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A PSEUDO LAGUERRE METHOD

Aaron Melman

Abstract. Newton’s method to find the zero of a function in one variable uses the ratio
of the function and derivative values, but it does not use the information provided by these
quantities separately. It is a natural question to ask what a method would look like that does
take into account these values instead of just their ratio. We answer that question in the case
of a polynomial with all real zeros, the result being a method that is somewhat reminiscent of
Laguerre’s method.

1. Introduction

Finding the zeros of a function in one real variable is a classical problem in
numerical analysis. There exist many methods to solve it, but probably none are
as well-known as Newton’s method. For a function f(z), this method generates
iterates according to zn+1 = zn − f(zn)/f ′(zn) that, if one is lucky, converge to a
zero of f(z). Geometrically, each iterate is simply the intersection with the z-axis
of the tangent to f(z) at the previous iterate.

However, Newton’s method does not seem to deal very efficiently with the
information it requires: both f(z) and f ′(z) need to be computed, but only the
ratio of these two values determines the next iterate. In other words, the method
generates the same step from some point z̄ when, e.g., f(z̄) = 2 and f ′(z̄) = 4 as
when f(z̄) = 1 and f ′(z̄) = 2. Taking into account the value of f(z̄) would allow
one to distinguish between these two situations, and the question arises whether
it would be possible to amend Newton’s method in a natural way so that it does.
We propose one way to achieve this in the case of a polynomial with all real zeros
when the starting point lies outside the interval formed by those zeros. Although
somewhat uglier, the resulting method is faster than Newton’s method and can be
interpreted as a downgraded Laguerre method (see below).

The purpose here is to discover what kind of method could result from taking
both f(z̄) and f ′(z̄) into account instead of just their ratio, regardless of the merits
or lack thereof such a method would exhibit (although we will definitely discuss this
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as well). We are motivated by pure curiosity and our results are more theoretical
than practical, although some potential applications are pointed out.

In [6] Newton’s method was derived for a polynomial p(z) with all real zeros
by asking the following question: given p′(z̄)/p(z̄) for a point z̄ to the right of the
largest zero of p(z), what is the largest possible zero of all polynomials of the same
degree? The answer to that question yields an upper bound on the largest zero of
the polynomial p(z), and that upper bound turns out to be what one obtains by
carrying out one Newton step from the point z̄. An analogous situation arises with
a point z̄ to the left of the smallest zero. A similar question, this time using both
p′(z̄)/p(z̄) and (p′(z̄)/p(z̄))′, leads to Laguerre’s method [3, 6], which is better and
faster than Newton’s method, but at the price of computing the second derivative.
It is this general approach that we will use to obtain our results. We will concentrate
on the largest zero, the treatment of the smallest zero being entirely analogous.

2. Definition of the method

Throughout, we assume that the polynomial we seek the zeros of is given by

p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 = (z − x1)(z − x2) · · · (z − xn), (1)

with n ≥ 3, and where the zeros {xj}n
j=1 are all real and satisfy x1 ≥ x2 ≥ · · · ≥ xn.

We define the function φ(z) as the logarithmic derivative of p(z) for which it can
easily be verified that

φ(z) =
p′(z)
p(z)

=
n∑

j=1

1
z − xj

.

Clearly, for any z > x1, we have that p(z) > 0, p′(z) > 0, and φ(z) > 0.
In [6] the following optimization problem was considered for z̄ > x1:

sup
{

ζ1 :
n∑

j=1

1
z̄ − ζj

= φ(z̄); ζj < z̄, j = 1, 2, . . . , n

}
, (2)

where the variables of the problem are the ζj ’s. Its solution is obtained for ζ1 =
z̄ − 1/φ(z̄) and ζj = −∞ (j 6= 1), resulting in Newton’s iteration. Likewise [3, 6],
Laguerre’s method is obtained from

sup
{

ζ1 :
n∑

j=1

1
z̄ − ζj

= φ(z̄);
n∑

j=1

1
(z̄ − ζj)2

= φ′(z̄); ζj < z̄, j = 1, 2, . . . , n

}
. (3)

Its solution is given by

ζ1 = z̄ − n

φ(z̄) +
√

(n− 1) (nφ′(z̄)− φ2(z̄))
.

