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Abstract. In this paper, we prove some properties of a partial b-metric space in the
sense of Shukla. As applications, we show that fixed point theorems on partial b-metric
spaces can be implied from certain fixed point theorems on b-metric spaces. We also give
examples to illustrate the results.

1. Introduction and preliminaries

In [4], Bakhtin introduced the notion of a b-metric space as a generalization of a
metric space.

Definition 1.1. [4] Let X be a non-empty set and d : X ×X → R+ be a function
satisfying:

1. d(x, y) = 0 if and only if x = y for all x, y ∈ X.

2. d(x, y) = d(y, x) for all x, y ∈ X.

3. There exists s ≥ 1 such that d(x, y) ≤ s [d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then d is called a b-metric on X and (X, d) is called a b-metric space with a coeffi-
cient s.

This was previously studied in [6] for the case s = 2. A b-metric space is also
called a metric-type space in the sense of [9, Definition 2.1]. b-metric spaces and fixed
point theorems on b-metric spaces were investigated in many papers, see [8, 12–15]
and some references therein.

In [11], Matthews introduced the notion of a partial metric space as a part of the
study of denotational semantics of dataflow networks. In that space, the usual metric
was replaced by a partial metric with an interesting property that the self-distance of
any point of space may not be zero.
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232 Remarks on partial b-metric spaces and fixed point theorems

Definition 1.2. [11] Let X be a non-empty set and p : X ×X → R+ be a function
satisfying:

1. p(x, x) = p(x, y) = p(y, y) if and only if x = y for all x, y ∈ X.

2. p(x, x) ≤ p(x, y) for all x, y ∈ X.

3. p(x, y) = p(y, x) for all x, y ∈ X.

4. p(x, y) ≤ p(x, z) + p(z, y)− p(z, z) for all x, y, z ∈ X.

Then p is called a partial metric on X and (X, p) is called a partial metric space.

Partial metric spaces and fixed point theorems on partial metric spaces were in-
vestigated by many authors, see [1, 3, 5] and some references therein.

Recently, Shukla introduced the notion of a partial b-metric space as a generaliza-
tion of a partial metric and b-metric space in [17]. An analogue to Banach contraction
principle, as well as a Kannan type fixed point theorem was proved in such space.

Definition 1.3 ( [17], Definition 3). Let X be a non-empty set and b : X×X → R+

be a function satisfying:

1. b(x, x) = b(x, y) = b(y, y) if and only if x = y for all x, y ∈ X.

2. b(x, x) ≤ b(x, y) for all x, y ∈ X.

3. b(x, y) = b(y, x) for all x, y ∈ X.

4. There exists s ≥ 1 such that b(x, y) ≤ s [b(x, z) + b(z, y)] − b(z, z) for all
x, y, z ∈ X.

Then b is called a partial b-metric on X and (X, b) is called a partial b-metric space
with coefficient s.

We see that the relation between a partial b-metric space and a b-metric space is
alike the relation between a partial metric space and a metric space. As far as the
relation between a partial metric space and a metric space is concerned, Samet et
al. in [16] established some new fixed point theorems on metric spaces and analogous
results on partial metric spaces were implied. Also, in [7], Haghi et al. showed that
some fixed point generalizations to partial metric spaces can be obtained from the
corresponding results in metric spaces.

In this paper, following the idea used in [7], we present a b-metric from a partial
b-metric space and state some relationship between them. As applications, we show
that some fixed point theorems on partial b-metric spaces can be implied from certain
fixed point theorems on b-metric spaces. We also give examples to illustrate the
results.

First we recall some notions and results which will be useful in what follows.
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Definition 1.4. [4] Let (X, b) be a b-metric space with coefficient s.

1. A sequence {xn} is called convergent to x in X, written as lim
n→∞

xn = x, if

lim
n→∞

b(xn, x) = 0.

2. A sequence {xn} is called a Cauchy sequence in X if lim
n,m→∞

b(xn, xm) = 0.

3. (X, b) is called complete if each Cauchy sequence in X is a convergent sequence.

Definition 1.5. [10]

1. A point w ∈ X is called a point of coincidence and a point u ∈ X is called a
coincidence point of two maps T, g : X → X if Tu = gu = w.

2. Two maps T, g : X → X are called weakly compatible if Tgu = gTu for all their
coincidence points u.

In [2], Arandelović and Kečkić approached some fixed point theorems in symmetric
spaces. The following Theorem 1.6 is a direct consequence of [2, Proposition 5] and [2,
Theorem 3].

Theorem 1.6. Let (X, b) be a complete b-metric space with coefficient s and
T : X → X be a map. If b(Tx, Ty) ≤ λb(x, y) for all x, y ∈ X and some λ ∈ [0, 1),
then T has a unique fixed point u.

