) + g(F(y_{m_i-1}, y_{n_i}; t_0))$$

$$\leq g(F(y_{m_i}, y_{m_i-1}; t_0)) + g(1 - \epsilon_0).$$
(5)

As $i \to \infty$ in (5) we have

$$\lim_{n \to \infty} g(F(y_{m_i}, y_{n_i}; t_0)) = g(1 - \epsilon_0).$$
(6)

On the other hand, we have

$$g(1 - \epsilon_0) < g(F(y_{m_i}, y_{n_i}; t_0)) \leq g(F(y_{n_i}, y_{n_i+1}; t_0)) + g(F(y_{m_i}, y_{n_i+1}; t_0))$$
(7)

Now consider $g(F(y_{m_i}, y_{n_i+1}; t_0))$ in (7) and assume that both m_i and n_i are even. Then, by (iii), we have

$$\begin{split} g(F(y_{m_i}, y_{n_i+1}; t_0)) &= g(F(Ax_{m_i}, Bx_{n_i+1}; t_0)) \\ &\leq \phi[\max\{g(F(Sx_{m_i}, Tx_{n_i+1}; t_0)), g(F(Sx_{m_i}, Ax_{m_i}; t_0)), g(F(Tx_{n_i+1}, Bx_{n_i+1}; t_0)), \\ & \frac{1}{2}(g(F(Sx_{m_i}, Bx_{n_i+1}; t_0)) + g(F(Tx_{n_i+1}, Ax_{m_i}; t_0)))\}] \\ &\leq \phi[\max\{g(F(y_{m_i-1}, y_{n_i}; t_0)), g(F(y_{m_i-1}, y_{m_i}; t_0)), g(F(y_{n_i}, y_{n_i+1}; t_0)), \\ & \frac{1}{2}(g(F(y_{m_i-1}, y_{n_i+1}; t_0)) + g(F(y_{n_i}, y_{m_i}; t_0)))\}] \end{split}$$

Letting $i \to \infty$ in above equation, we have

$$g(1 - \epsilon_0) \le \phi[\max\{g(1 - \epsilon_0), 0, 0, g(1 - \epsilon_0)\}],$$

i.e. $g(1 - \epsilon_0) \leq \phi(g(1 - \epsilon_0))$, which is a contradiction. Hence the sequence $\{y_n\}$ defined by (1) is a Cauchy sequence, which concludes the proof of the claim.

Since X is complete, then the sequence $\{y_n\}$ converges to a point z in X and so the subsequences $\lim_{n\to\infty} Ax_{2n}$, $\lim_{n\to\infty} Bx_{2n+1}$, $\lim_{n\to\infty} Sx_{2n}$ and $\lim_{n\to\infty} Tx_{2n+1}$ of $\{y_n\}$ also converge to the limit z.

Since $B(X) \subseteq S(X)$, there exists a point $u \in X$ such that z = Su. Then, using (iii), we have

$$g(F(Au, z; t)) \leq g(F(Au, Bx_{2n-1})) + g(F(Bx_{2n-1}, z))$$

$$\leq \phi[\max\{g(F(Su, Tx_{2n-1}; t)), g(F(Su, Au; t)), g(F(Tx_{2n-1}, Bx_{2n-1}; t)), \frac{1}{2}(g(F(Su, Bx_{2n-1})) + g(F(Tx_{2n-1}, Au)))\}]$$

Letting $n \to \infty$, we get

$$\begin{split} g(F(Au,z;t)) &\leq \phi[\max\{g(z,z;t)), g(F(z,Au;t)), g(F(z,z;t)), \\ & \frac{1}{2}(g(F(z,z;t)) + g(F(z,Au;t)))\}] \\ &= \phi[\max\{0,g(F(z,Au;t)), 0, \frac{1}{2}(0 + g(F(z,Au;t)))\}] \\ &\leq \phi(g(F(Au,z;t))) \end{split}$$

for all t > 0, which implies that g(F(Au, z; t)) = 0 for all t > 0 by Lemma 2.1. Therefore Au = Su = z. Since $A(X) \subseteq T(X)$, there exists a point v in X such that z = Tv. Again using (iii), we have

$$g(F(z, Bv; t)) = g(F(Au, Bv; t))$$

A. Singh, R. C. Dimri, S. Bhatt

$$\begin{split} &\leq \phi[\max\{g(Su,Tv;t)),g(F(Su,Au;t)),g(F(Tv,Bv;t)),\\ &\frac{1}{2}(g(F(Su,Bv;t))+g(F(Tu,Au;t)))\}]\\ &\leq \phi[\max\{g(z,z;t)),g(F(z,z;t)),g(F(z,Bv;t)),\\ &\frac{1}{2}(g(F(z,Bv;t))+g(F(z,z;t)))\}]\\ &= \phi[\max\{0,0,g(F(z,Bv;t)),\frac{1}{2}(g(F(z,Bv;t))+0)\}]\\ &\leq \phi(g(F(Bv,z;t))) \text{ for all } t>0, \end{split}$$

