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n-NORMAL AND n-QUASINORMAL COMPOSITION AND
WEIGHTED COMPOSITION OPERATORS ON L2(µ)

Anuradha Gupta and Neha Bhatia

Abstract. An operator T is called n-normal operator if T nT ∗ = T ∗T n and n-quasinormal
operator if T nT ∗T = T ∗TT n. In this paper, the conditions under which composition operators
and weighted composition operators become n-normal operators and n-quasinormal operators
have been obtained in terms of Radon-Nikodym derivative hn.

1. Introduction

Let H be the infinite dimensional complex Hilbert space and B(H) be the
algebra of all bounded linear operators on H. An operator T is called normal if
TT ∗ = T ∗T . If T is a normal operator then Ker T = Ker T ∗. An operator T is
called quasinormal if T (T ∗T ) = (T ∗T )T . Every normal operator is a quasinormal
operator but converse need not be true. The unilateral shift operator on B(H) is
quasinormal but not normal. An operator T is called n-normal [2] if TnT ∗ = T ∗Tn

for n ∈ N. Also, in [2] Alzuraiqi and Patel proved that T is n-normal if and
only if Tn is normal. i.e., TnT ∗n = T ∗nTn for n ∈ N. The class of n-normal
operators is denoted by [nN ]. An operator T is called n-quasinormal operator [1]
if TnT ∗T = T ∗TTn for n ∈ N. The class of n-quasinormal operators is denoted by
[nQN ] and [nN ] ⊆ [nQN ].

Let (X, Σ, µ) be a σ-finite measure space. A transformation T is said to be
measurable if T−1(B) ∈ Σ for B ∈ Σ. A measurable transformation T is said to be
non-singular if

µ(T−1(B)) = 0 whenever µ(B) = 0 for every B ∈ Σ .

If T is a measurable transformation then Tn is also a measurable transformation.
If T is non-singular, then we say that µT−1 is absolutely continuous with respect
to µ and hence µ(T−1)n becomes absolutely continuous with respect to µ. Hence,
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by Radon-Nikodym theorem there exists a unique non-negative essentially bounded
measurable function hn such that

µ(T−1)n(B) =
∫

B

hn dµ for B ∈ Σ

and hn is called the Radon-Nikodym derivative and is denoted by dµ(T−1)n/dµ.

Proposition 1.1. Change of Variables: Let X be a non-empty set and let Σ
be a σ-algebra on X. Let µ and µT−1 be measures on Σ and let h : X → [0,∞] be
a measurable function. Then the following are equivalent:
(i) µT−1 is absolutely continuous with respect to µ and h is Radon-Nikodym de-

rivative of µT−1 with respect to µ.
(ii) For every measurable function f : X → [0,∞], the equality∫

X

f dµT−1 =
∫

X

fh dµ

holds.
Let (X, Σ, µ) be a σ-finite measure space. Then the conditional expectation

operator E( · | T−1(Σ)) = E(f) is defined for each non-negative function f in Lp

(1 ≤ p < ∞) and is uniquely determined by the following set of conditions:
(i) E(f) is T−1(Σ) measurable.
(ii) If B is any T−1(Σ) measurable set for which

∫
B

f dµ converges then we have∫

B

f dµ =
∫

B

E(f) dµ.

The conditional expectation operator E has the following properties:
(i) E(f · g ◦ T ) = (E(f))(g ◦ T ).
(ii) E is monotonically increasing, i.e., if f ≤ g a.e. then E(f) ≤ E(g) a.e.
(iii) E(1) = 1.
(iv) E(f) has the form E(f) = g ◦ T for exactly one Σ-measurable function g

provided that the support of g lies in the support of h which is given by
σ(h) = {x : h(x) 6= 0} .