In [9], Jovanović et al. obtained several fixed point theorems on metric-type spaces,
that is, on b-metric spaces. Some of the results are as follows.

Theorem 1.7 ( [9], Theorem 3.7). Let (X, b) be a b-metric space with coefficient s
and T, g : X → X be two maps such that TX ⊂ gX and one of these subsets of X is
complete. Suppose that there exist non-negative coefficients ai, i = 1, . . . , 5, such that

2sa1 + (s+ 1)(a2 + a3) + (s2 + s)(a4 + a5) < 2 (2)

and that for all x, y ∈ X,

b(Tx, Ty) ≤ a1b(gx, gy) + a2b(gx, Tx) + a3b(gy, Ty) + a4b(gx, Ty) + a5.b(gy, Tx)

holds. Then T and g have a unique point of coincidence. If, moreover, the pair (T, g)
is weakly compatible, then T and g have a unique common fixed point.

Theorem 1.8 ( [9], Theorem 3.11). Let (X, b) be a b-metric space with coefficient s
and T, g : X → X be two maps such that TX ⊂ gX and one of these subsets of X is
complete. Suppose that there exists λ ∈

(
0, 1s
)

such that for all x, y ∈ X,

b(Tx, Ty) ≤ λmax
{
b(gx, gy), b(gx, Tx), b(gy, Ty),

b(gx, Ty)

2s
,
b(gy, Tx)

2s

}
.

Then T and g have a unique point of coincidence. If, moreover, the pair (T, g) is
weakly compatible, then T and g have a unique common fixed point.
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Remark 1.9 ( [17], Remarks 1 & 2).

1. In a partial b-metric space (X, b), if b(x, y) = 0, then x = y, but the converse
may not be true.

2. Every partial metric space is a partial b-metric space with coefficient s = 1 and
every b-metric space is a partial b-metric space with the same coefficient and
zero self-distance. However, the converse of this fact need not hold.

Example 1.10 ( [17], Example 1). Let X = R+, p > 1 and b : X × X → R+ be
defined by

b(x, y) = (max {x, y})p + |x− y|p for all x, y ∈ X.
Then (X, b) is a partial b-metric space with coefficient s = 2p > 1, but it is neither a
b-metric nor a partial metric space.

Some more examples of partial b-metrics can be constructed with the help of
following propositions.

Proposition 1.11 ( [17], Proposition 1). Let X be a non-empty set such that p is
a partial metric and d is a b-metric with coefficient s > 1 on X. Then the function
b : X × X → R+ defined by b(x, y) = p(x, y) + d(x, y) for all x, y ∈ X is a partial
b-metric on X, that is, (X, b) is a partial b-metric space.

Proposition 1.12 ( [17], Proposition 2). Let (X, p) be a partial metric space, q ≥ 1,
then (X, b) is a partial b-metric space with coefficient s = 2q−1, where b is defined by
b(x, y) = [p(x, y)]

q
for all x, y ∈ X.

Definition 1.13 ( [17], Definition 4). Let (X, b) be a partial b-metric space with
coefficient s.

1. A sequence {xn} is called convergent to x in X, written lim
n→∞

xn = x, if

lim
n→∞

b(xn, x) = b(x, x).

2. A sequence {xn} is called a Cauchy sequence in X if lim
n,m→∞

b(xn, xm) exists

and is finite.

3. (X, b) is called complete if for each Cauchy sequence {xn} in X, there exists
x ∈ X such that

lim
n,m→∞

b(xn, xm) = lim
n→∞

b(xn, x) = b(x, x).

Note that in a partial b-metric space, the limit of a convergent sequence may not
be unique.

Example 1.14 ( [17], Example 2). Let X = R+, a > 0 be a constant and define
b : X × X → R+ by b(x, y) = max {x, y} + a for all x, y ∈ X. Then (X, b) is a
partial b-metric space with arbitrary coefficient s ≥ 1. If xn = 1 for all n ∈ N, then
lim

n→∞
xn = y for all y ≥ 1.
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2. Main results

First, we introduce the following notions on a partial b-metric space.

Definition 2.1. Let (X, b) be a partial b-metric space.

1. A sequence {xn} is called a 0-Cauchy sequence if lim
n,m→∞

b(xn, xm) = 0.

2. (X, b) is called 0-complete if for each 0-Cauchy sequence {xn} in X, there exists
x ∈ X such that

lim
n,m→∞

b(xn, xm) = lim
n→∞

b(xn, x) = b(x, x) = 0.

The relation between completeness and 0-completeness of a partial b-metric space
is as follows.

Lemma 2.2. Let (X, b) be a partial b-metric space. If (X, b) is complete, then it is
0-complete.

