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TWO INFINITE FAMILIES OF EQUIVALENCES
OF THE CONTINUUM HYPOTHESIS

Samuel G. da Silva

Abstract. In this brief note we present two infinite families of equivalences of the Continuum
Hypothesis, as follows:

• For every fixed n ≥ 2, the Continuum Hypothesis is equivalent to the following statement:
“There is an n-dimensional real normed vector space E including a subset A of size ℵ1 such that
E \A is not path connected”.

• For every fixed T1 first-countable topological space X with at least two points, the Con-
tinuum Hypothesis is equivalent to the following statement: “There is a point of the Tychonoff

product XR with a fundamental system of open neighbourhoods B of size ℵ1”.

1. The main theorems

Throughout this paper, the cardinality of a set X is denoted by |X|.
The Continuum Hypothesis (CH) is the statement “c = ℵ1”, where c = |R| =

2ℵ0 and ℵ1 is the first uncountable cardinal. CH is probably the most famous
mathematical statement known to be independent of ZFC (Zermelo-Fraenkel Set
Theory, with the Axiom of Choice).

As we will see, there are elementary statements from Analysis and Topology
which cannot be settled without dealing with such set-theoretical hypothesis.

For instance, it is well-known that the following statements, denoted by (*)
and (**), both hold in ZFC:

(∗) Whenever A is a countable subset of R2, R2 \A is path connected.
(**) If f ∈ RR and B is a countable subfamily of P(RR), then B is not a

fundamental system of open neighbourhoods of the point f in the Tychonoff topology.
In this paper we show that the analogous statements obtained by considering

|A| = |B| = ℵ1 are independent of ZFC; they are undecidable statements be-
cause they are closely related to the Continuum Hypothesis. More precisely, we
prove the following two theorems, each one of them presenting an infinite family of
equivalences of CH:
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Theorem 1.1. For every fixed n ≥ 2, CH is equivalent to the following
statement:

“There is an n-dimensional real normed vector space E including a subset A
of size ℵ1 such that E \A is not path connected”.

Theorem 1.2. For every fixed T1 first-countable topological space X with at
least two points, the Continuum Hypothesis is equivalent to the following statement:

“There is a point of the Tychonoff product XR with a fundamental system of
open neighbourhoods B of size ℵ1”.

A number of statements from Analysis and Topology are known to be equiv-
alences of CH: here we are presenting another ones. The reader may find several
equivalences of CH in the seminal work of Sierpiński back in the 1930’s [2] or in the
recent book of Komjáth and Totik [1]. All terminology referring to normed spaces
and topological spaces may be found at [3].

2. Proof of the Main Theorems

For the following result (which generalizes the statement (*) ), the crucial hy-
pothesis is κ < c. In what follows, for any pair of distinct points a, b ∈ R2 let [a, b]
denote the segment {a + t(b− a) : 0 ≤ t ≤ 1}.

Proposition 2.1. Let A ⊆ R2 be a set of size κ < c. Then R2 \ A is path
connected.

Proof. Let x, y be distinct points of R2 \A and fix a line m such that x, y /∈ m.
For every z ∈ m, consider a path ϕz whose image is [x, z]∪ [z, y]. As |m| = c > κ =
|A|, there are no injective functions from m into A and it follows that at least one
of the paths ϕz does not intersect A (otherwise we would be able to use the Axiom
of Choice in order to define an injective function from m into A). Therefore, there
is a path joining x and y which is contained in R2 \A.

Of course, the same geometric argument may be done in any 2-dimensional
subspace of any given Euclidean space, or, more generally, in 2-dimensional sub-
spaces of any given real normed vector space. So, the following corollary holds:

Corollary 2.2. Let n ≥ 2 and let E be an n-dimensional real normed vector
space and let A ⊆ E be a set with |A| < c. Then E \A is path connected.

Now our first main theorem is easily proved.

