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CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND
CONVEX FUNCTIONS DEFINED BY CONVOLUTION WITH

NEGATIVE COEFFICIENTS

M.K. Aouf, A.A. Shamandy, A.O. Mostafa and A.K. Wagdy

Abstract. The aim of this paper is to obtain coefficient estimates, distortion theorems,
convex linear combinations and radii of close-to-convexity, starlikeness and convexity for functions
belonging to the class TS(g, λ; α, β). Furthermore partial sums fn(z) of functions f(z) in the class
TS(g, λ; α, β) are considered and sharp lower bounds for the ratios of real part of f(z) to fn(z)
and f ′ (z) to f ′n (z) are determined.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

k=2

akzk, (1.1)

which are analytic in the open unit disc U = {z ∈ C : |z| < 1}. Let g ∈ A be given
by

g(z) = z +
∞∑

k=2

bkzk, (1.2)

the Hadamard product (or convolution) f ∗ g of f and g is defined (as usual) by

(f ∗ g)(z) = z +
∞∑

k=2

akckzk = (g ∗ f)(z). (1.3)

Following Goodman ([6] and [7]), Ronning ([11 and [12]) introduced and studied
the following subclasses:

(i) A function f(z) of the form (1.1) is said to be in the class Sp(α, β) of
β-uniformly starlike functions if it satisfies the condition:

Re
{

zf ′ (z)
f (z)

− α

}
> β

∣∣∣∣
zf ′ (z)
f (z)

− 1
∣∣∣∣ (z ∈ U) , (1.4)

where −1 ≤ α < 1 and β ≥ 0.
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(ii) A function f(z) of the form (1.1) is said to be in the class UCV (α, β) of
β-uniformly convex functions if it satisfies the condition:

Re
{

1 +
zf ′′ (z)
f ′ (z)

− α

}
> β

∣∣∣∣
zf ′′ (z)
f ′ (z)

∣∣∣∣ (z ∈ U) , (1.5)

where −1 ≤ α < 1 and β ≥ 0.
It follows from (1.4) and (1.5) that

f(z) ∈ UCV (α, β) ⇔ zf ′ (z) ∈ Sp(α, β). (1.6)

For −1 ≤ α < 1, 0 ≤ λ ≤ 1 and β ≥ 0, we let S(g, λ; α, β) be the subclass of A
consisting of functions f(z) of the form (1.1) and functions g(z) of the form (1.2)
and satisfying the analytic criterion:

Re
{

z(f∗g)′(z)
(1−λ)(f∗g)(z)+λz (f∗g)′(z) − α

}
> β

∣∣∣ z(f∗g)′(z)
(1−λ)(f∗g)(z)+λz(f∗g)′(z) − 1

∣∣∣ . (1.7)

Remark 1. (i) Putting g(z) = z
(1−z) in the class S(g, λ; α, β), we obtain the

class Sp (λ, α, β) defined by Murugusundaramoorthy and Magesh [10].
(ii) Putting g(z) = z

(1−z)2 in the class S(g, λ;α, β), we obtain the class
UCV (λ, α, β) defined by Murugusundaramoorthy and Magesh [10].

Let T denote the subclass of A consisting of functions of the form:

f(z) = z −
∞∑

k=2

akzk (ak ≥ 0) . (1.8)

Further, we define the class TS(g, λ; α, β) by

TS(g, λ; α, β) = S(g, λ;α, β) ∩ T (1.9)

We note that:
(i) TS( z

(1−z) , 0;α, 1) = TSp(α) and TS( z
(1−z)2 , 0;α, 1) = UCT (α) (see Bharati

et al. [2]);
(ii) TS( z

(1−z) , 0; α, β) = TSp(α, β) and TS( z
(1−z)2 , 0; α, β) = UCT (α, β) (see

Bharati et al. [2]);
(iii) TS( z

(1−z) , 0; α, 0) = T ∗(α) and TS( z
(1−z)2 , 0; α, 0) = C (α) (see Silverman

[15]);

(iv) TS(z +
∑∞

k=2
(a)k−1
(c)k−1

zk, 0; α, β) = TS(α, β) (c 6= 0,−1,−2, . . . ) (see Mu-
rugusundaramoorthy and Magesh [8, 9]);

(v) TS(z +
∑∞

k=2 knzk, 0;α, β) = TS(n, α, β) (n ∈ N0 = N ∪ {0}, where
N = {1, 2, . . . }) (see Rosy and Murugusundaramoorthy [13]);

(vi) TS( z
(1−z) , λ; α, β) = TSp(λ, α, β) and TS( z

(1−z)2 , λ; α, β) = UCT (λ, α, β)
(see Murugusundaramoorthy and Magesh [10]);

(vii) TS(z +
∑∞

k=2

(
k + δ − 1

δ

)
zk, 0;α, β) = D(β, α, δ) (δ > −1) (see Shams et

al. [14]);
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(viii) TS(z +
∑∞

k=2 [1 + δ (k − 1)]n zk, 0; α, β) = TSδ(n, α, β) (δ ≥ 0, n ∈ N0)
(see Aouf and Mostafa [1]).

Also we note that:

(i) TS(z +
∞∑

k=2

Γk(α1)zk, λ; α, β) = TSq,s(α1; λ, α, β)

= {f ∈ T : Re
{

z(Hq,s(α1,β1)f(z))′

(1−λ)Hq,s(α1,β1)f (z)+λz(Hq,s(α1,β1)f(z))′ − α
}

> β
∣∣∣ z (Hq,s(α1,β1)f(z))′

(1−λ)Hq,s(α1,β1)f(z)+λz (Hq,s(α1,β1)f(z))′ − 1
∣∣∣},

where −1 ≤ α < 1, 0 ≤ λ ≤ 1, β ≥ 0, z ∈ U and Γk(α1) is defined by

Γk(α1) =
(α1)k−1 · · · (αq)k−1

(β1)k−1 · · · (βs)k−1(1)k−1
(1.10)

(αi > 0, i = 1, . . . , q; βj > 0, j = 1, . . . , s; q ≤ s + 1, q, s ∈ N0), where the operator
Hq,s(α1, β1) was introduced and studied by Dziok and Srivastava (see [4] and [5]),
which is a generalization of many other linear operators considered earlier;

(ii) TS(z +
∑∞

k=2

[
`+1+µ(k−1)

`+1

]m

zk, λ;α, β) = TS(m,µ, `, λ; α, β)

=
{

f ∈ T : Re
{

z(Im(µ,`)f(z))′

(1−λ)Im(µ,`)f(z)+λz(Im(µ,`)f(z))′ − α
}

> β
∣∣∣ z(Im(µ,`)f(z))′

(1−λ)Im(µ,`)f(z)+λz(Im(µ,`)f(z))′ − 1
∣∣∣
}

,

where −1 ≤ α < 1, 0 ≤ λ ≤ 1, β ≥ 0, m ∈ N0, µ, ` ≥ 0, z ∈ U and the operator
Im(µ, `) was defined by Cătaş et al. (see [3]), which is a generalization of many
other linear operators considered earlier;

(iii) TS(z +
∑∞

k=2 Ck(b, µ)zk, λ; α, β) = TS(b, µ, λ; α, β) ={
f ∈ T : Re

{
z(Jµ

b
f(z))′

(1−λ)Jµ
b

f (z)+λz(Jµ
b

f (z))′ − α

}
> β

∣∣∣∣
z(Jµ

b
f(z))′

(1−λ)Jµ
b

f (z)+λz(Jµ
b

f (z))′ − 1
∣∣∣∣
}

,

where −1 ≤ α < 1, 0 ≤ λ ≤ 1, β ≥ 0, z ∈ U and Ck(b, µ) is defined by

Ck(b, µ) =
(

1 + b

k + b

)µ

(b ∈ C \ Z−0 }, Z−0 = Z \ N), (1.11)

where the operator Jµ
b was introduced by Srivastava and Attiya (see [18]), which

is a generalization of many other linear operators considered earlier.

2. Coefficient estimates

Unless otherwise mentioned, we shall assume in the reminder of this paper
that, −1 ≤ α < 1, 0 ≤ λ ≤ 1, β ≥ 0 and z ∈ U.

Theorem 1. A function f(z) of the form (1.1) is in the class S(g, λ; α, β) if
∞∑

k=2

{k (1 + β)− (α + β) [1 + λ (k − 1)]} bk |ak| ≤ 1− α, (2.1)

where bk+1 ≥ bk > 0 (k ≥ 2).
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Proof. Assume that the inequality (2.1) holds true. Then we have

β

∣∣∣∣
z (f ∗ g)′(z)

(1− λ) (f ∗ g)(z) + λz(f ∗ g)′(z)
− 1

∣∣∣∣

− Re
{

z (f ∗ g)′(z)
(1− λ) (f ∗ g)(z) + λz(f ∗ g)′(z)

− 1
}

≤ (1 + β)
∣∣∣∣

z (f ∗ g)′(z)
(1− λ) (f ∗ g)(z) + λz(f ∗ g)′(z)

− 1
∣∣∣∣

≤ (1 + β)
∑∞

k=2 (1− λ) (k − 1) bk |ak| zk−1

1−∑∞
k=2 [1 + λ (k − 1)] bk |ak| zk−1

≤ 1− α.

This completes the proof of Theorem 1.

Theorem 2. A necessary and sufficient condition for the function f(z) of the
form (1.8) to be in the class TS(g, λ; α, β) is that

∞∑
k=2

{k (1 + β)− (α + β) [1 + λ (k − 1)]} akbk ≤ 1− α. (2.2)

Proof. In view of Theorem 1, we need only to prove the necessity. If f(z) ∈
TS(g, λ; α, β) and z is real, then

1−
∞∑

k=2

k ak bk zk−1

1−
∞∑

k=2

[1 + λ (k − 1)] ak bk zk−1

− α ≥ β

∣∣∣∣∣∣∣∣

∞∑
k=2

(1− λ) (k − 1) ak bk zk−1

1−
∞∑

k=2

[1 + λ (k − λ)] ak bk zk−1

∣∣∣∣∣∣∣∣
.

Letting z −→ 1− along the real axis, we obtain

∞∑
k=2

{k (1 + β)− (α + β) [1 + λ (k − 1)]} akbk ≤ 1− α.

This completes the proof of Theorem 2.

Corollary 1. Let the function f(z) defined by (1.8) be in the class
TS(g, λ; α, β). Then

ak ≤ 1− α

{k (1 + β)− (α + β) [1 + λ (k − 1)]} bk
(k ≥ 2). (2.3)

The result is sharp for the function

f(z) = z − 1− α

{k (1 + β)− (α + β) [1 + λ (k − 1)]} bk
zk (k ≥ 2). (2.4)

By taking bk = Γk(α1), where Γk(α1) is defined by (1.10), in Theorem 2, we
have:
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Corollary 2. A necessary and sufficient condition for the function f(z) of
the form (1.8) to be in the class TSq,s(α1; λ, α, β) is that

∞∑
k=2

{k (1 + β)− (α + β) [1 + λ (k − 1)]}Γk(α1)ak ≤ 1− α.

By taking bk =
[

`+1+µ(k−1)
`+1

]m

(m ∈ N0, µ, ` ≥ 0), in Theorem 2, we have:

Corollary 3. A necessary and sufficient condition for the function f(z) of
the form (1.8) to be in the class TS(m,µ, `, λ;α, β) is that

∞∑
k=2

{k (1 + β)− (α + β) [1 + λ (k − 1)]}
[

`+1+µ(k−1)
`+1

]m

ak ≤ 1− α.

By taking bk = Ck(b, µ), where Ck(b, µ) defined by (1.11), in Theorem 2, we
have:

Corollary 4. A necessary and sufficient condition for the function f(z) of
the form (1.8) to be in the class TS(b, µ, λ; α, β) is that

∞∑
k=2

{k (1 + β)− (α + β) [1 + λ (k − 1)]} |Ck(b, µ)| |ak| ≤ 1− α.

3. Distortion theorem

Theorem 3. Let the function f(z) of the form (1.8) be in the class
TS(g, λ; α, β). Then for |z| = r < 1, we have

|f(z)| ≥ r − 1− α

[2 + β − α− λ (α + β)] b2
r2 (3.1)

and

|f(z)| ≤ r +
1− α

[2 + β − α− λ (α + β)] b2
r2, (3.2)

provided that bk+1 ≥ bk > 0 (k ≥ 2). The equalities in (3.1) and (3.2) are attained
for the function f(z) given by

f(z) = z − 1− α

[2 + β − α− λ (α + β)] b2
z 2, (3.3)

at z = r and z = rei(2k+1)π (k ∈ Z).