Proof. Let {xn} be a 0-Cauchy sequence in (X, b). Then lim
n,m→∞

b(xn, xm) = 0. This

proves that {xn} is a Cauchy sequence in (X, b). Since (X, b) is complete, there exists
x ∈ X such that

lim
n,m→∞

b(xn, xm) = lim
n→∞

b(xn, x) = b(x, x).

Since lim
n,m→∞

b(xn, xm) = 0, we have

lim
n,m→∞

b(xn, xm) = lim
n→∞

b(xn, x) = b(x, x) = 0.

This proves that (X, b) is 0-complete. �

The converse of Lemma 2.2 does not hold as shown in the following example.

Example 2.3. Let X = (0, 1) and b(x, y) = |x− y|+ 1 for all x, y ∈ X. Then (X, b)
is a 0-complete, partial b-metric space with coefficient s = 1. Since

lim
n,m→∞

b
( 1

n
,

1

m

)
= lim

n,m→∞

(∣∣∣ 1
n
− 1

m

∣∣∣+ 1
)

= 1

we have
{

1
n

}
is a Cauchy sequence in (X, b). Suppose on the contrary that lim

n→∞
1
n = x

in (X, b). Therefore,

lim
n→∞

b(xn, x) = lim
n→∞

(∣∣ 1
n
− x|+ 1

)
= b(x, x) =

∣∣x− x∣∣+ 1 = 1

which implies that x = 0. It is a contradiction since 0 /∈ X.

Now we state the relation between a partial b-metric b and certain b-metric on
(X, b) as follows.

Theorem 2.4. Let (X, b) be a partial b-metric space with coefficient s ≥ 1. For all
x, y ∈ X, put

db(x, y) =

{
0 if x = y
b(x, y) if x 6= y.
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Then we have

1. db is a b-metric with coefficient s on X.

2. If lim
n→∞

xn = x in (X, db), then lim
n→∞

xn = x in (X, b).

3. (X, b) is 0-complete if and only if (X, db) is complete.

Proof. 1. We have db is a function from X ×X to R+. Moreover, db(x, y) = 0 if and
only if x = y and db(x, y) = db(y, x) for all x, y ∈ X.

For all x, y, z ∈ X, if x = y or y = z or z = x, then db(x, y) ≤ db(x, z) + db(z, y).
If x 6= y 6= z, then

db(x, y) = b(x, y) ≤ s [b(x, z) + b(z, y)]− b(z, z)
≤ s [b(x, z) + b(z, y)] = s [db(x, z) + db(z, y)] .

By the above, db is a b-metric with coefficient s on X.
2. If there exists n0 such that xn = x for all n ≥ n0, then lim

n→∞
b(xn, x) = b(x, x).

This proves that lim
n→∞

xn = x in (X, b). So we may assume that xn 6= x for all

n ∈ N. Then db(xn, x) = b(xn, x) for all n ∈ N. Since lim
n→∞

xn = x in (X, db), we

have lim
n→∞

db(xn, x) = 0. Therefore, lim
n→∞

b(xn, x) = lim
n→∞

db(xn, x) = 0. Note that

0 ≤ b(x, x) ≤ b(xn, x) for all n ∈ N, then 0 ≤ b(x, x) ≤ lim
n→∞

b(xn, x) = 0. This proves

lim
n→∞

b(xn, x) = 0 = b(x, x), that is, lim
n→∞

xn = x in (X, b).

3. Necessity. Let {xn} be a Cauchy sequence in (X, db). Then lim
n,m→∞

db(xn, xm) =

0. If there exists n0 such that xn = x for all n ≥ n0, then lim
n→∞

xn = x in (X, db). So,

we may assume that xn 6= xm for all n 6= m. It implies that

lim
n,m→∞

b(xn, xm) = lim
n,m→∞

db(xn, xm) = 0.

Then {xn} is a 0-Cauchy sequence in (X, b). Since (X, b) is 0-complete, there exists
x ∈ X such that

lim
n,m→∞

b(xn, xm) = lim
n→∞

b(xn, x) = b(x, x) = 0.

Note that 0 ≤ db(xn, x) ≤ b(xn, x) for all n ∈ N, then

0 ≤ lim
n→∞

db(xn, x) ≤ lim
n→∞

b(xn, x) = 0.

Then lim
n→∞

db(xn, x) = 0. This proves that lim
n→∞

xn = x in (X, db). By the above,

(X, db) is complete.
Sufficiency. Let {xn} be a 0-Cauchy sequence in (X, b). Then lim

n,m→∞
b(xn, xm) = 0.

Since 0 ≤ db(xn, xm) ≤ b(xn, xm) for all n,m ∈ N, we have lim
n,m→∞

db(xn, xm) = 0.