In other words, both the Newton and Laguerre iteration formulas can be ob-
tained for a polynomial with all real zeros from a starting point outside the interval
containing the zeros by considering an appropriate optimization problem. The same
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is also true for Ostrowski’s “square root” method [6]. This strategy seems tailor-
made for what we have in mind since adding requirements simply translates into
adding constraints to the same optimization problem. Our requirement to utilize
the value p(z̄) means adding just one constraint to the problem defining Newton’s
method. The resulting method can then be seen as belonging to the same family
as several classical methods.

Even though this optimization framework is restricted to polynomials with all
real zeros and a real starting point outside the interval containing them, the meth-
ods it generates can have wider validity and additional properties. For example,
both Newton’s and Laguerre’s methods are valid for general polynomials and start-
ing points, including imaginary ones, but Newton’s method does not necessarily
converge whereas Laguerre’s method converges from any starting point when all
zeros are real.

Let us now go back to our original purpose, namely to incorporate the infor-
mation provided by both p(z̄) and p′(z̄). Using the aforementioned optimization
framework, we compute an upper bound on x1 by solving

sup
{

ζ1 :
n∏

j=1

(z̄ − ζj) = p(z̄);
n∑

j=1

1
z̄ − ζj

= φ(z̄); ζj < z̄, j = 1, 2, . . . , n

}
. (4)

Looking at the equality constraint in (2), which defined Newton’s method, we see
that the closer z̄ is to x1, the more informative that constraint becomes because
then φ(z̄) ≈ 1/(z̄−x1), which implies that ζ1 ≈ x1, i.e., we can expect a close upper
bound on x1. A similar situation exists for both constraints in Laguerre’s method
and a similar situation also exists for (4) since it can equivalently be written as

sup
{

ζ1 :
n∑

j=1

ln (z̄ − ζj) = ln (p(z̄));
n∑

j=1

1
z̄ − ζj

= φ(z̄); ζj < z̄, j = 1, 2, . . . , n

}
.

(5)
Thus we have two constraints that behave very much like the two constraints in
Laguerre’s method, although they are not as effective since the less negative the
power appearing in the equality constraints, the worse the upper bound. The equal-
ity constraints in (5) are like the ones for Laguerre’s method but with the exponents
increased from −1 to a natural logarithm, and from −2 to −1, respectively. Similar,
but not as good, which is the price for not computing the second derivative, and
therefore a “pseudo Laguerre method”. We note that it is guaranteed to be better
than Newton’s method because the defining optimization problem problem is more
constrained, leading to a lower upper bound.

3. Derivation of the method

Next, we need to solve the optimization problem in (4). This is done in the
following theorem.

Theorem 1. Define p(z) = (z − x1)(z − x2) · · · (z − xn), where all the xj are
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real, n ≥ 3, and φ(z) = p′(z)/p(z). Then, for any z̄ > x1,

sup
{

ζ1 :
n∏

j=1

(z̄ − ζj) = p(z̄);
n∑

j=1

1
z̄ − ζj

= φ(z̄); ζj < z̄, j = 1, 2, . . . , n

}

is obtained for ζ∗ = z̄ − 1/sn−1
∗ , where s∗ > 0 is the largest zero of the function

g(s) = sn − φ(z̄)s +
n− 1

p(z̄)
1

n−1
.

This defines one iteration of our method, z̄ being the current iterate and ζ∗ being
the next one.

Proof. With the change of variables ηj = 1/(z̄− ζj), the optimization problem
is equivalent to solving

sup
{

η1 :
n∏

j=1

ηj =
1

p(z̄)
;

n∑
j=1

ηj = φ(z̄); ηj > 0, j = 1, 2, . . . , n

}
, (6)

where p(z̄), φ(z̄) > 0. Replacing the constraints ηj > 0 in (6) by ηj ≥ 0 does not
change the optimal value because ηj = 0 is not feasible for any j, but it does make
the feasible set closed and bounded and therefore compact. Since the functions
in the constraints and the objective function are all differentiable on this compact
feasible set, the supremum will be attained on that set and can be found among the
points satisfying the first order (Karush-Kuhn-Tucker) optimality conditions (see,
e.g., [2, Ch. 2]). These conditions state that there exist Lagrange multipliers λ and
µ such that

1 + λ

n∏

j=2

ηj + µ = 0 and λ

n∏

j=1
j 6=k

ηj + µ = 0 for k = 2, . . . , n.

