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SEMI PARAMETRIC ESTIMATION OF
EXTREMAL INDEX FOR ARMAX PROCESS

WITH INFINITE VARIANCE

Hakim Ouadjed and Mami Tawfiq Fawzi

Abstract. We consider estimating the extremal index of a maximum autoregressive process
of order one under the assumption that the distribution of the innovations has a regularly varying
tail at infinity. We establish the asymptotic normality of the new estimator using the extreme
quantile approach, and its performance is illustrated in a simulation study. Moreover, we compare,
in terms of bias and mean squared error, our estimator with the estimator of Ferro and Segers
[Inference for clusters of extreme values, J. Royal Stat. Soc., Ser. B, 65 (2003), 545–556] and
Olmo [A new family of consistent and asymptotically-normal estimators for the extremal index,
Econometrics, 3 (2015), 633–653].

1. Introduction

The extremal index parameter characterizes the degree of local dependence in
the extremes of a stationary time series and has important applications in a number
of areas, such as hydrology, telecommunications, finance and environmental studies.
This parameter is the key for extending extreme value theory results from i.i.d. to
stationary sequences.

Many applications as in insurance and finance, telecommunication and other
areas of technical risk, usually exhibit a dependence structure. Leadbetter et al. [12]
put a mixing condition D(un) based on the probability of exceedances of a high
threshold un, it limits the degree of long-term dependence of the sequence, providing
asymptotic independence between far apart extreme observations.

Definition1.1. [D(un) condition] A strictly stationary sequence {Xi}, whose
marginal distribution F has upper support point xF = sup{x : F (x) < 1}, is said
to satisfy D(un) if, for any integers i1 < · · · < ip < j1 < · · · < jq with j1 − ip > ln,∣∣P {

Xi1 ≤ un, . . . , Xip ≤ un, Xj1 ≤ un, . . . , Xjq ≤ un

}

− P
{
Xi1 ≤ un, . . . , Xip ≤ un

}
P

{
Xj1 ≤ un, . . . , Xjq ≤ un

}∣∣ ≤ δ(n, ln),

where δ(n, ln) → 0 for some sequences ln = o(n) and un → xF as n →∞.
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Let X1, . . . , Xn be a strictly stationary sequence with marginal distribution
F , and X̃1, . . . , X̃n an i.i.d. sequence of random variables with the same dis-
tribution F , define the following quantities Mn = max(X1, . . . , Xn) and M̃n =
max(X̃1, . . . , X̃n). Under the D(un) condition, with un = anx + bn, if

P[a−1
n (M̃n − bn) ≤ x] → G(x), as n →∞, (1.1)

for normalizing sequences an > 0 and bn ∈ R, Leadbetter et al. [12] showed that

P[a−1
n (Mn − bn) ≤ x] → [G(x)]θ, as n →∞, (1.2)

where G is one of the three extreme value types distributions:
Type I (Gumbel):

G(x) = exp(−e−x), x ∈ R,

Type II (Fréchet):

G(x) =
{

0, x ≤ 0
exp(−x−α), x > 0, α > 0,

Type III (Weibull):

G(x) =
{

exp(−(−x)α), x ≤ 0, α > 0
1, x > 0,

and θ ∈ (0, 1] is the extremal index, this parameter characterizes the short-range
dependence of the maxima. In particular, θ−1 gives a measure of the degree of
clustering of large values of the sequence. Theoretical properties of the extremal
index have been studied fairly extensively (O’Brien [13]), Hsing et al. [11], and the
references therein). The problem of estimating θ has also received some attention
in the literature (see Smith and Weissman [16], Weissman and Novak [17]).

