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PARITY RESULTS FOR 13-CORE PARTITIONS
Kuwali Das
Abstract. We find some interesting congruences modulo 2 for 13-core partitions.

1. Introduction

A partition A = (A1, A, -+, Ag) of a natural number n is a finite sequence of
non-increasing positive integer parts A; such that n = Zle Ai. The Ferrers-Young
diagram of the partition A of n is formed by arranging n nodes in k rows so that
the it* row has )\; nodes. The nodes are labeled by row and column coordinates
as one would label the entries of a matrix. Let )\3 denote the number of nodes in
column j. The hook number H (i, j) of the (i,5) node is defined as the number of
nodes directly below and to the right of the node including the node itself. That
is, H(i,j) = A\i + A} —j —i+ 1. A partition A is said to be a t-core if and only
if it has no hook numbers that are multiples of ¢. If a;(n) denotes the number of
partitions of n that are t-cores, then the generating function for a.(n) satisfies the
identity [9, Equation 2.1]

n o (d5d)
oat(n)q (9 (L.1)

where as customary, for any complex numbers a and g with |¢| < 1,
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n

o0

(@:q)os = [T (1 —ag" ™).

n=1

A number of results on a;(n) have been proven by various mathematicians. Garvan,
Kim and Stanton [9] gave analytic and bijective proofs of the identity as(5n+4) =
5as(n). Granville and Ono [10] proved that for ¢t > 4, every natural number n has
a t-core, thereby settling a conjecture of Brauer regarding the existence of defect
zero characters for finite simple groups. E. X. W. Xia [15] established some new
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Ramanujan-type congruences modulo 2 and 4 for ¢-core partitions, (see [5,6,10,13—
15] for further results). In this paper, we prove the following parity results on
13-cores.

THEOREM 1.1. We have

> ai3 (104n + 6) ¢" = (¢;9)2, (mod 2)

n=0

and
> a1z (4(26n +14) +2)¢" =0 (mod 2),
n=0

where 1 =0 or 2 <1< 25.

THEOREM 1.2. Let n > 0. Then for any positive integer k we have
ars (104 - 3%n + 13- 3% — 7) = a13(104n + 6) (mod 2),

13-5%1 41

13 (104 520 45 -

) = a13(104n + 6) (mod 2),

and

ar3 (104 - 7 + 7. (13- 7271 — 1)) = a;3(104n + 6) (mod 2).

—13
THEOREM 1.3. Ifp > 5 is a prime with (—) = —1, then for all nonnegative
integers n and k we have p

aiz (4-p** pn+4) +7- (p**? - 1)) =0 (mod 2),
where 1 < j <p-—1.
. . . -2 .
THEOREM 1.4. If p > 5 is a prime with <—) = —1, then for all nonnegative
integers n and k we have p
ars (4 P2 (pn + j) + 13- p?F+2 — 7)=0 (mod 2),

where 1 < j <p-—1.

2. Background

For |ab| < 1, Ramanujan’s general theta-function f(a,b) is defined by

Fla,b) = i gn(n+1)/2pn(n—1)/2
In this notation, Jacobi’s famous triple product identity [4, p. 35, Entry 19] takes
the form
f(a,b) = (—a;ab) o (—b; ab) oo (ab; ab) o -
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Two important special cases of the above are

= S P il WES
¥(q) == f¢,q°) n§=0q .
and

[e.°]

f=) = f(—q¢.=¢) = X (=1)"q"C""D/2 = (¢;¢) s,

n=—oo

177

(2.1)

where the last equality in (2.1) is Euler’s famous pentagonal number theorem. We

will also need the following results.

