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A GENERALIZATION OF FIXED POINT THEOREMS
IN S-METRIC SPACES
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Abstract. In this paper, we introduce S-metric spaces and give some of their properties.
Also we prove a fixed point theorem for a self-mapping on a complete S-metric space.

1. Introduction

Metric spaces are very important in mathematics and applied sciences. So,
some authors have tried to give generalizations of metric spaces in several ways. For
example, Gähler [3] and Dhage [2] introduced the concepts of 2-metric spaces and
D-metric spaces, respectively, but some authors pointed out that these attempts
are not valid (see [6–10]).

Mustafa and Sims [4] introduced a new structure of generalized metric spaces
which are called G-metric spaces as a generalization of metric spaces (X, d) to
develop and introduce a new fixed point theory for various mappings in this new
structure. Some authors [1, 5, 13] have proved some fixed point theorems in these
spaces.

Recently, Sedghi et al. [12] have introduced D∗-metric spaces which is a prob-
able modification of the definition of D-metric spaces introduced by Dhage [2] and
proved some basic properties in D∗-metric spaces, (see [11, 12]).

In the present paper, we introduce the concept of S-metric spaces and give
some of their properties. Then a common fixed point theorem for a self-mapping
on complete S-metric spaces is given.

We begin with the following definitions:

Definition 1.1. [4] Let X be a nonempty set and G : X ×X ×X → [0,∞)
be a function satisfying the following conditions for all x, y, z, a ∈ X,

(G1) G(x, y, z) = 0 if x = y = z,
(G2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y,
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(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with x 6= y,
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · ,
(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, x, a ∈ X.
Then the function G is called a generalized metric or a G-metricon X and the pair
(X,G) is called a G-metric space.

We can find some examples and basic properties of G-metric spaces in Mustafa
and Sims [4].

Definition 1.2 [12] Let X be a nonempty set. A generalized metric (or D∗-
metric) on X is a function: D∗ : X3 → R+ that satisfies the following conditions
for each x, y, z, a ∈ X.
(1) D∗(x, y, z) ≥ 0,
(2) D∗(x, y, z) = 0 if and only if x = y = z,
(3) D∗(x, y, z) = D∗(p{x, y, z}), (symmetry), where p is a permutation function,
(4) D∗(x, y, z) ≤ D∗(x, y, a) + D∗(a, z, z).
The pair (X, D∗) is called a generalized metric (or D∗-metric) space.

Immediate examples of such functions are:
(a) D∗(x, y, z) = max{d(x, y), d(y, z), d(z, x)},
(b) D∗(x, y, z) = d(x, y) + d(y, z) + d(z, x).
Here, d is the ordinary metric on X.
(c) If X = Rn then we define

D∗(x, y, z) = ||x + y − 2z||+ ||x + z − 2y||+ ||y + z − 2x||.
(d) If X = R+ then we define

D∗(x, y, z) =
{

0 if x = y = z,

max{x, y, z} otherwise,

Remark 1.3. It is easy to see that every G-metric is a D∗-metric, but in
general the converse does not hold, see the following example.

Example 1.4. If X = R, we define

D∗(x, y, z) = |x + y − 2z|+ |x + z − 2y|+ |y + z − 2x|.
It is easy to see that (R, D∗) is a D∗-metric, but it is not G-metric. Set x = 5,
y = −5 and z = 0 then G(x, x, y) ≤ G(x, y, z) does not hold.

Now, we introduce the concept of S-metric spaces which modifies D-metric
and G-metric spaces.

2. S-metric spaces

We begin with the following definition.
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Definition 2.1. Let X be a nonempty set. An S-metric on X is a function
S : X3 → [0,∞) that satisfies the following conditions, for each x, y, z, a ∈ X,
(1) S(x, y, z) ≥ 0,
(2) S(x, y, z) = 0 if and only if x = y = z,
(3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a)
The pair (X, S) is called an S-metric space.

Immediate examples of such S-metric spaces are:
(1) Let X = Rn and ‖ · ‖ a norm on X, then S(x, y, z) = ‖y + z − 2x‖+ ‖y − z‖

is an S-metric on X.
(2) Let X = Rn and ‖ · ‖ a norm on X, then S(x, y, z) = ‖x− z‖+ ‖y − z‖ is an

S-metric on X.
(3) Let X be a nonempty set, d is ordinary metric on X, then S(x, y, z) = d(x, z)+

d(y, z) is an S-metric on X.
Remark 2.2. It is easy to see that every D∗-metric is S-metric, but in general

the converse is not true, see the following example.
Example 2.3. Let X = Rn and ‖ · ‖ a norm on X, then S(x, y, z) = ‖y + z −