The multipliers corresponding to the nonnegativity constraints do not play a role
because they are zero since ηj = 0 is not feasible. If, for k = 2, . . . , n, we multiply
the kth equation by ηk, then the first constraint in (6) gives λ/p(z̄) + µηk = 0,
which in turn means that ηk = −λ/(µp(z̄)), a value independent of k, because
µ 6= 0 (otherwise λ = 0 also and that would violate the first optimality condition).
Setting u = −λ/(µp(z̄)), the optimal solution is therefore obtained for η2 = η3 =
· · · = ηn = u, and we have

η1u
n−1 =

1
p(z̄)

and η1 + (n− 1)u = φ(z̄).

Eliminating u yields

η
n

n−1
1 − φ(z̄)η

1
n−1
1 + θ(z̄)

n
1−n = 0, where θ(z̄) =

(
(n− 1)p(z̄)

) 1
n

n− 1
. (7)
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The equation for η1 can be written as g(η1/(n−1)
1 ) = 0, where g(s) = sn − φ(z̄)s +

θ(z̄)
n

1−n . We note that this is the same function g(s) as in the statement of the
theorem. It is easy to verify that g′(0) < 0 and that g′′(s) > 0 for s > 0, which
implies that the function g(s) has a unique minimum at s̄ = (φ(z̄)/n)1/(n−1) > 0
(see Figure 1). For g(s) = 0 to have real solutions, one must have that g(s̄) ≤ 0.
To show that this is indeed the case, we denote by G and A the geometric and
arithmetic means of the positive numbers ηj , respectively, and observe that p(z̄) =
1/Gn and φ(z̄) = nA. Because G ≤ A, this means that p(z̄)

1
n φ(z̄) = nA/G ≥ n.

We have

g(s̄) =
(

φ(z̄)
n

) n
n−1

− φ(z̄)
(

φ(z̄)
n

) 1
n−1

+

(
(n− 1)p(z̄)

)− 1
n−1

(n− 1)−
n

n−1
≤ 0

⇐⇒ (1− n)
(

φ(z̄)
n

) n
n−1

+ (n− 1)p(z̄)−
1

n−1 ≤ 0

⇐⇒ p(z̄)−
1

n−1 ≤
(

φ(z̄)
n

) n
n−1

⇐⇒ p(z̄)
1
n ≥ n

φ(z̄)
,

which is precisely the arithmetic-geometric means inequality. We have obtained
that g(s̄) ≤ 0 and the equation g(s) = 0 therefore has two solutions s1 ≤ s̄ ≤ s2,
which means that the solution of (6) is given by η1 = sn−1

2 . Setting s∗ = s2 and
using the change of variables introduced at the beginning concludes the proof.

Theorem 1 defines the raw form of the method we obtained for a polynomial
p(z) when the values of both p(z) and p′(z) are taken into account, rather than
just their ratio.

We remark that if x1 = x2 = · · · = xn, then in the proof of the previous
theorem we have s̄ = (z̄ − x1)

−1/(n−1) and g(s̄) = 0, so that s1 = s2 = s̄. This
means that η1 = 1/(z̄−x1) and therefore ζ1 = x1, i.e., the method converges in one
iteration. The same property is not true for Newton’s method, although it does
hold for Laguerre’s method. Therefore, unless specifically included, we will exclude
this trivial case in what follows.

Let us now recast our method in a more convenient form. Since the point s̄ at
which the function g(s) in the proof of Theorem 1 achieves its minimum becomes
unbounded in the limit as the iterates approach the largest zero of p(z), so does s2,
which is larger than s̄. It would therefore be more practical to set η1 = (θ(z̄)y)−1,
with θ(z̄) as defined in (7), which turns computing the largest of the two zeros of
g(η1/(n−1)

1 ) = 0 on (0,+∞) into computing the smallest zero y∗ of the two zeros of
f(y) = 0 on (0, +∞), where

f(y) = y
n

n−1 − θ(z̄)φ(z̄)y + 1. (8)

The next iterate is then given by z̄ − θ(z̄)y∗. The function f(y) satisfies f ′(0) < 0
and f ′′(y) > 0 for y > 0, so that f ′(y) < 0 on [0, y∗] (see Figure 1). Because of
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these properties, Newton’s method can be used to solve f(y) = 0 with guaranteed
convergence from any starting point in [0, y∗]. Such a starting point could be
ȳ = 1/(θ(z̄)φ(z̄)) because ȳ > 0, f(ȳ) ≥ 0, and f ′(ȳ) < 0, which implies that
0 < ȳ ≤ y∗. It corresponds to the Newton step at z̄ for the original problem
p(z) = 0, which is never larger than y∗ because our method is guaranteed to be no
worse than Newton’s. In practice, a few Newton iterations usually suffice to solve
f(y) = 0.