Proof of Theorem 1.1. Let n ≥ 2 be fixed. Assuming CH, we may take
E = Rn and take A to be any (n− 1)-dimensional subspace of E. For the opposite
implication, note that under ¬CH (i.e., under ℵ1 < c) the preceding corollary
ensures that for every n-dimensional normed space E and for every subset A of size
ℵ1 one has E \A path connected, and so we are done.

Let us turn to the second main theorem. In the following proposition, [R]<ω

denote the family of all finite subsets of R.
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Proposition 2.3. If X is a first-countable topological space and f ∈ XR, then
f has a fundamental system of open neighbourhoods of size not larger than c in the
Tychonoff product XR.

Proof. For every x ∈ X fix a countable local base Vx of x. For every non-empty
A ∈ [R]<ω, say A = {r1, r2, . . . , rn}, let UA be the family of basic open sets of XR

given by
UA = {V × R\AX : V ∈

∏

1≤i≤n

Vf(ri)}.

Each UA is countable, and, as the family [R]<ω has size c, the family of open sets
⋃

A∈[R]<ω

UA

is (clearly) a local base of f of size not larger than c.
Notice that, in the preceding proposition, nothing restrains the existence of a

point of XR with a local base of size ℵ1.
In T1 spaces, the intersection of a local base at a point must reduce to a

singleton, so (as T1 is a productive property) the following proposition ensures
that, if X is a T1 space with at least two points, then every subfamily of P(XR) of
size less than c cannot be a local base of any given point of the Tychonoff product.
In particular, the following is a strengthening of (**).

Proposition 2.4. Let X be a T1 space with at least two points and let f ∈
XR. Suppose B is a non-empty family of basic open neighbourhoods of f such that
|B| < c. Then

⋂
B 6= {f}. In particular, B is not a local base at the point f .

Proof. For every U ∈ B, let CU be the finite set of detached coordinates of U ,
meaning that if U =

∏
r∈R Ur then CU = {r ∈ R : Ur 6= X}. As |B| < c, the set

C =
⋃

U∈B CU has also size less than c, and therefore R \C 6= ∅. Define a function
g : R → X such that g(x) = f(x) if x ∈ C and g(x) 6= f(x) otherwise; here we
are using the hypothesis of X having more than one point. As R \ C 6= ∅, one has
g 6= f and g ∈ ⋂

B, and this suffices for us.
Notice that, in the preceding proposition, nothing ensures that there is a local

base at f of size c.
The two preceding propositions were stated for, respectively, first-countable

spaces and T1 spaces with at least two points. Considering both hypothesis simul-
taneously, we prove our second main theorem.

Proof of Theorem 1.2. Let X be a fixed T1 first-countable topological space
with at least two points. Assuming CH, by Proposition 2.3 we have—as X is first-
countable—that every point has a local base of size not larger than c = ℵ1; and, as
X is T1 with more than one point, there are no points of X with a countable local
base (by Proposition 2.4—or even (*) ). In this case, every point of the product XR

has a local base of size ℵ1. On the other hand, assume ¬CH: by Proposition 2.4,
there is no point of XR with a local base of size ℵ1, and this finishes the proof.
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Remark. Our hypothesis “first-countable” was used, mainly, for showing that
the cardinality of the continuum c is an upper bound for the possible sizes of certain
local bases at arbitrary points of XR. Adapting the arguments, one can easily prove
the following: for every T1 topological space 〈X, τ〉 with at least two points and
satisfying |τ | ≤ c (or even |τ | ≤ ℵ1), CH is equivalent to the statement: “There is
a point of XR with a local base of size ℵ1”. Notice that spaces with a countable
net satisfy |τ | ≤ c. (A net for a topological space is a family of (not necessarily
open) subsets such that every open set may be written as an union of a subfamily
of the net.)

We also would like to remark that one could, of course, write down versions
of our assertions (related to the second main theorem) stated in terms of suitable
families of topological spaces {Xr : r ∈ R}, and this procedure would provide
another equivalences of CH.
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