2x‖+‖y−z‖ is S-metric on X, but it is not D∗-metric because it is not symmetric.
Example 2.4. [intuitive geometric example for S-metric] Let X = R2, d

is an ordinary metric on X, therefore, S(x, y, z) = d(x, y) + d(x, z) + d(y, z) is
an S-metric on X. If we connect the points x, y, z by a line, we have a triangle
and if we choose a point a mediating this triangle then the inequality S(x, y, z) ≤
S(x, x, a) + S(y, y, a) + S(z, z, a) holds. In fact

S(x, y, z) = d(x, y) + d(x, z) + d(y, z)

≤ d(x, a) + d(a, y) + d(x, a) + d(a, z) + d(y, a) + d(a, z)

= S(x, x, a) + S(y, y, a) + S(z, z, a).

Lemma 2.5. In an S-metric space, we have S(x, x, y) = S(y, y, x).

Proof. By the third condition of S-metric, we get

S(x, x, y) ≤ S(x, x, x) + S(x, x, x) + S(y, y, x) = S(y, y, x) (1)

and similarly

S(y, y, x) ≤ S(y, y, y) + S(y, y, y) + S(x, x, y) = S(x, x, y). (2)

Hence, by (1) and (2), we obtain S(x, x, y) = S(y, y, x).

Definition 2.6. Let (X, S) be an S-metric space. For r > 0 and x ∈ X we
define the open ball BS(x, r) and closed ball BS [x, r] with a center x and a radius
r as follows:

BS(x, r) = {y ∈ X : S(y, y, x) < r},
BS [x, r] = {y ∈ X : S(y, y, x) ≤ r}.
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Example 2.7. Let X = R. Denote S(x, y, z) = |y + z − 2x| + |y − z| for all
x, y, z ∈ R. Therefore

BS(1, 2) = {y ∈ R : S(y, y, 1) < 2} = {y ∈ R : |y − 1| < 1} = (0, 2).

Definition 2.8. Let (X,S) be an S-metric space and A ⊂ X.
(1) If for every x ∈ A there exists r > 0 such that BS(x, r) ⊂ A, then the subset

A is called an open subset of X.
(2) A subset A of X is said to be S-bounded if there exists r > 0 such that

S(x, x, y) < r for all x, y ∈ A.
(3) A sequence {xn} in X converges to x if and only if S(xn, xn, x) → 0 as n →

∞. That is for each ε > 0 there exists n0 ∈ N such that for all n ≥ n0,
S(xn, xn, x) < ε and we denote this by limn→∞ xn = x.

(4) A sequence {xn} in X is called a Cauchy sequence if for each ε > 0 , there
exists n0 ∈ N such that S(xn, xn, xm) < ε for each n,m ≥ n0.

(5) The S-metric space (X, S) is said to be complete if every Cauchy sequence is
convergent.

(6) Let τ be the set of all A ⊂ X with x ∈ A if and only if there exists r > 0 such
that BS(x, r) ⊂ A. Then τ is a topology on X (induced by the S-metric S).

Lemma 2.9. Let (X, S) be an S-metric space. If r > 0 and x ∈ X, then the
ball BS(x, r) is an open subset of X.

Proof. Let y ∈ BS(x, r), hence S(y, y, x) < r. If we set δ = S(x, x, y) and
r′ = r−δ

2 then we prove that BS(y, r′) ⊆ BS(x, r). Let z ∈ BS(y, r′), therefore,
S(z, z, y) < r′. By the third condition of S-metric we have

S(z, z, x) ≤ S(z, z, y) + S(z, z, y) + S(x, x, y) < 2r′ + δ = r

and so BS(y, r′) ⊆ BS(x, r).

Lemma 2.10. Let (X, S) be an S-metric space. If the sequence {xn} in X
converges to x, then x is unique.

Proof. Let {xn} converges to x and y. Then for each ε > 0 there exist
n1, n2 ∈ N such that

n ≥ n1 =⇒ S(xn, xn, x) <
ε

2
and

n ≥ n2 =⇒ S(xn, xn, y) <
ε

2
.

If set n0 = max{n1, n2}, therefore for every n ≥ n0 and the third condition of
S-metric we get

S(x, x, y) ≤ 2S(x, x, xn) + S(y, y, xn) <
ε

2
+

ε

2
= ε.

Hence S(x, x, y) = 0 and so x = y.
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Lemma 2.11. Let (X,S) be an S-metric space. If the sequence {xn} in X
converges to x, then {xn} is a Cauchy sequence.