LEMMA 2.1. [8, Theorem 2.2] For any prime p > 5,

= 3k24k 3p2+(6k+1)p 3p2—(6k+1)p
fea= Y (DT TR )
kszl tp—1 p2-1 2
kit EE—L + (=177 ¢ f(—¢"),
where b1
tp-1_ | 5 if p=1 (mod 6);
=Y p-1
6 p6 , ifp=-1 (mod 6).
—(p—1 -1 +p—1
Furthermore, if (p2 ) <k< (p ) and k # (p%c), then
32+k , p?—1
d p).
SELT L (mod )
LEMMA 2.2. [1] For any prime p > 5, we have
p—! k(k+1) X2
F=q) = (—1)*q = ZO(—l)”(2pn + 2k 4+ 1)g" "2
k=0 n=
kb=l _ 2_
- +p(-1) T " ().
p—1

Furthermore, if k #

5 and 0 < k <p-—1, then

B+k | pP-1
2 # 8

(mod p).

3. Congruences modulo 2 for 13-core partitions

THEOREM 3.1. We have

o0

> a13 (4n) ¢" = (4:9)3,(¢"% ¢"*)2, (mod 2)

n=0

(2.2)

(2.3)
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and

a1z (4n +2) " = q(¢°% ¢*°)3, (mod 2). (3.1)

18

n=0

Proof. For t > 1 a partition is called ¢-regular if none of its parts is divisible
by ¢, and we denote by b;(n) the number of ¢t-regular partitions of n. Then the
generating function for b;(n) satisfies the identity

& n (054"
ngobt(n)q (G0

Putting ¢ = 13 in (1.1), we have

&S (¢"%¢")%3
a1z(n)q” = ——=. 3.2
nZ::o 13(7) (49 (3:2)
Using binomial expansion and then taking congruence modulo 2, we have
(:0)% = (6% ¢*)oe  (mod 2). (33)
Employing (3.3) in (3.2), we find that
oo 26. 2616 (,13. 13 oo
S arg(n)gn = 93 )éo(q 1o (42642605 S pn)gn (mod 2). (3.4)
n=0 (Q7 q)oo n=0
Extracting the terms involving even powers of ¢ from both sides of (3.4) yields
> a13(2n)q™ = (¢'3;¢**)% 7 bi13(2n)¢"  (mod 2). (3.5)
n=0 n=0
From [7, Theorem 2] we recall that
> bis(2n)" = (% a5 +*(6*%¢*°)3  (mod 2). (3.6)
Applying (3.6) in (3.5), we obtain
> a1s(2n)q" = (675 ¢7°)3 (6% 413 + ¢*(¢%%¢*%)5  (mod 2).
n=0

Extracting the even and odd parts respectively, we obtain

o0

Zoa13(4n)q2" = (¢%5,¢%)3,(¢% ¢*)3, (mod 2)
and -
ZO a1s(4n +2)7" " = (%% ¢*)5, = (P35 ¢°?)3,  (mod 2).

Replacing ¢? by g in the above two congruences, we can easily obtain the required
result. m

THEOREM 3.2. We have

o0

> a13(104n 4 6) ¢" = (¢;¢)2,  (mod 2) (3.7)

n=0



Parity results for 13-core partitions 179

and
o0

> arz(4(26n+14) +2)¢g" =0 (mod 2),

n=0

where 1 =0 or 2 <1< 25.

Proof. This follows directly from the fact that the series on the right hand side
of (3.1) only involves powers of ¢ that are congruent to 1 modulo 26. m

THEOREM 3.3. Let n > 0. Then for any positive integer k we have
ars (104 - 3%n + 13- 3% — 7) = a13(104n + 6) (mod 2), (3.8)

13-5%1 41

13 (104 52%kn 4 5 -

) = a13(104n + 6) (mod 2) (3.9)

and

ars (104 - 7 n +7- (13- 771 — 1)) = a13(104n + 6) (mod 2).
(3.10)

Proof. Note that for a non-zero integer r and a nonnegative integer n, the
general partition function p,(n) is defined as the coefficient of ¢” in the expansion
of (¢;q)%,. From (3.7), we have

3™ a1 (104n + 6) g = i:;opg(n)qn (mod 2). (3.11)

n=0

From [3], we have

3% -1
D3 <32kﬂ + T) = (=3)"ps(n),
5%k
D3 (52"71 + 7 ) = Skpg(n)
and
k-1
pa (70 + =) = (=7)pa(n).