The following theorem formally states our method, which we have called the
PL method (“pseudo Laguerre”), and summarizes its properties. We note that,
as was our goal, the PL method uses the values of both p(z) and p′(z) separately
unlike Newton’s method, which uses just their ratio.

Theorem 2. Consider a polynomial p(z) =
∏n

j=1(z − xj) with all real zeros
x1 ≥ x2 ≥ · · · ≥ xn, and n ≥ 3. Then the PL method, defined by the iteration
formula

zk+1 = zk −
(
1 + y

n
n−1
k

) p(zk)
p′(zk)

, (9)

where yk is the smallest positive solution of

y
n

n−1 −
(
(n− 1)p(zk)

) 1
n

n− 1
· p′(zk)

p(zk)
y + 1 = 0, (10)

converges monotonically to x1 from any starting point z0 > x1. This method is at
least as fast as Newton’s method and when p(z) has at least two distinct zeros, then it
has the same order of convergence as Newton’s method. When x1 = x2 = · · · = xn,
then the PL method converges in one iteration from any z0 > x1.

Proof. The iterate obtained from zk is given by zk − θ(zk)yk, where yk is the
smallest positive solution of

y
n

n−1 − θ(zk)φ(zk)y + 1 = 0. (11)

Since yk solves equation (11), it satisfies

θkyk =
1 + y

n
n−1
k

φ(zk)
,

so that the iteration formula can also be written as

zk+1 = zk −
(
1 + y

n
n−1
k

) p(zk)
p′(zk)

.

This, together with the definition of θ(z), reformulates the PL method as in the
statement of the theorem. It is clear from the optimization problem defining the
method in (4) and from (9) that it is at least as good as Newton’s method and that
it converges monotonically from any starting point z0 > x1.

Since yk corresponds to the largest positive zero s∗ of the function g(s)
in the proof of Theorem 1 (here with z̄ = zk) through the transformation
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s∗ = (θ(zk)yk)−1/(n−1), and because we also have from that proof that s∗ ≥
(φ(zk)/n)1/(n−1), we obtain

yk ≤ n

θ(zk)φ(zk)
. (12)

We now show that θ(zk)φ(zk) becomes unbounded as zk → x+
1 when the multiplicity

of x1 is ρ < n. In that case, we have

θ(zk)φ(zk) = (n− 1)
1−n

n p(zk)
1
n

n∑
j=1

1
zk − xj

= (n− 1)
1−n

n

n∏

j=1

(zk − xj)
1
n

n∑
j=1

1
zk − xj

= (n− 1)
1−n

n (zk − x1)
ρ/n

n∏

j=ρ+1

(zk − xj)
1
n

(
ρ

zk − x1
+

n∑
j=ρ+1

1
zk − xj

)
.

(13)

This means that

lim
zk→x+

1

θ(zk)φ(zk) = lim
zk→x+

1

ρ (n− 1)
1−n

n
∏n

j=ρ+1 (x1 − xj)
1
n

(zk − x1)
n−ρ

n

,

since the rest of the expression in (13) vanishes in the limit. Because n > ρ, this
limit is unbounded. With inequality (12) we have therefore obtained that yk → 0+

when zk → x+
1 , so that the PL method asymptotically becomes Newton’s method

and therefore has the same order of convergence.
The last point in the statement of the theorem was already demonstrated in

the comments following the proof of Theorem 1. We will nonetheless show how
it also follows from the formal statement of the method. Assume that x1 has
multiplicity n. Then

p(z0) = (z0 − x1)
n

, φ(z0) =
n

z0 − x1
, and θ(z0) = (n− 1)

1−n
n (z0 − x1) ,

which turns equation (11) into

y
n

n−1 − n (n− 1)
1−n

n y + 1 = 0.