Proof. Since for k ≥ 2,

[2 + β − α− λ (α + β)] b2 ≤ {k (1 + β)− (α + β) [1 + λ (k − 1)]} bk,
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using Theorem 2, we have

[2 + β − α− λ (α + β)] b2

∞∑
k=2

ak

≤
∞∑

k=2

{k (1 + β)− (α + β) [1 + λ (k − 1)]} akbk ≤ 1− α, (3.4)

that is, that
∞∑

k=2

ak ≤ 1− α

[2 + β − α− λ (α + β)] b2
. (3.5)

From (1.8) and (3.5), we have

|f(z)| ≥ r − r2
∞∑

k=2

ak ≥ r − 1− α

[2 + β − α− λ (α + β)] b2
r2

and
|f(z)| ≤ r + r2

∞∑
k=2

ak ≤ r +
1− α

[2 + β − α− λ (α + β)] b2
r2.

This completes the proof of Theorem 3.

Theorem 4. Let the function f(z) of the form (1.8) be in the class
TS(g, λ; α, β). Then for |z| = r < 1, we have

|f ′ (z)| ≥ r − 2 (1− α)
[2 + β − α− λ (α + β)] b2

r (3.6)

and

|f ′ (z)| ≤ r +
2 (1− α)

[2 + β − α− λ (α + β)] b2
r, (3.7)

provided that bk+1 ≥ bk > 0 (k ≥ 2). The result is sharp for the function f(z)
given by (3.3).

Proof. From Theorem 2 and (3.5), we have
∞∑

k=2

kak ≤ 2 (1− α)
[2 + β − α− λ (α + β)] b2

,

and the remaining part of the proof is similar to the proof of Theorem 3.

4. Convex linear combinations

Theorem 5. Let µυ ≥ 0 for υ = 1, 2, . . . , ` and
∑`

υ=1 µυ ≤ 1. If the functions
Fυ(z) defined by

Fυ(z) = z −
∞∑

k=2

ak,υzk (ak,υ ≥ 0; υ = 1, 2, . . . , `) , (4.1)

are in the class TS(g, λ; α, β) for every υ = 1, 2, . . . , `, then the function f(z)
defined by

f(z) = z −
∞∑

k=2

( ∑̀
υ=1

µυak,υ

)
zk

is in the class TS(g, λ; α, β).
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Proof. Since Fυ(z) ∈ TS(g, λ; α, β), it follows from Theorem 2 that

∞∑
k=2

{k (1 + β)− (α + β) [1 + λ (k − 1)]} ak,υbk ≤ 1− α, (4.2)

for every υ = 1, 2, . . . , `. Hence

∞∑
k=2

{k (1 + β)− (α + β) [1 + λ (k − 1)]}
( ∑̀

υ=1
µυak,υ

)
bk

=
∑̀
υ=1

µυ

( ∞∑
k=2

{k (1 + β)− (α + β) [1 + λ (k − 1)]} ak,υbk

)

≤ (1− α)
∑̀
υ=1

µυ ≤ 1− α.

By Theorem 2, it follows that f(z) ∈ TS(g, λ; α, β).

Corollary 5. The class TS(g, λ; α, β) is closed under convex linear combi-
nations.

Theorem 6. Let f1(z) = z and

fk(z) = z − 1− α

{k (1 + β)− (α + β) [1 + λ (k − 1)]} bk
zk (k ≥ 2) . (4.3)

Then f(z) is in the class TS(g, λ;α, β) if and only if it can be expressed in the
form:

f(z) =
∞∑

k=1

µkfk(z), (4.4)

where µk ≥ 0 and
∑∞

k=1 µk = 1.

Proof. Assume that

f(z) =
∞∑

k=1

µkfk(z) = z −
∞∑

k=2

1− α

{k (1 + β)− (α + β) [1 + λ (k − 1)]} bk
µkzk. (4.5)

Then it follows that
∞∑

k=2

{k(1+β)−(α+β)[1+λ(k−1)]}bk

1−α · 1−α
{k(1+β)−(α+β)[1+λ(k−1)]}bk

µk

=
∞∑

k=2

µk = 1− µ1 ≤ 1. (4.6)

So, by Theorem 2, f(z) ∈ TS(g, λ; α, β).
Conversely, assume that the function f(z) defined by (1.8) belongs to the class

TS(g, λ; α, β). Then

ak ≤ 1− α

{k (1 + β)− (α + β) [1 + λ (k − 1)]} bk
(k ≥ 2) . (4.7)
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Setting

µk =
{k (1 + β)− (α + β) [1 + λ (k − 1)]} akbk

1− α
(k ≥ 2) , (4.8)

and
µ1 = 1−

∞∑
k=2

µk, (4.9)

we can see that f(z) can be expressed in the form (4.4). This completes the proof
of Theorem 6.

Corollary 6. The extreme points of the class TS(g, λ; α, β) are the functions
f1(z) = z and

fk(z) = z − 1− α

{k (1 + β)− (α + β) [1 + λ (k − 1)]} bk
zk (k ≥ 2) . (4.10)

5. Radii of close-to-convexity, starlikeness and convexity

Theorem 7. Let the function f(z) defined by (1.8) be in the class
TS(g, λ; α, β). Then f(z) is close-to-convex of order ρ (0 ≤ ρ < 1) in |z| < r1,
where

r1 = inf
k≥2

{
(1− ρ) {k (1 + β)− (α + β) [1 + λ (k − 1)]} bk

k (1− α)

} 1
k−1

. (5.1)

The result is sharp, with the extremal function f(z) given by (2.4).

Proof. We must show that

|f ′ (z)− 1| ≤ 1− ρ for |z| < r1,

where r1 is given by (5.1). Indeed we find from (1.8) that

|f ′ (z)− 1| ≤
∞∑

k=2

kak|z|k−1.

Thus |f ′ (z)− 1| ≤ 1− ρ, if
∞∑

k=2

(
k

1− ρ

)
ak|z|k−1 ≤ 1. (5.2)

But, by Theorem 2, (5.2) will be true if
(

k

1− ρ

)
|z|k−1 ≤ {k (1 + β)− (α + β) [1 + λ (k − 1)]} bk

1− α
,

that is, if

|z| ≤
{

(1− ρ) {k (1 + β)− (α + β) [1 + λ (k − 1)]} bk

k (1− α)

} 1
k−1

(k ≥ 2) . (5.3)

Theorem 7 follows easily from (5.3).
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Theorem 8. Let the function f(z) defined by (1.8) be in the class
TS(g, λ; α, β). Then f(z) is starlike of order ρ (0 ≤ ρ < 1) in |z| < r2, where

r2 = inf
k≥2

{
(1− ρ) {k (1 + β)− (α + β) [1 + λ (k − 1)]} bk

(k − ρ) (1− α)

} 1
k−1

. (5.4)

The result is sharp, with the extremal function f(z) given by (2.4).

Proof. We must show that
∣∣∣∣
zf ′ (z)
f (z)

− 1
∣∣∣∣ ≤ 1− ρ for |z| < r2,

where r2 is given by (5.4). Indeed we find from (1.8) that

∣∣∣∣
zf ′ (z)
f (z)

− 1
∣∣∣∣ ≤

∞∑
k=2

(k − 1) ak|z|k−1

1−
∞∑

k=2

ak|z|k−1

.

Thus
∣∣∣ zf ′(z)

f(z) − 1
∣∣∣ ≤ 1− ρ, if

∞∑
k=2

(k − ρ) ak|z|k−1

1− ρ
≤ 1. (5.5)

But, by Theorem 2, (5.5) will be true if

(k − ρ) |z|k−1

1− ρ
≤ {k (1 + β)− (α + β) [1 + λ (k − 1)]} bk

1− α
,

that is, if

|z| ≤
{

(1− ρ) {k (1 + β)− (α + β) [1 + λ (k − 1)]} bk

(k − ρ) (1− α)

} 1
k−1

(k ≥ 2) . (5.6)

Theorem 8 follows easily from (5.6).

Corollary 7. Let the function f(z) defined by (1.8) be in the class
TS(g, λ; α, β). Then f(z) is convex of order ρ (0 ≤ ρ < 1) in |z| < r3, where

r3 = inf
k≥2

{
(1− ρ) {k (1 + β)− (α + β) [1 + λ (k − 1)]} bk

k (k − ρ) (1− α)

} 1
k−1

. (5.7)

The result is sharp, with the extremal function f(z) given by (2.4).
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6. A family of integral operators

In view of Theorem 2, we see that z −∑∞
k=2 dkzk is in the class TS(g, λ;α, β)

as long as 0 ≤ dk ≤ ak for all k. In particular, we have:

Theorem 9. Let the function f(z) defined by (1.8) be in the class
TS(g, λ; α, β) and c be a real number such that c > −1. Then the function F (z)
defined by

F (z) =
c + 1
zc

∫ z

0

tc−1f(t) dt (c > −1) , (6.1)

also belongs to the class TS(g, λ; α, β).

Proof. From the representation (6.1) of F (z), it follows that

F (z) = z −
∞∑

k=2

dkzk,

where

dk =
(

c + 1
c + k

)
ak ≤ ak (k ≥ 2) .

On the other hand, the converse is not true. This leads to a radius of univalence
result.

Theorem 10. Let the function F (z) = z−∑∞
k=2 akzk (ak ≥ 0) be in the class

TS(g, λ; α, β), and let c be a real number such that c > −1. Then the function f(z)
given by (6.1) is univalent in |z| < R∗, where

R∗ = inf
k≥2

{
(c + 1) {k (1 + β)− (α + β) [1 + λ (k − 1)]} bk

k (c + k) (1− α)

} 1
k−1

. (6.2)

The result is sharp.

Proof. From (6.1), we have

f(z) =
z1−c |zcF (z)|′

c + 1
= z −

∞∑
k=2

(
c + k

c + 1

)
akzk.

In order to obtain the required result, it suffices to show that

|f ′ (z)− 1| < 1 wherever |z| < R∗,

where R∗ is given by (6.2). Now

|f ′ (z)− 1| ≤
∞∑

k=2

k (c + k)
(c + 1)

ak|z|k−1.

Thus |f ′ (z)− 1| < 1 if
∞∑

k=2

k (c + k)
(c + 1)

ak|z|k−1 < 1. (6.3)
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But Theorem 2 confirms that
∞∑

k=2

{k (1 + β)− (α + β) [1 + λ (k − 1)]} akbk

1− α
≤ 1. (6.4)

Hence (6.3) will be satisfied if

k (c + k)
(c + 1)

|z|k−1 <
{k (1 + β)− (α + β) [1 + λ (k − 1)]} bk

1− α
,

that is, if

|z| <
{

(c + 1) {k (1 + β)− (α + β) [1 + λ (k − 1)]} bk

k (c + k) (1− α)

} 1
k−1

(k ≥ 2) . (6.5)

Therefore, the function f(z) given by (6.1) is univalent in |z| < R∗. Sharpness of
the result follows if we take

f(z) = z − (c + k) (1− α)
(c + 1) {k (1 + β)− (α + β) [1 + λ (k − 1)]} bk

zk (k ≥ 2) . (6.6)

7. Partial sums

Following the earlier works by Silverman [16] and Siliva [17] on partial sums of
analytic functions, we consider in this section partial sums of functions in the class
TS(g, λ; α, β) and obtain sharp lower bounds for the ratios of real part of f(z) to
fn(z) and f ′ (z) to f ′n (z).

Theorem 11. Define the partial sums f1(z) and fn(z) by

f1(z) = z and fn(z) = z +
n∑

k=2

akzk, (n ∈ N \ {1}) .

Let f(z) ∈ TS(g, λ; α, β) be given by (1.8) and satisfy condition (2.2) and

ck ≥
{

1, k = 2, 3, . . . , n,

cn+1, k = n + 1, n + 2, . . . ,
(7.1)

where, for convenience,

ck =
{k (1 + β)− (α + β) [1 + λ (k − 1)]} bk

1− α
. (7.2)

Then

Re
{

f(z)
fn(z)

}
> 1− 1

cn+1
(z ∈ U; n ∈ N) , (7.3)

and

Re
{

fn(z)
f(z)

}
>

cn+1

1 + cn+1
. (7.4)
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Proof. For the coefficients ck given by (7.2) it is not difficult to verify that

ck+1 > ck > 1. (7.5)

Therefore we have
n∑

k=2

ak + cn+1

∞∑
k=n+1

ak ≤
∞∑

k=2

ckak ≤ 1. (7.6)

By setting

g1(z) = cn+1

{
f(z)
fn(z)

−
(

1− 1
cn+1

)}
= 1 +

cn+1

∞∑
k=n+1

akzk−1

1 +
n∑

k=2

akzk−1

, (7.7)

and applying (7.6), we find that

∣∣∣∣
g1(z)− 1
g1(z) + 1

∣∣∣∣ ≤
cn+1

∞∑
k=n+1

ak

2− 2
n∑

k=2

ak − cn+1

∞∑
k=n+1

ak

. (7.8)

Now
∣∣∣ g1(z)−1
g1(z)+1

∣∣∣ ≤ 1 if
n∑

k=2

ak + cn+1

∞∑
k=n+1

ak ≤ 1.

From condition (2.2), it is sufficient to show that

n∑
k=2

ak + cn+1

∞∑
k=n+1

ak ≤
∞∑

k=2

ckak

which is equivalent to
n∑

k=2

(ck − 1) ak +
∞∑

k=n+1

(ck − cn+1) ak ≥ 0 (7.9)

which readily yields the assertion (7.3) of Theorem 11. In order to see that

f(z) = z +
zn+1

cn+1
(7.10)

gives sharp result, we observe that for z = r e
iπ
n that f(z)

fn(z) = 1 + zn

cn+1
→ 1− 1

cn+1

as z → 1−. Similarly, if we take

g2(z) = (1 + cn+1)
{

fn(z)
f(z)

− cn+1

1 + cn+1

}
= 1−

(1 + cn+1)
∞∑

k=n+1

akzk−1

1 +
∞∑

k=2

akzk−1

, (7.11)
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and making use of (7.6), we can deduce that

∣∣∣∣
g2(z)− 1
g2(z) + 1

∣∣∣∣ ≤
(1 + cn+1)

∞∑
k=n+1

ak

2− 2
n∑

k=2

ak − (1− cn+1)
∞∑

k=n+1

ak

(7.12)

which leads us immediately to the assertion (7.4) of Theorem 11.
The bound in (7.4) is sharp for each n ∈ N with the extremal function f(z)

given by (7.10). The proof of Theorem 11 is thus completed.

Theorem 12. If f(z) of the form (1.8) satisfies condition (2.2), then

Re
{

f ′ (z)
f ′n (z)

}
≥ 1− n + 1

cn+1
, (7.13)

and

Re
{

f ′n (z)
f ′ (z)

}
≥ cn+1

n + 1 + cn+1
(7.14)

where ck is defined by (7.2) and satisfies the condition

ck ≥
{

k, k = 2, 3, . . . , n,
kcn+1
n+1 , k = n + 1, n + 2, . . .

(7.15)

The results are sharp with the function f(z) given by (7.10).

Proof. By setting

g(z) =
cn+1

n + 1

{
f ′ (z)
f ′n (z)

−
(

1− n + 1
cn+1

)}

= 1 +
1 + cn+1

n+1

∞∑
k=n+1

kakzk−1 +
n∑

k=2

kakzk−1

1 +
n∑

k=2

kakzk−1

,

= 1 +

cn+1
n+1

∞∑
k=n+1

kakzk−1

1 +
n∑

k=2

kakzk−1

, (7.16)

we obtain
∣∣∣∣
g(z)− 1
g(z) + 1

∣∣∣∣ ≤
cn+1
n+1

∞∑
k=n+1

kak

2− 2
n∑

k=2

kak − cn+1

n + 1

∞∑
k=n+1

kak

. (7.17)

Now
∣∣∣ g(z)−1
g(z)+1

∣∣∣ ≤ 1 if
n∑

k=2

kak +
cn+1

n + 1

∞∑
k=n+1

kak ≤ 1, (7.18)



Subclasses of uniformly starlike and convex functions 27

since the left-hand side of (7.18) is bounded above by
∑∞

k=2 ckak if

n∑
k=2

(ck − k) ak +
∞∑

k=n+1

(
ck − cn+1

n+1 k
)

ak ≥ 0 (7.19)

and the proof of (7.13) is completed.
To prove result (7.14), define the function g(z) by

g(z) =
(

n + 1 + cn+1

n + 1

){
f ′n (z)
f ′ (z)

− cn+1

n + 1 + cn+1

}
= 1−

(
1 + cn+1

n+1

) ∞∑
k=n+1

kakzk−1

1 +
∞∑

k=2

kakzk−1

,

and making use of (7.19), we deduce that

∣∣∣∣
g(z)− 1
g(z) + 1

∣∣∣∣ ≤

(
1 + cn+1

n+1

) ∞∑
k=n+1

kak

2− 2
n∑

k=2

kak −
(
1− cn+1

n+1

) ∞∑
k=n+1

kak

≤ 1,

which leads us immediately to the assertion (7.14) of Theorem 12.
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