Employing the above three identities in (3.11), we can easily obtain (3.8), (3.9) and
(3.10). m
. . . —13 .
THEOREM 3.4. Ifp > 5 is a prime with (—) = —1, then for all nonnegative
integers k we have p

o0

>oas (4-pFn+7- (p*F = 1)) ¢" = (¢:9)3.(¢"%¢**)3,  (mod 2). (3.12)

n=0

Proof. Note first that (3.1) is the & = 0 case of (3.12). Now suppose (3.12)
holds for some k£ > 0, and consider the congruence

(€2+€)+13.(m2+m) — (p*—1)

5 5 5 (mod p), (3.13)




180 K. Das

for 0 < ¢,m < p— 1. Since the above congruence is equivalent to

(20+1)*+13-2m+1)>=0 (mod p),

)

—1
and (—3) = —1, it follows that (3.13) has only one solution, namely k = m =
b

2
(p—1)/2. Therefore, extracting the terms involving ¢""7(*7) from both sides of
(3.12), by (2.3) we deduce that

o0

> a3 (4 p?F (pn+17(
n=0

p*—1
A

))+7.(p2k_1))qn = (¢":q")2.(¢"37; ¢"*)3,  (mod 2).

(3.14)
Again, extracting terms involving ¢P™ from both sides of the above congruence and
replacing ¢P by ¢, we obtain

o0

> ars (4-p* 4T (72— 1)) " = (:0)% (0% ¢ (mod 2),

n=0
which is the k + 1 case of (3.12). m
We observe that in (3.14), there are no terms involving ¢?"*7 with 1 < j < p—1.
This implies the following result.

-1
THEOREM 3.5. Ifp > 5 is a prime with (—3) = —1, then for all nonnegative
integers k we have p
ais (4-p* pn+4) +7- (p**t? - 1)) =0 (mod 2),
where 1 < j <p-—1.

—2
THEOREM 3.6. If p > 5 is a prime with (—) = —1, then for all nonnegative
integers k we have p

o0
2_:0 a3 (104 -p?kn 413 . p?k — 7) 0" = (¢;9)0(¢%¢*) (mod 2). (3.15)

Proof. Note that (3.7) is the &k = 0 case of (3.15). Now suppose (3.15) holds
for some k > 0, and consider the congruence

(302 +¢) +a. (Bm*+m) _ 5. (p?—1)
2 2 o 24

for 0 < ¢, m <p— 1. The above congruence is equivalent to

(60+1)2+2-(6m+1)>=0 (mod p),

(mod p), (3.16)

-2
and (—) = —1, it follows that (3.16) has only one solution, namely ¢ = m =
p

(+p — 1)/6. Therefore, extracting the terms involving ¢P™*(
of (3.15), by (2.2) we deduce that

p2-1
8

) from both sides

p?—1

20 ai3( 104 - p** (pn+ )+ 13- p?k — 7) 0" = (675 ¢P) oo (¢*37; ¢*3P) o (mod 2).

(3.17)
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Extracting the terms involving ¢ from both sides of (3.17) and replacing ¢? by ¢,
we obtain

> ars (104 - p* 20 413 p* 2 —7) ¢" = (¢;¢) 0o (6% ¢*) e (mod 2),
n=0

which is the k + 1 case of (3.15). m

From (3.17), we can easily obtain the following result.

-2
THEOREM 3.7. If p > 5 is a prime with (—) = —1, then for all nonnegative
integers k we have p

arsz (4-p* (pn+4) +13-p**2 —7) =0 (mod 2),
where 1 < j <p-—1.
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