which implies that g(F(Bv, z; t)) = 0 for all t > 0 by Lemma 2.1. Therefore Bv = Tv = z. Since A and S are weakly compatible mappings, ASz = SAz i.e. Az = Sz. Now we show that z is a fixed point of A. If $Az \neq z$, then by (iii), we have

$$\begin{split} g(F(Az,z;t)) &= g(F(Az,Bv;t)) \leq \phi[\max\{g(F(Sz,Tv;t)), g(F(Sz,Az;t)), \\ g(F(Tv,Bv;t)), \frac{1}{2}(g(F(Sz,Bv)) + g(F(Tv,Az)))\}] \\ &\leq \phi[\max\{g(F(Az,z;t)), 0, 0, \frac{1}{2}(g(F(Az,z)) + g(F(z,Az)))\}] \\ &\leq \phi(g(F(Az,z;t))) \text{ for all } t > 0, \end{split}$$

which implies that g(F(Az, z; t)) = 0 for all t > 0 by Lemma 2.1. Therefore Az = z. Hence Az = Sz = z.

Similarly, as B and T are weakly compatible mappings, we have Bz = Tz = z, since by (iii), we have

$$\begin{split} g(F(z,Bz;t)) &= g(F(Az,Bz;t)) \leq \phi[\max\{g(F(Sz,Tz;t)),g(F(Sz,Az;t)),\\ g(F(Tz,Bz;t)),\frac{1}{2}(g(F(Sz,Bz)) + g(F(Tz,Az)))\}] \\ &\leq \phi[\max\{g(F(z,Bz;t)),0,0,\frac{1}{2}(g(F(z,Bz)) + g(F(Bz,z)))\}] \\ &\leq \phi(g(F(Bz,z;t))) \text{ for all } t > 0, \end{split}$$

which implies that g(F(Bz, z; t)) = 0 for all t > 0 by Lemma 2.1. Therefore Bz = z. Hence Bz = Tz = z.

Thus Az = Bz = Sz = Tz = z, that is, z is a common fixed point of A, B, S and T.

Finally, in order to prove the uniqueness of z, suppose that w is another common fixed point of A, B, S and T. Then by (iii), we have

$$\begin{split} g(F(z,w;t)) &= g(F(Az,Bw;t)) \leq \phi[\max\{g(F(Sz,Tw;t)),g(F(Sz,Az;t)),\\ g(F(Tw,Bw;t)),\frac{1}{2}(g(F(Sz,Bw;t)) + g(Tw,Az;t)))\}]\\ &\leq \phi(g(F(z,w;t))) \ \text{for all} \ t > 0, \end{split}$$

which implies that g(F(z, w; t)) = 0 for all t > 0 by Lemma 2.1. Hence z = w. Therefore z is a unique common fixed point of A, B, S and T.

COROLLARY 3.1. Let $A, S, T : X \to X$ be the mappings satisfying (i) $A(X) \subseteq S(X) \cap T(X)$,

- (ii) the pairs $\{A, S\}$ and $\{A, T\}$ are weakly compatible and
- $\begin{array}{ll} (iii) \ g(F(Ax,Ay;t)) \leq \phi[\max\{g(F(Sx,Ty;t)), g(F(Sx,Ax;t)), g(F(Ty,Ay;t)) \\ & \frac{1}{2}(g(F(Sx,Ay;t)) + g(F(Ty,Ax;t)))\}], \end{array}$

for every $x, y \in X$, where ϕ satisfies the condition (Φ) . Then A, S and T have a unique common fixed point in X.

COROLLARY 3.2. Let $A, S: X \to X$ be the mappings satisfying

- (i) $A(X) \subseteq S(X)$,
- (ii) the pair $\{A, S\}$ is weakly compatible and
- (*iii*) $g(F(Ax, Ay; t)) \le \phi[\max\{g(F(Sx, Sy; t)), g(F(Sx, Ax; t)), g(F(Sy, Ay; t)) \\ \frac{1}{2}(g(F(Sx, Ay; t)) + g(F(Sy, Ax; t)))\}],$

for every $x, y \in X$, where ϕ satisfies the condition (Φ). Then A and S have a unique common fixed point in X.

We can also derive the following results from Theorem 3.1.