E is the projection operator onto the closure of the range of the composition
operator CT on L2(µ).
Let φ be an essentially bounded function. The multiplication operator Mφ on

the space L2(µ) induced by φ is given by

Mφf = φf for f ∈ L2(µ).
Let T be a measurable transformation on X. The composition operator CT on

the space L2(µ) is given by

CT f = f ◦ T for f ∈ L2(µ).
Let φ be a complex-valued measurable function then the weighted composition

operator Wφ,T on the space L2(µ) induced by φ and T is given by

Wφ,T f = φ · f ◦ T for f ∈ L2(µ).
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In this paper, we study n-normal composition operators, n-quasinormal com-
position operators and weighted composition operators in terms of Radon-Nikodym
derivative and expectation operators. We have derived the condition under which
the product of two n-normal composition operators is also an n-normal composition
operator.

2. n-normal composition operators and
n-quasinormal composition operators

Let CT be the composition operator on L2(µ). Then the adjoint C∗T is given
by C∗T f = hE(f) ◦ T−1 for f in L2(µ).

The following lemma [4, 7] plays a significant role in the subsequent results.

Lemma 2.1. Let P be the projection of L2(X, Σ, µ) onto R(CT ). Then
(i) C∗T CT f = hf and CT C∗T f = (h ◦ T )Pf ∀ f ∈ L2(µ).

(ii) R(CT ) = {f ∈ L2(µ) : f is T−1(Σ) measurable}.
(iii) If f is T−1(Σ) measurable and g and fg belong to L2(µ), then P (fg) = fP (g),

(f need not be in L2(µ)).
Also, for k ∈ N,

(iv) (C∗T CT )kf = hkf .
(v) (CT C∗T )kf = (h ◦ T )kP (f).
(vi) E is the identity operator on L2(µ) if and only if T−1(Σ) = Σ.

The following theorem characterizes the n-normal composition operators.

Theorem 2.2 Let CT be a composition operator on L2(µ). Then the following
statements are equivalent:
(i) CT is n-normal operator.
(ii) hn ◦ TnE(f) = hnf .

Proof. For f ∈ L2(µ)

Cn
T C∗nT f = Cn

T (hn.E(f) ◦ T−n) = (hn.E(f) ◦ T−n) ◦ Tn = hn ◦ Tn.E(f).

Also,
C∗nT Cn

T f = C∗nT (f ◦ Tn) = hn.E(f ◦ Tn) ◦ T−n = hnf.

If CT is n-normal composition operator then

Cn
T C∗nT = C∗nT Cn

T ⇐⇒ hn ◦ TnE(f) = hnf.

Corollary 2.3. If T−1Σ = Σ, then CT is n-normal operator if and only if
hn ◦ Tn = hn.

Theorem 2.4. If CT is a composition operator on L2(µ), then the following
statements are equivalent:
(i) CT is n-normal.
(ii) ‖f ◦ Tn‖ = ‖hnE(f) ◦ T−n‖ for f ∈ L2(µ).
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Corollary 2.5. If CT is the composition operator and C∗T is its adjoint, then
the following statements are equivalent:
(i) CT is n-normal operator.
(ii) C∗T is n-normal operator.
(iii) ‖f ◦ Tn‖ = ‖hnE(f) ◦ T−n‖ for f ∈ L2(µ).

Corollary 2.6. If CT is n-normal composition operator then Ker(Cn
T ) =

Ker(C∗nT ).

The following example shows that there exists a composition operator which
is quasinormal but not n-normal operator for any n ∈ N.

Example 2.7. Let X = Z+ with µ as the counting measure. Let Tn be the
transformation defined as Tn(j) = j−n for all j ∈ N. Then Cn

T is a unilateral shift
operator on l2 which is quasinormal but not n-normal.

In [3], it has been shown that if h◦T ≤ h then Cn
T is hyponormal for each n ∈ N.

Also, we know that if CT is n-hyponormal and compact then CT is n-normal.
Example 2.8. Let {ei}+∞i=−∞ be an orthonormal basis of H. Define T as

Tei =
{

ei+1, if i ≤ 0
4ei+1, if i ≥ 0

where bi =
{

1, if i ≤ 0
4, if i ≥ 0.