Ferro and Segers [8], using a moment estimator, obtained

θ̂FS =

{
1 ∧ θ̂1, max{Ti : 1 ≤ i ≤ N − 1} ≤ 2

1 ∧ θ̂2, max{Ti : 1 ≤ i ≤ N − 1} > 2,
(1.3)

where Ti are the inter-exceedance times and N is the number of exceedances of a
fixed high threshold u and

θ̂1 =
2[

∑N−1
i=1 Ti]2

(N − 1)
∑N−1

i=1 T 2
i

, θ̂2 =
2[

∑N−1
i=1 (Ti − 1)]2

(N − 1)
∑N−1

i=1 (Ti − 1)(Ti − 2)

The Ferro-Segers estimator is consistent for m-dependent strictly stationary se-
quences.

Recently, Olmo [14] introduces an estimator for this parameter as the ratio
of the number of elements of two point processes defined by a partition of the
sample in different blocks, and by the block maxima exceeding the corresponding
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thresholds vn and un, with vn > un. The estimator is consistent and converges to
a normal distribution and is given by :

θ̂n(rn) =
Bvn

Bun

=

∑kn

j=1 I(M(j−1)rn+1,jrn
> vn)

∑kn

j=1 I(M(j−1)rn+1,jrn
> un)

,

with I(X > un) the indicator function and dividing the data {Xi, i ≥ 1} of length
n into kn blocks of size rn, with kn = o(n), rn = [n/kn], where [·] is the integer
part and

M(j−1)rn+1,jrn
= max(X(j−1)rn+1, . . . , Xjrn

)

and vn verified

E
[ rn∑

j=1

I(Xj > vn)|
rn∑

j=1

I(Xj > un) ≥ 1
]
→ 1.

In practice he proposed to estimate vn by v̂n = F−1
(
1− Bun

n

)
and the estimator

θ̂n(rn) becomes

θ̂f
n(rn) =

Bv̂n

Bun

(1.4)

and we have √
Bun(θ̂f

n(rn)− θ) D→ N (
0, σ2

1

)
, (1.5)

where
σ2

1 = θ. (1.6)

The rest of this paper is organized as follows. In Section 2, we discus of heavy-
tailed ARMAX(1) properties and in Section 3 we construct an normal estimator
of the extremal index θ for this process. In Section 4 we compare by simulation
the performance of our estimator and their of Ferro and Segers [8] and Olmo [14].
Section 5 is devoted to the proofs.

2. ARMAX process

Infinite variance time series are popular modelling tools in the telecommuni-
cation industry. For a summary of results and applications, see Resnick [15] and
the references therein. We consider the maximum autoregressive process of order
one ARMAX(1). This process has been recommended as an alternative to AR(1)
process with heavy-tailed innovations by Davis and Resnick [4] and they are more
convenient for analysis extreme values because their dimensional finite-distributions
can easily be written explicitly.

Let X1, X2, . . . , Xn be the process defined recursively as follows:

Xi = max (λ Xi−1, Zi) , (2.1)

where 0 < λ < 1 and Z1, . . . , Zn are independent and identically distributed, with
distribution function FZ(x) = exp(−x−α), 0 < α < 2. We shall call it the maximal
autoregressive process of order 1 (abbreviate to ARMAX(1)). Such processes have
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finite-dimensional distributions which are max-stable and hence are examples of
max-stable processes.

The process {Xi} defined in (2.1) has stationary distribution given by,

FX(x) =
∞∏

j=0

FZ

(
x/λj

)
(2.2)

and any d.f. that is solution of equation

FX(x) = FZ(x)FX (x/λ) (2.3)

is a stationary d.f. of {Xi}.
From Ferreira and Canto e Castro [7] we have for x →∞

P(X > x) ∼ (1− λα)−1P(Z > x) ∼ (1− λα)−1x−α. (2.4)

The ARMAX process, have a weak dependence structure. In fact they verify the
β-mixing condition (see Drees [6]), D(un) condition. Hence the extremal index of
{Xi} is θ = 1− λα (see Beirlant et al. [2]).

3. A semi parametric estimate of θ

We can rewrite the relation (2.4) as

P(X > x) ∼ θ−1x−α.