COROLLARY 3.3. Let S and T be two continuous self-maps of a complete N.A. Menger PM-space (X, F, Δ) . Let A be a self-map satisfying

- (i) $\{A, S\}$ and $\{A, T\}$ are pointwise R-weakly commuting and $A(X) \subseteq S(X) \cap T(X)$,
- (*ii*) $g(F(Ax, Ay; t)) \le \phi[\max\{g(F(Sx, Ty; t)), g(F(Sx, Ax; t)), g(F(Sx, Ay; t)), g(F(Ty, Ay; t))\}],$

for every $x, y \in X$, where ϕ satisfies the condition (Φ) . Then A, S and T have a unique common fixed point in X.

Taking T = S in Corollary 3.3 we get the following corollary unifying Vasuki's theorem [20], which in turn also generalizes the result of Pant [15].

COROLLARY 3.4. Let (X, F, Δ) be a complete N.A. Menger PM-space and S be a continuous self-mapping of X. Let A be another self-mapping of X satisfying that

(i) $\{A, S\}$ is R-weakly commuting with $A(X) \subseteq S(X)$,

 $\begin{array}{ll} (ii) \ \ g(F(Ax,Ay,a;t)) \leq \phi[\max\{g(F(Sx,Sy;t)),g(F(Sx,Ax;t)),g(F(Sx,Ay;t)),g(F($

for each $x, y \in X$ and ϕ satisfies the condition (Φ). Then A and S have a unique common fixed point.

REMARK 3.1. In Theorem 3.1, if S and T are continuous and pairs $\{A, S\}$ and $\{B, T\}$ are compatible instead of condition (ii), the theorem remains true.

REMARK 3.2. In our generalization the inequality condition (iii) satisfied by the mappings A, B, S and T is stronger than that of Theorem 2 of Khan and Sumitra [13] and Theorem 1.9 of Vasuki [20]. EXAMPLE 3.1. Let X = R and $A, S, T: X \to X$ be mappings such that S(x) = 2x - 1,

$$T(x) = \begin{cases} -1 - x, & x < 0\\ 2x - 1, & 0 \le x < 1\\ \frac{x+1}{2}, & x \ge 1 \end{cases} \text{ and } A(x) = \begin{cases} 0, & x = -1\\ x^2, & x \ne -1 \end{cases}$$

Then we see that

- (i) $\{A, S\}$ and $\{A, T\}$ are point-wise R-weakly commuting.
- (ii) $A(X) \subseteq S(X) \cap T(X)$.
- (iii) 1 is the unique common fixed point of A, S and T.

(iv) $g(F(Ax, Ay; t)) \leq \phi[\max\{g(F(Sx, Ty; t)), g(F(Sx, Ax; t)), g(F(Sx, Ay; t)), g(F(Ty, Ay; t))\}]$, for every $x, y \in X$ is also true.

4. An application

THEOREM 4.1. Let (X, F, Δ) be a complete N. A. Menger PM-space and A, B, S and T be mappings from the product $X \times X$ to X such that

$$A(X \times \{y\}) \subseteq T(X \times \{y\}), \qquad B(X \times \{y\}) \subseteq S(X \times \{y\}), g(F(A(T(x, y), y), T(A(x, y), y); t)) \leq g(F(A(x, y), T(x, y); t)), g(F(B(S(x, y), y), S(B(x, y), y); t)) \leq g(F(B(x, y), S(x, y); t)),$$
(8)

for all t > 0. If S and T are continuous with respect to their direct argument and

$$g(F(A(x,y),B(x',y');t)) \le \phi[\max\{g(F(S(x,y),T(x',y');t)), g(F(S(x,y),A(x,y);t)), g(F(T(x',y'),B(x',y');t)), \frac{1}{2}(g(F(S(x,y),B(x',y');t)) + g(F(T(x',y'),A(x,y);t)))\}]$$
(9)

for all t > 0 and x, y, x', y' in X, then there exists only one point b in X such that

$$A(b,y) = S(b,y) = B(b,y) = T(b,y) \quad \forall y \in X.$$

Proof. By (8) and (9),

$$\begin{split} g(F(A(x,y),B(x',y');t)) &\leq \phi[\max\{g(F(S(x,y),T(x',y');t)),\\ g(F(S(x,y),A(x,y);t)),g(F(T(x',y'),B(x',y');t)),\\ \frac{1}{2}(g(F(S(x,y),B(x',y');t)) + g(F(T(x',y'),A(x,y);t)))\}] \end{split}$$

for all t > 0, therefore by Theorem 3.1, for each y in X, there exists only one x(y) in X such that

$$A(x(y), y) = S(x(y), y) = B(x(y), y) = T(x(y), y) = x(y),$$

for every y, y' in X and

$$\begin{split} g(F(x(y),x(y');t)) &= g(F(A(x(y),y),A(x(y'),y');t)) \\ &\leq \phi[\max\{g(F(A(x,y),A(x',y');t)),g(F(A(x,y),A(x,y);t)), \\ &\quad g(F(T(x',y'),A(x',y');t)), \\ &\quad \frac{1}{2}(g(F(A(x,y),A(x',y');t)) + g(F(A(x',y'),A(x,y);t)))\}] \\ &= g(F(x(y),x(y');t)). \end{split}$$

This implies that x(y) = x(y') and hence $x(\cdot)$ is some constant $b \in X$ so that

$$A(b,y) = b = T(b,y) = S(b,y) = B(b,y) \quad \forall y \in X. \quad \blacksquare$$

REFERENCES

- J. Achari, Fixed point theorems for a class of mappings on non-Archimedean probablistic metric spaces, Mathematica 25 (1983), 5–9.
- [2] S.S. Chang, Fixed point theorems for single-valued and multivalued mappings in nonarchimedean menger probabilistic metric spaces, Math. Japon. 35 (5) (1990), 875–885.
- [3] Y.J. Cho, K.S. Ha, S.S. Chang, it Common fixed point theorems for compatible mappings of type(A) in non-Archimedean Menger PM-spaces, Math. Japon. 46 (1) (1997), 169–179.
- [4] Y.J. Cho, H.K. Pathak, S.M. Kang, Remarks on R-weakly commuting maps and common fixed point theorems, Bull. Korean Math. Soc. 34 (1997), 247–257.
- [5] R.C. Dimri, B.D. Pant, Fixed point theorems in non-Archimedean Menger spaces, Kyungpook Math. J. 31 (1) (1991), 89–95.
- [6] I. Istrătescu, On some fixed point theorems with applications to the non-Archimedean Menger spaces, Attidella Acad. Naz. Lincei 58 (1975), 374–379.
- [7] I. Istrătescu, Fixed point theorems for some classes of contraction mappings on non-Archimedean probablistic spaces, Publ. Math. (Debrecen) 25 (1978), 29–34.
- [8] I. Istrătescu, Gh. Babescu, On the completion on non-Archimedean probabilistic metric spaces, Seminar de spatii metrice probabiliste, Universitatea Timisoara, 17, 1979.
- [9] I. Istrătescu, N. Crivat, On some classes of non-Archimedean probabilistic metric spaces, Seminar de spatii metrice probabiliste, Universitatea Timisoara, 12, 1974.
- [10] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9 (1986), 771–779.
- [11] G. Jungck Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci. 4 (1996), 199–215.
- [12] G. Jungck, B.E. Rhoades, Fixed point for setvalued functions without continuty, Indian J. Pure Appl. Math. 29 (3) (1998), 227–238.
- [13] M.A. Khan, Sumitra, A common fixed point theorem in non-Archimedean Menger PM-space, Novi Sad J. Math. 39 (1) (2009), 81–87.
- [14] K. Menger, Statistical matrices, Proc. Nat. Acad. Sci. USA 28 (3) (1942), 535–537.
- [15] R.P. Pant, Common fixed points of non-commuting mappings, J. Math. Anal. Appl. 188 (2) (1994), 436–440.
- [16] V.M. Sehgal, A.T. Bharucha-Reid, Fixed points of contraction mappings on probabilistic metric spaces, Math. Systems Theory, 6 (1972), 97–102.
- [17] H. Sherwood, Complete probabilistic metric spaces, Z. Wahrsch, Verw Gebiete, 20 (1971), 117–128.
- [18] A. Singh, R.C. Dimri, U.C. Gairola, A fixed point theorem for near-hybrid contraction, J. Nat. Acad. Math. 22 (2008), 11–22.

A. Singh, R. C. Dimri, S. Bhatt

- [19] A. Singh, R.C. Dimri, S. Joshi, Some fixed point theorems for pointwise R-weakly commuting hybrid mappings in metrically convex spaces, Armenian J. Math. 2 (4) (2009), 135–145.
- [20] R. Vasuki, Common fixed points for R-weakly commuting maps in fuzzy metric spaces, Indian J. Pure Appl. Math. 30 (1999), 419–423.

(received 27.07.2010; in revised form 24.09.2010)

Post Box-100, Department of Mathematics, H.N.B. Garhwal University, Srinagar (Garhwal), Uttarakhand-246174, INDIA

 ${\it E-mail: singhamit841@gmail.com, dimrirc@gmail.com, bhattsandeep1982@gmail.com}$