This proves that {xn} is a Cauchy sequence in (X, db). Since (X, db) is complete, there
exists x ∈ X such that lim

n→∞
db(xn, x) = 0. If there exists n0 such that xn = x for all

n ≥ n0, then lim
n,m→∞

b(xn, xm) = lim
n→∞

b(xn, x) = b(x, x). Since lim
n,m→∞

b(xn, xm) = 0,

we get lim
n,m→∞

b(xn, xm) = lim
n→∞

b(xn, x) = b(x, x) = 0. So, we may assume that
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xn 6= xm for all n,m ∈ N. Then lim
n→∞

b(xn, x) = lim
n→∞

db(xn, x) = 0. Note that

0 ≤ b(x, x) ≤ b(xn, x) for all n ∈ N. Then 0 ≤ b(x, x) ≤ lim
n→∞

b(xn, x) = 0, that is,

b(x, x) = 0. Therefore, we also have

lim
n,m→∞

b(xn, xm) = lim
n→∞

b(xn, x) = b(x, x) = 0.

By the above, (X, b) is 0-complete. �

The following example shows that the converse of statement 2 from Theorem 2.4
does not hold.

Example 2.5. Let X = [0, 1] and b(x, y) = |x − y| + 1 for all x, y ∈ X. Then (X, b)
is a partial b-metric space with coefficient s = 1. We see that

lim
n→∞

b
( 1

n
, 0
)

= lim
n→∞

[∣∣∣ 1
n
− 0
∣∣∣+ 1

]
= 1 = b(0, 0).

This proves that lim
n→∞

1
n = 0 in the partial b-metric space (X, b). On the other hand,

we have

db(x, y) =

{
0 if x = y
|x− y|+ 1 if x 6= y.

Then

lim
n→∞

db

( 1

n
, 0
)

= lim
n→∞

[∣∣∣ 1
n
− 0
∣∣∣+ 1

]
= 1 6= 0.

This proves that lim
n→∞

1
n 6= 0 in the b-metric space (X, db).

The relation between contraction conditions on partial b-metric spaces in [17] and
certain contraction conditions on b-metric spaces is as follows.

Theorem 2.6. Let (X, b) be a partial b-metric space with coefficient s, db be defined
as in Theorem 2.4 and T : X → X be a map. Then we have

1. If there exists λ ∈ [0, 1) such that b(Tx, Ty) ≤ λb(x, y) for all x, y ∈ X, then
db(Tx, Ty) ≤ λdb(x, y) for all x, y ∈ X.

2. If there exists λ ∈
[
0, 12
)

such that b(Tx, Ty) ≤ λ [b(x, Tx) + b(y, Ty)] for all
x, y ∈ X, then db(Tx, Ty) ≤ λ [db(x, Tx) + db(y, Ty)] for all x, y ∈ X.

3. If there exists λ such that b(Tx, Ty) ≤ λmax {b(x, y), b(x, Tx), b(y, Ty)} for
all x 6= y ∈ X, then db(Tx, Ty) ≤ λmax {db(x, y), db(x, Tx), db(y, Ty)} for all
x, y ∈ X.

Proof. 1. If x = y, then db(Tx, Ty) = 0 ≤ λdb(x, y). If x 6= y, then db(x, y) = b(x, y)
and we have db(Tx, Ty) ≤ b(Tx, Ty) ≤ λb(x, y) = λdb(x, y). Therefore, db(Tx, Ty) ≤
λdb(x, y) for all x, y ∈ X.

2. If x = Tx, then b(x, Tx) = b(Tx, Tx) ≤ λ
[
b(x, Tx) + b(x, Tx)

]
= 2λb(x, Tx).

Since 2λ ∈
[
0, 1
)
, we have b(x, Tx) = 0 = db(x, Tx). It implies that b(x, Tx) =

db(x, Tx) for all x ∈ X. Therefore, for all x, y ∈ X,

db(Tx, Ty) ≤ b(Tx, Ty) ≤ λ [b(x, Tx) + b(y, Ty)] = λ [db(x, Tx) + db(y, Ty)] .
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3. For all x, y ∈ X, we have

max {db(x, y), db(x, Tx), db(y, Ty)} ≤ max {b(x, y), b(x, Tx), b(y, Ty)} . (3)

In order to prove that

max {b(x, y), b(x, Tx), b(y, Ty)} ≤ max {db(x, y), db(x, Tx), db(y, Ty)} (4)

for all x 6= y ∈ X, we distinguish between two cases.
Case 1. There exist x, y ∈ X such that max {b(x, y), b(x, Tx), b(y, Ty)} = b(x, y).

Since b(x, y) = db(x, y), we see that (4) holds.
Case 2. There exist x, y ∈ X such that max {b(x, y), b(x, