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VOLTERRA TYPE OPERATORS FROM WEIGHTED
HARDY SPACES TO BLOCH SPACES

Xiangling Zhu

Abstract. Let H(D) denote the space of all analytic functions on the unit disk D of C. In
this paper we consider the following Volterra type operator

Jg(f)(z) =

∫ z

0

f(ξ)g′(ξ) dξ, f ∈ H(D), z ∈ D.

The boundedness and compactness of the operator Jg from the weighted Hardy space to a Bloch
space are studied.

1. Introduction

Let D be the unit disk of complex plane C, and H(D) the class of functions
analytic in D. Recall that an f ∈ H(D) is said to belong to the Bloch space B if

‖f‖b = sup
z∈D

(1− |z|2)|f ′(z)| < ∞.

With the norm ‖f‖B = |f(0)| + ‖f‖b, B is a Banach space. Let B0 be the space
which consists of all f ∈ B satisfying

lim
|z|→1

(1− |z|2)|f ′(z)| = 0.

This space is called the little Bloch space.
Throughout this paper, we assume that {β(n)}∞n=0 is a sequence of positive

numbers such that

β(0) = 1, lim inf
n→∞

β(n)1/n = 1 and
∞∑

n=0
1/(β(n))2 = ∞.
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The weighted Hardy space, denoted by H2(β), is defined to be the set of all f(z) =∑∞
n=0 anzn ∈ H(D) such that

‖f‖2H2(β) =
∞∑

n=0
|an|2(β(n))2 < ∞.

It is clear that H2(β) is a Hilbert space on D with the inner product given by

〈f, g〉 =
∞∑

n=0
anbn(β(n))2,

where f(z) =
∑∞

n=0 anzn and g(z) =
∑∞

n=0 bnzn are in H2(β). Some well-known
special cases of this type of Hilbert space are, the Hardy space H2 with weights
β(n) ≡ 1, the Bergman space A2 with weights β(n) = (n+1)−1/2, and the Dirichlet
space D with weights β(n) = (n + 1)1/2 for all n. See [4] for more details of the
weighted Hardy space.

Suppose that g ∈ H(D). The integral operator

Jgf(z) =
∫ z

0

f(ξ)g′(ξ) dξ, z ∈ D, (1)

was introduced by Pommerenke in [12] and is called the Volterra type operator (see
[13]).

In [12], Pommerenke showed that Jg is bounded on the Hardy space H2 if and
only if g ∈ BMOA. The boundedness and compactness of Jg between some spaces
of analytic functions, as well as their n-dimensional extensions on the unit ball in
Cn, were investigated in [1–3,5–9,11,14–20] (see also the related references therein).

In this paper, we study the operator Jg from the weighted Hardy space to
Bloch space. Some sufficient and necessary conditions for the operator Jg to be
bounded and compact are given.

Throughout the paper, constants are denoted by C, they are positive and may
not be the same in every occurrence. The notation a ³ b means that there is a
positive constant C such that C−1b ≤ a ≤ Cb.

2. Main results and proofs

In this section, we give our main results and their proofs. Before stating these
results, we need some auxiliary results, which are incorporated in the lemmas which
follow.

Lemma 1. Assume that g ∈ H(D). Then Tg : H2(β) → B is compact if and
only if Tg : H2(β) → B is bounded and for any bounded sequence {fk}k∈N in H2(β)
which converges to zero uniformly on compact subsets of D as k → ∞, we have
‖Tgfk‖B → 0 as k →∞.

The proof of Lemma 1 follows by standard arguments (see, for example, Propo-
sition 3.11 of [4]). Hence, we omit the details.



Volterra type operators 483

Lemma 2. [10] A closed set K in B0 is compact if and only if it is bounded
and satisfies

lim
|z|→1

sup
f∈K

(1− |z|2)|f ′(z)| = 0. (2)

Lemma 3. Let f ∈ H2(β). Then

|f(z)| ≤ ‖f‖H2(β)

√
∞∑

n=0

|z|2n

β2(n)
.

Proof. For w ∈ D, define Kw(z) =
∑∞

n=0
wn

β2(n)z
n. Then Kw ∈ H2(β). Let

f(z) =
∑∞

n=0 anzn. From [4, p. 16], we see that

f(w) = 〈f, Kw〉 =
∞∑

n=0

anwn

β2(n)
β2(n) =

∞∑
n=0

anwn (3)

and

‖Kw‖H2(β) =

√
∞∑

n=0

|w|2n

β4(n)
(β2(n)) =

√
∞∑

n=0

|w|2n

β2(n)
< ∞. (4)

Then the desired result follows from (3) and (4).
Now we are in a position to state and prove our main results.

Theorem 1. Assume that g ∈ H(D). Then the following statements are
equivalent.

(i) The operator Tg : H2(β) → B is bounded;
(ii) The operator Tg : H2(β) → B0 is bounded;

(iii) M := sup
z∈D

(1− |z|2)|g′(z)|
√

∞∑
n=0

|z|2n

β2(n)
< ∞. (5)

Proof. (ii) ⇒ (i). It is obvious.
(i) ⇒ (iii). Assume that Tg : H2(β) → B is bounded. For a ∈ D, set

fa(z) =
∞∑

n=0

anzn

β2(n)

( ∞∑
n=0

|a|2n

β2(n)

)−1/2

. (6)

It is easy to see that fa ∈ H2(β) and supa∈D ‖fa‖H2(β) = 1. We have

∞ > ‖Tgfa‖B = sup
z∈D

(1− |z|2)|(Tgfa)′(z)|

= sup
z∈D

(1− |z|2)|g′(z)||fa(z)|

≥ (1− |a|2)|g′(a)|
√

∞∑
n=0

|a|2n

β2(n)
, (7)

which implies (5).
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(iii) ⇒ (ii). Assume that (5) holds. Then, for any f ∈ H2(β), by Lemma 3
we have

(1− |z|2)|(Tgf)′(z)| = (1− |z|2)|g′(z)||f(z)|

≤ (1− |z|2)|g′(z)|
√

∞∑
n=0

|z|2n

β2(n)
‖f‖H2(β). (8)

Taking the supremum in (8) over D and using the condition (5), we see that Tg :
H2(β) → B is bounded.

Since we assume
∑∞

n=0 1/(β(n))2 = ∞, (5) implies that g ∈ B0. Then, for
each polynomial p(z), we have that

(1− |z|2)|(Tgp)′(z)| = (1− |z|2)|g′(z)p(z)| ≤ ‖p‖∞(1− |z|2)|g′(z)|,
from which it follows that Tgp ∈ B0. Since the set of all polynomials is dense in
H2(β) (see [4]), we have that for every f ∈ H2(β) there is a sequence of polynomials
{pk}k∈N such that ‖f − pk‖H2(β) → 0, as k →∞. Hence

‖Tgf − Tgpk‖B ≤ ‖Tg‖H2(β)→B‖f − pk‖H2(β) → 0

as k → ∞, since Tg : H2(β) → B is bounded. Since B0 is a closed subset of B,
we obtain Tg(H2(β)) ⊆ B0. Therefore Tg : H2(β) → B0 is bounded. The proof is
finished.

Theorem 2. Assume that g ∈ H(D). Then the following statements are
equivalent.

(i) The operator Tg : H2(β) → B is compact;

(ii) The operator Tg : H2(β) → B0 is compact;

(iii) lim
|z|→1

(1− |z|2)|g′(z)|
√

∞∑
n=0

|z|2n

β2(n)
= 0. (9)

Proof. (ii) ⇒ (i). It is obvious.

(i) ⇒ (iii). Assume that Tg : H2(β) → B is compact. Let {zk}k∈N be a
sequence in D such that limk⇀∞ |zk| = 1 (if such a sequence does not exist (9) is
automatically satisfied). Set

fk(z) =
∞∑

n=0

zk
nzn

β2(n)

( ∞∑
n=0

|zk|2n

β2(n)

)−1/2

, k ∈ N. (10)

It is easy to see that supk∈N ‖fk‖H2(β) < ∞ and fk → 0 uniformly on compact
subsets of D as k →∞. By Lemma 1,

lim
k→∞

‖Tgfk‖B = 0. (11)
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In addition, we have

‖Tgfk‖B = sup
z∈D

(1− |z|2)|g′(z)| |fk(z)|

≥ (1− |zk|2)|g′(zk)|
√

∞∑
n=0

|zk|2n

β2(n)
, (12)

which together with (11) implies that

lim
k→∞

(1− |zk|2)|g′(zk)|
√

∞∑
n=0

|zk|2n

β2(n)
= 0.

This proves that (9) holds.
(iii) ⇒ (ii). Assume that (9) holds. From Theorem 1, we see that Tg :

H2(β) → B0 is bounded. Let f ∈ H2(β). From the proof of Theorem 1, we have
that

(1− |z|2)|(Tgf)′(z)| ≤ (1− |z|2)|g′(z)|
√

∞∑
n=0

|z|2n

β2(n)
‖f‖H2(β).

Taking the supremum in the above inequality over all f ∈ H2(β) such that
‖f‖H2(β) ≤ 1, then letting |z| → 1, by (9) it follows that

lim
|z|→1

sup
‖f‖H2(β)≤1

(1− |z|2)|(Tgf)′(z)| = 0.

From this and by employing Lemma 2, we see that Tg : H2(β) → B0 is compact.
The proof is completed.

Let β(n) = (n + 1)−1/2. Then

∞∑
n=0

|z|2n

β2(n)
=

∞∑
n=0

(n + 1)|z|2n ³ 1
(1− |z|2)2 .

From Theorems 1–2 and the last formula, we have the following two corollaries.

Corollary 3. Assume that g ∈ H(D). Then the following statements are
equivalent.

(i) The operator Tg : A2 → B is bounded;
(ii) The operator Tg : A2 → B0 is bounded;
(iii) supz∈D |g′(z)| < ∞.

Corollary 4. Assume that g ∈ H(D). Then the following statements are
equivalent.

(i) The operator Tg : A2 → B is compact;
(ii) The operator Tg : A2 → B0 is compact;
(iii) g is a constant.
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Let β(n) ≡ 1. Then

∞∑
n=0

|z|2n

β2(n)
=

∞∑
n=0

|z|2n =
1

1− |z|2 .

From Theorems 1–2 and the last formula, we have the following two corollaries.

Corollary 5. Assume that g ∈ H(D). Then the following statements are
equivalent.

(i) The operator Tg : H2 → B is bounded;

(ii) The operator Tg : H2 → B0 is bounded;

(iii) supz∈D
√

1− |z|2|g′(z)| < ∞.

Corollary 6. Assume that g ∈ H(D). Then the following statements are
equivalent.

(i) The operator Tg : H2 → B is compact;

(ii) The operator Tg : H2 → B0 is compact;

(iii) lim|z|→1

√
1− |z|2|g′(z)| = 0.

Let β(n) = (n + 1)1/2. Then

∞∑
n=0

|z|2n

β2(n)
=

∞∑
n=0

|z|2n

n + 1
³ ln e

1−|z|2 .

From Theorems 1–2 and the last formula, we have the following two corollaries.

Corollary 7. Assume that g ∈ H(D). Then the following statements are
equivalent.

(i) The operator Tg : D → B is bounded;

(ii) The operator Tg : D → B0 is bounded;

(iii) sup
z∈D

(1− |z|2)|g′(z)|
√

ln
e

1− |z|2 < ∞.

Corollary 8. Assume that g ∈ H(D). Then the following statements are
equivalent.

(i) The operator Tg : D → B is compact;

(ii) The operator Tg : D → B0 is compact;

(iii) lim
|z|→1

(1− |z|2)|g′(z)|
√

ln
e

1− |z|2 = 0.
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