Proof. Since limn→∞ xn = x then for each ε > 0 there exists n1, n2 ∈ N such
that

n ≥ n1 ⇒ S(xn, xn, x) <
ε

4
and

m ≥ n2 ⇒ S(xm, xm, x) <
ε

2
.

If we set n0 = max{n1, n2}, therefore for every n,m ≥ n0 we get by the third
condition of S-metric

S(xn, xn, xm) ≤ 2S(xn, xn, x) + S(xm, xm, x) <
ε

2
+

ε

2
= ε.

Hence, {xn} is a Cauchy sequence.

Lemma 2.12. Let (X,S) be an S-metric space. If there exist sequences {xn}
and {yn} such that limn→∞ xn = x and limn→∞ yn = y, then lim

n→∞
S(xn, xn, yn) =

S(x, x, y).
Proof. Since limn→∞ xn = x and limn→∞ yn = y, then for each ε > 0 there

exist n1, n2 ∈ N such that

∀ n ≥ n1, S(xn, xn, x) <
ε

4
and

∀ n ≥ n2, S(yn, yn, y) <
ε

4
.

If set n0 = max{n1, n2}, therefore for every n ≥ n0 we get by the third condition
of S-metric

S(xn, xn, yn) ≤ 2S(xn, xn, x) + S(yn, yn, x)

≤ 2S(xn, xn, x) + 2S(yn, yn, y) + S(x, x, y)

<
ε

2
+

ε

2
+ S(x, x, y) = ε + S(x, x, y).

Hence we obtain
S(xn, xn, yn)− S(x, x, y) < ε. (3)

On the other hand, we get
S(x, x, y) ≤ 2S(x, x, xn) + S(y, y, xn)

≤ 2S(x, x, xn) + 2S(y, y, yn) + S(xn, xn, yn)

<
ε

2
+

ε

2
+ S(xn, xn, yn) = ε + S(xn, xn, yn),

that is
S(x, x, y)− S(xn, xn, yn) < ε. (4)

Therefore by relations (3) and (4) we have |S(xn, xn, yn)− S(x, x, y)| < ε, that is
lim

n→∞
S(xn, xn, yn) = S(x, x, y).

Definition 2.13. Let (X,S) be an S-metric space. A map F : X → X is
said to be a contraction if there exists a constant 0 ≤ L < 1 such that

S(F (x), F (x), F (y)) ≤ L S(x, x, y), for all x, y ∈ X.



Fixed point theorems in S-metric spaces 263

3. A generalization of fixed point theorems in S-metric spaces

Note that a contraction map is necessarily continuous because if xn → x in
the above condition we get F (xn) → F (x).

For notational purposes we define Fn(x), x ∈ X and n ∈ {0, 1, 2, . . . }, induc-
tively by F 0(x) = x and Fn+1(x) = F (Fn(x)).

The first result in this section is known as a similar Banach’s contraction
principle.

Theorem 3.1. Let (X, S) be a complete S-metric space and F : X → X be a
contraction. Then F has a unique fixed point u ∈ X. Furthermore, for any x ∈ X
we have limn→∞ Fn(x) = u with

S(Fn(x), Fn(x), u) ≤ 2Ln

1− L
S(x, x, F (x)).

Proof. First, we show the uniqueness. Suppose that there exist x, y ∈ X with
x = F (x) and y = F (y). Then

S(x, x, y) = S(F (x), F (x), F (y)) ≤ L S(x, x, y)

and therefore S(x, x, y) = 0.
To show the existence, we select x ∈ X and show that {Fn(x)} is a Cauchy

sequence. For n = 0, 1, . . . , we get by induction

S(Fn(x), Fn(x), Fn+1(x)) ≤ L S(Fn−1(x), Fn−1(x), Fn(x))
...

≤ Ln S(x, x, F (x)).

Thus for m > n we have

S(Fn(x),Fn(x), Fm(x))

≤ 2
m−2∑

i=n

S(F i(x), F i(x), F i+1(x)) + S(Fm−1(x), Fm−1(x), Fm(x))

≤ 2
m−2∑

i=n

Li S(x, x, F (x)) + Lm−1 S(x, x, F (x))

≤ 2Ln S(x, x, F (x))[1 + L + L2 + · · · ]

≤ 2Ln

1− L
S(x, x, F (x)).

That is for m > n,

S(Fn(x), Fn(x), Fm(x)) ≤ 2Ln

1− L
S(x, x, F (x)). (5)

This shows that {Fn(x)} is a Cauchy sequence and since X is complete there exists
u ∈ X with limn→∞ Fn(x) = u. Moreover, the continuity of F yields

u = lim
n→∞

Fn+1(x) = lim
n→∞

F (Fn(x)) = Fu.
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Therefore, u is a fixed point of F . Finally letting m →∞ in (5) we obtain

S(Fn(x), Fn(x), u) ≤ 2Ln

1− L
S(x, x, F (x)).

Example 3.2. Let X = R, then S(x, y, z) = |x − z| + |y − z| is an S-metric

on X. Define a self-map F on X by: F (x) =
1
2

sin x. We have

S(Fx, Fx, Fy) = |1
2
(sinx− sin y)|+ |1

2
(sinx− sin y)|

≤ 1
2
(|x− y|+ |x− y|) =

1
2
S(x, x, y)

for every x, y ∈ X. Furthermore, for any x ∈ X we have limn→∞ Fn(x) = 0 with

S(Fn(x), Fn(x), 0) ≤ 2Ln

1− L
S(x, x, F (x)), L =

1
2
.

It follows that all conditions of Theorem 3.1 hold and there exists u = 0 ∈ X such
that u = Fu.

Theorem 3.3. Let (X,S) be a compact S-metric space with F : X → X
satisfying

S(F (x), F (x), F (y)) < S(x, x, y) for all x, y ∈ X and x 6= y.

Then F has a unique fixed point in X.

Proof. The uniqueness part is easy. To show the existence, notice that the
map x 7→ S(x, x, F (x)) attains its minimum, say at x0 ∈ X. We have x0 = F (x0)
since otherwise

S(F (F (x0)), F (F (x0)), F (x0)) < S(F (x0), F (x0), x0) = S(x0, x0, F (x0))

which is a contradiction.
Next, we present a local version of Banach’s contraction principle.

Theorem 3.4. Let (X,S) be a complete S-metric space and let

BS(x0, r) = {x ∈ X : S(x, x, x0) < r}, where x0 ∈ X and r > 0.

Suppose that F : BS(x0, r) → X is a contraction with

S(F (x0), F (x0), x0) < (1− L)
r

2
.

Then F has a unique fixed point in BS(x0, r).

Proof. There exists r0 with 0 ≤ r0 < r such that S(F (x0), F (x0), x0) ≤
(1 − L) r0

2 . We will show that F : BS(x0, r0) → BS(x0, r0). To see this, note that
if x ∈ BS(x0, r0), then

S(x0, x0, F (x)) ≤ 2S(x0, x0, F (x0)) + S(F (x0), F (x0), F (x))

≤ 2(1− L)
r0

2
+ L S(x0, x0, x) ≤ r0.
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We can now apply Theorem 3.1 to deduce that F has a unique fixed point in
BS(x0, r0) ⊂ BS(x0, r). Again, it is easy to see that F has only one fixed point in
BS(x0, r).

Next, we examine briefly the behavior of a contractive map defined on BS(r) =
BS(0, r) ( the closed ball of radius r with centre 0) with values in Banach space E.
More general results will be presented in the next theorem.

Theorem 3.5. Let (X, S) be a complete S-metric space with S(x, y, z) =
‖x− y‖+ ‖y− z‖ and let BS(r) be the closed ball of radius r > 0, central at zero in
Banach space E with F : BS(r) → E a contraction and F (∂BS(r)) ⊆ BS(r). Then
F has a unique fixed point in BS(r).

Proof. Consider G(x) =
x + F (x)

2
. We first show that G : BS(r) → BS(r).

To see this, let
x∗ = r

x

‖x‖ where x ∈ BS(r) and x 6= 0.

Now if x ∈ BS(r) and x 6= 0, we have

S(F (x), F (x), F (x∗)) = ‖F (x)− F (x∗)‖ ≤ L S(x, x, x∗) = L ‖x− x∗‖
= L ‖x− r

x

‖x‖‖ = L (r − ‖x‖)

Hence

‖F (x)‖ ≤ ‖F (x∗)‖+ ‖F (x)− F (x∗)‖ ≤ r + L (r − ‖x‖) < 2r − ‖x‖
Then for x ∈ BS(r) and x 6= 0

‖G(x)‖ = ‖x + F (x)
2

‖ ≤ ‖x‖+ ‖F (x)‖
2

≤ r.

In fact by the continuity of G we get ‖G(0)‖ ≤ r, and consequently G : BS(r) →
BS(r). Moreover G : BS(r) → BS(r) is a contraction because

‖G(x)−G(y)‖ ≤ ‖x− y‖+ L‖x− y‖
2

=
(1 + L)

2
‖x− y‖.

Theorem 3.1 implies that G has a unique fixed point in u ∈ BS(r) and so u = Fu.
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