Hence, we can estimate θ−1 by k
nX α̂X

n−k,n, where k = k(n) →∞, k/n → 0 and

α̂X =
[1
k

k∑
i=1

log Xn−i+1,n − log Xn−k,n

]−1

,

is the Hill estimator [10], with Xi,n denotes the i-th ascending order statistics
1 ≤ i ≤ n, associated to the random sample (X1, X2, . . . , Xn). It easy to check
that

θ̂n =
n

k
X−α̂X

n−k,n (3.1)

We note that from Theorem 2.2 of Drees [6], we have
√

k(α̂X − α) D→ N (
0, σ2

)
, (3.2)

where
σ2 = α2

∫

(0,1]

∫

(0,1]

(st)−(1+1/α)c̃(s, t) ν(ds) ν(dt),

ν being the signed measure defined by ν(dt) = tα
−1

dt − δ1(dt) and δ1 the Dirac
measure with mass 1 at 1 and where

c̃(x, y) := min(x, y) +
∞∑

m=1
[cm(x, y) + cm(y, x)],
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and

cm(x, y) = lim
x→∞

n

k
P

[
X1 > F−1

X

(
1− k

n
x
)
, X1+m > F−1

X

(
1− k

n
y
)]

for all m ∈ N, x > 0, y ≤ 1+ε, ε > 0 and F−1 denoting the inverse function of F .
We note from Dress [5] that

σ2 = α2c̃(1, 1). (3.3)

In the case of ARMAX(1) given by equation (2.1), Ferreira and Canto e Castro
[7] showed that

c̃(x, y) := min(x, y) +
p−1∑
m=1

[cm(x, y) + cm(y, x)] + (x + y)
λpα

1− λα

for
p ≡ px,y = [max{α−1 ln (x/y)/ ln λ, α−1 ln (y/x)/ ln λ}] + 1.

Hence the variance of Hill estimator in (3.3) becomes

σ2 = α2
(
1 + 2

λα

1− λα

)
. (3.4)

The asymptotic normality of θ̂n is established in the following theorem.

Theorem 3.1. Suppose (2.1) and k = kn be such that k → ∞, k/n → 0.
Then √

k

log (n/k)
(θ̂n − θ) D→ N (

0, σ2
2

)
,

where
σ2

2 = α4θ3(2− θ). (3.5)

4. Proof

Let U(t) = F−1
X

(
1− 1

t

)
. Note that

k

n
X α̂X

n−k,n − θ−1

=
(k

n
X α̂X

n−k,n −
k

n
Xα

n−k,n

)
+

k

n
Uα(n/k)

( Xα
n−k,n

Uα(n/k)
− 1

)
+

k

n
Uα(n/k)− θ−1.

Using Mean-Value Theorem we find

k

n
X α̂X

n−k,n − θ−1 =
(k

n
Xα

n−k,n(α̂X − α) log Xn−k,n

)
(1 + oP (1))

+
k

n
Uα(n/k)

( Xα
n−k,n

Uα(n/k)
− 1

)
+

k

n
Uα(n/k)− θ−1.
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From Theorem 2.1 of Drees [6] we have
Xα

n−k,n

Uα(n/k)
= 1 + OP (1/

√
k) and using

(3.2) we obtain
√

k

log (n/k)

(k

n
X α̂X

n−k,n − θ−1
)

D→ N (0, α2σ2).

Applying the delta method, it follows that the estimator θ̂n defined in (3.1) satisfies
the following result

√
k

log (n/k)
(θ̂n − θ) D→ N

(
0, α4 (2− θ)

θ

[
(f)′

(1
θ

)]2)
,

where f(x) = 1/x. This completes the proof of Theorem 3.1.

5. Simulation study

Tail index estimation depends for its accuracy on a precise choice of the sample
fraction, i.e., the number of extreme order statistics on which the estimation is
based. The most common methods of adaptive choice of the threshold k are based
on the minimization of some kind of MSE’s estimates

kopt = arg min
k

E(α̂− α)2. (5.1)

We mention the pioneering papers by Hall and Welsh [9], Danielsson et al. [3] and
Beirlant et al. [1].

To obtain confidence intervals for our estimator θ̂n, we generate 100 replications
of the time series (X1, . . . , Xn) for different sample sizes (1000, 3000), where Xt is
an ARMAX(1) process satisfying

Xt = max(λXt−1, Zt), 0 < λ < 1, t ≥ 1, (5.2)

where {Zt}t≥1 are i.i.d. with tail distribution 1 − FZ(x) = 1 − exp(−x−α), we
use (5.1) for compute kopt. The simulation results are presented in Table 1 and
Table 2, where lb and ub stand respectively for lower bound and upper bound of
the confidence interval. We compare in Table 3, in terms of bias and root of the
mean squared error (RMSE), the performances of our estimator θ̂n and Ferro and
segers estimator θ̂FS in (1.3). We conclude that θ̂n has smaller bias and RMSE
and consequently it performs better than θ̂FS in the case 0 < α < 1 which the
distribution is very heavy tailed.

n θ θ̂n lb ub length

1000 0.519 0.553 0.387 0.720 0.333

3000 0.519 0.479 0.317 0.642 0.325

Table 1. 95% confidence intervals for θ, with λ = 0.4 and tail index α = 0.8.
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n θ θ̂n lb ub length

1000 0.696 0.707 0.013 1.400 1.387

3000 0.696 0.693 0.178 1.208 1.030

Table 2. 95% confidence intervals for θ, with λ = 0.4 and tail index α = 1.3.

Table 3. Comparison of θ̂FS and θ̂n for λ = 0.2.

Now, we compare the performance of our estimator θ̂n and Olmo estimator
θ̂f

n(rn) in (1.4). We choose un = Xkopt+1,n and v̂n = XBun+1,n from the sequence
X1,n ≥ X2,n ≥ · · · ≥ Xn,n.

First, our comparison will be based on the ratio of the asymptotic variances
defined in (1.6) and (3.5), namely

R =
σ2

2

σ2
1

= α4θ2(2− θ).

We investigate its behavior with the help of graphs.

Given a fixed index 0 < α < 1, we compare in the left of Fig. 1 the value of the
above ratio with respect to 1, as the extremal index θ varies in the interval ]0, 1[,
we remark that θ̂n is more efficient than θ̂f

n(rn).

For 1 < α < 2 and after several trials, we noticed that there exists a real
number θ0 such that for θ0 < θ < 1 the asymptotic variance of θ̂f

n(rn) is smaller
than of θ̂n (see the right of Fig. 1).

Second, we generate 100 replications of the time series (X1, . . . , Xn) for differ-
ent sample sizes (200, 500, 1000, 2000), where Xt is an ARMAX(1) process satisfying
(5.2). We plot in Figs. 2, 3 the absolute bias (abias) of θ̂f

n(rn), rn ∈ [1, 20], where
the horizontal line is the absolute bias of θ̂n.

For 0 < α < 1, the (abias) of θ̂n is always better than θ̂f
n(rn) (see Fig. 2).

For 1 < α < 2 and n = 200, the abias of θ̂f
n(rn) is better than θ̂n in most cases

unlike for n = 500, 1000, 2000 (see Fig. 3).
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Fig. 1. Ratio of the asymptotic variance of the estimator θ̂n over that of the θ̂f
n(rn)

with α = 0.3 (left) and α = 1.3 (right)

Fig. 2. The abias of θ̂f
n(rn) and θ̂n for α = 0.5, λ = 0.25
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reading and for their comments which greatly improved the paper.
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Fig. 3. The abias of θ̂f
n(rn) and θ̂n for α = 1.3, λ = 0.25
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