Then T kei = bi,kei+k where |bi,k| ≤ |bi+1,k|. So Ck
T is hyponormal and is not

compact. Thus CT is not n-normal operator.

Lemma 2.9. Let CT , Mh ∈ B(L2(µ)). Then Cn
T Mh = MhCn

T if and only if
h = h ◦ Tn a.e., where Mh is the multiplication operator induced by h.

Theorem 2.10. If CT and CS ∈ B(L2(µ)) are n-normal composition opera-
tors. Then the following statements are equivalent:
(i) Cn

T Cn
S and Cn

SCn
T are normal operators.

(ii) hSnT n = hT nSn = hSnhT n a.e., where hSnT n , hT nSn are the Radon-Nikodym
derivatives of µ(Tn ◦ Sn)−1, µ(Sn ◦ Tn)−1 with respect to µ, respectively.

Proof. (1) ⇒ (2).
For f ∈ L2(µ) and using Proposition 1.1.,

〈Cn
T Cn

Sf, f〉 =
∫
|f |2 ◦ Sn ◦ Tn dµ =

∫
|f |2 dµ(Sn ◦ Tn)−1 = hSnT n .

Also,

〈Cn
S , Cn

T f, f〉 =
∫
|f |2 ◦ Tn ◦ Sn dµ =

∫
|f |2 dµ(Tn ◦ Sn)−1 = hT nSn .

If Cn
T Cn

S is a normal operator then
(CT nCSn)∗(CT nCSn) = (CT nCSn)(CT nCSn)∗

C∗SnC∗T nCT nCSn = CT nCSnC∗SnC∗T n

C∗SnCSnMhT n = CT nMhSn C∗T n

MhT n MhSn = MhSn MhT n .
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Also,

MhT nSn = (CT nCSn)∗(CT nCSn) = C∗SnC∗T nCT nCSn

= C∗SnMhT n CSn = C∗SnCSnMhT n = MhSn MhT n .

Similarly, MhSnT n = MhT n MhSn .
(2) ⇒ (1) is obvious.

Corollary 2.11. If CT is n-normal operator then any positive power of CT

is also n-normal.

The following theorem follows from the definition of the n-quasinormal opera-
tor.

Theorem 2.12. Let CT ∈ B(L2(µ)) be a composition operator. Then CT is
n-Quasinormal operator if and only if it commutes with the multiplication operator
Mh induced by h.

Corollary 2.13. Let CT ∈ B(L2(µ)) be a composition operator. Then CT is
n-quasinormal operator if and only if it h ◦ Tn = h a.e. for n ∈ N.

Theorem 2.14. Let CT ∈ B(L2(µ)) be a composition operator. Then C∗T is
n-quasinormal operator then h = h ◦ Tn.

Proof. Suppose that C∗T is n-quasinormal. Then

C∗nT (C∗T CT ) = (C∗T CT )C∗nT .

By taking adjoint on both the sides, we get

C∗T CT Cn
T = Cn

T C∗T CT

MhCn
T = Cn

T Mh

MhCn
T = Mh◦T nCn

T .

Hence, h = h ◦ Tn a.e.

Corollary 2.15. Let CT ∈ B(L2(µ)) be a composition operator. Then the
following statements are equivalent:
(i) CT is n-quasinormal operator.
(ii) C∗T is n-quasinormal operator.
(iii) h = h ◦ Tn a.e.

3. n-normal weighted composition operators and
n-quasinormal weighted composition operators

Let (X, Σ, µ) be a σ-finite measure space and W ≡ Wφ,T be the weighted
composition operator on L2(µ) induced by the complex valued function φ and a
measurable transformation T . The adjoint W ∗ of W is given by W ∗f = hE(φf) ◦
T−1 for f in L2(µ). For a natural number n, we put φn = φ.(φ ◦T ).(φ ◦T 2) · · · (φ ◦
T (n−1)). For f ∈ L2(µ), Wnf = φn.f ◦ Tn and W ∗nf = hn.E(φn.f) ◦ T−n.
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Theorem 3.1. Let W be a weighted composition operator on L2(µ). Then the
following statements are equivalent:
(i) W is n-normal operator.
(ii) φn(hn ◦ Tn.E(φnf)) = hn.E(φ2

n) ◦ T−nf .

Proof. For f ∈ L2(µ),

WnW ∗nf = Wn(hn.E(φnf) ◦ T−n) = φn(hn.E(φnf) ◦ T−n) ◦ Tn

= φn(hn ◦ Tn.E(φnf)).

Also,

W ∗nWnf = W ∗n(φn.f ◦ Tn) = hn.E(φ2
n.f ◦ Tn) ◦ T−n

= hn.E(φ2
n) ◦ T−nf.

Suppose that W is a n-normal weighted composition operator. Then

φnhn.E(φnf) ◦ T−n = hn.E(φ2
n.f ◦ Tn) ◦ T−n

⇐⇒ φn(hn ◦ Tn.E(φnf)) = hn.E(φ2
n) ◦ T−nf.

Corollary 3.2. Let W be a weighted composition operator on L2(µ). Then
the following statements are equivalent:
(i) W is n-normal operator.
(ii) W ∗ is n-normal operator.
(iii) φn(hn ◦ Tn.E(φnf)) = hn.E(φ2

n)f for f ∈ L2(µ).

Proposition 3.3. For φ ≥ 0,
(i) W ∗Wf = hE[(φ2)] ◦ T−1f .
(ii) WW ∗f = φ(h ◦ T )E(φf).

Theorem 3.4. Let W be a weighted composition operator on L2(µ). Then the
following statements are equivalent:
(i) W is n-quasinormal operator.
(ii) φnh.E(φ2) ◦ T−1.f ◦ Tn = h.E(φn+2) ◦ T−1.f ◦ Tn.

Proof. For f ∈ L2(µ),

Wn(W ∗W )f = Wn(h.E(φ2) ◦ T−1f) = φnh.E(φ2) ◦ T−1.f ◦ Tn.

Also,

(W ∗W )Wnf = (W ∗W )(φn.f ◦ Tn) = W ∗(φn+1f ◦ Tn+1)

= h.E(φn+2.f ◦ Tn+1) ◦ T−1 = h.E(φn+2) ◦ T−1.f ◦ Tn.

Suppose that W is a n-quasinormal operator. Then

Wn(W ∗W ) = (W ∗W )Wn

φnh.E(φ2) ◦ T−1.f ◦ Tn = h.E(φn+2) ◦ T−1.f ◦ Tn.
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Theorem 3.5. Let W be a weighted composition operator on L2(µ). Then the
following statements are equivalent:
(i) W ∗ is n-quasinormal operator.
(ii) hn.E(φn.hE(φ2) ◦ T−1.f) = h ◦ T−1.E(φ2.hnE(φn.f).

Proof.

W ∗n(W ∗W )f = W ∗n(h.E((φ2) ◦ T−1.f))

= hn.E(φn.hE(φ2) ◦ T−1.f) ◦ T−n.

Also,

(W ∗W )W ∗nf = (W ∗W )(hn.E(φn.f) ◦ T−n)

= W ∗(φ.(hn.E(φn.f)) ◦ T−n ◦ T ))

= h.E(φ2.hn.E(φn.f) ◦ T−n ◦ T ◦ T−1

= h ◦ T−1.E(φ2.hnE(φn.f) ◦ T−n.

Suppose that W ∗ is a n-quasinormal weighted composition operator. Then

W ∗n(W ∗W ) = (W ∗W )W ∗n

hn.E(φn.hE(φ2) ◦ T−1.f) = h ◦ T−1.E(φ2.hnE(φn.f).
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