This equation has a single real zero at y0 = (n− 1)
n−1

n . Substituting this value in
the iteration formula (9) yields

z1 = z0 −
(
1 + y

n
n−1
0

) p(z0)
p′(z0)

= z0 − (1 + (n− 1))
z0 − x1

n
= x1.

This completes the proof.
We note that in (9), yk can be replaced by any number w with 0 ≤ w ≤ yk to

yield an iterate that is greater than zk+1 (and therefore also an upper bound on the
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largest zero x1), but never worse than a Newton iterate. Candidates for w could
be any inexact solution obtained while solving (11), such as the starting point ȳ we
mentioned above.

Our method clearly lacks some of the niceties of Newton’s or Laguerre’s
method: to obtain the iterates, one needs to solve a nonlinear equation and nth
roots need to be computed. It is also not immediately clear if and how it could be
extended to the complex plane. On the other hand, it is guaranteed to be faster
than Newton’s method, it does not require second derivatives, and the nonlinear
equation that needs to be solved to obtain the next iterate will, in general, be much
easier to solve than p(z) = 0. One also has the option to only approximately solve
(11) and still improve over Newton’s method. Once the largest (or smallest) zero
is computed, and if so desired, some or all of the other zeros may be computed by
deflation or zero suppression.

One area where the PL method could be useful is in the computation of the
zeros of the characteristic polynomial of a matrix for which the second derivative is
expensive to compute. While this is certainly not the preferred method to compute
the eigenvalues of a general matrix, there are special structured matrices such as
Toeplitz matrices for which this is a valid approach (see, e.g, [5]). There are, of
course, other ways to avoid computing the second derivative, usually involving the
computation of function and derivative values at more than one point (see, e.g.,
[1, 4]).

4. Example

In this section we illustrate the properties of the PL method by comparing it
to the Newton and Laguerre methods for an 8th order polynomial with zeros at
−10,−4,−2,−1, 2, 3, 8, 9. The PL method is denoted by “L” when the solution
of (11) is exact (in this case, a relative accuracy of around 10−15), and by “PL1”
when that solution is approximated by ȳ from the previous section. When one or
two additional Newton steps are carried out from ȳ to approximate the solution of
(11), it is denoted by “PL2” and “PL3”, respectively. For an initial point z0 = 40,
we obtain the following first few iterates:

Newton: 40 , 35.1871 , 30.9915 , 27.3383 , 24.1622 , . . .

PL1: 40 , 32.0982 , 25.8829 , 21.0213 , 17.2536 , . . .

PL2: 40 , 22.6422 , 14.2023 , 10.6687 , 9.4450 , . . .

PL3: 40 , 15.8395 , 10.7316 , 9.4496 , 9.0742 , . . .

PL: 40 , 13.2656 , 10.1379 , 9.2713 , 9.0332 , . . .

Laguerre: 40 , 12.4542 , 9.5003 , 9.0183 , 9.0000 , . . .

It is also interesting to compare the number of iterations until convergence when
the starting point moves away from the largest zero x1 = 9. Situations where start-
ing points are relatively far from the zero are encountered in the aforementioned
application to Toeplitz matrices [5]. Here are the number of iterations for each
method for z0 = 40, 100, and 1000.
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Newton PL PL1 PL2 PL3 Laguerre

z0 = 40 20 8 14 9 8 6

z0 = 100 27 8 18 11 9 6

z0 = 1000 44 8 28 15 11 6

As we can see from these results, the PL method’s main strength is to improve
situations where the starting point lies far from the zero and Newton’s method
takes many small steps. Like Laguerre’s method, it is fairly insensitive to the
choice of the initial point and this remains true if the solution of equation (11) is
approximated with just one Newton iteration. For higher order polynomials, the
number of iterations increases, but its performance relative to the other methods
remains very similar. Not surprisingly, Laguerre’s method is faster than all the
other methods. In Figure 1, we have graphed the functions g(s) and f(y) for the
above polynomial when z̄ = 15.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30 35
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 1. The functions g(s) (left) and f(y) (right) for z̄ = 15 in the example.

Conclusion. In the case of a polynomial with all real zeros, we have found
an answer to the question of what a zerofinder would look like if it truly exploited
all the information available from the function and derivative values, instead of just
the ratio of the two as in Newton’s method. The resulting method is better but
more complicated than Newton’s method and reminiscent of Laguerre’s method.
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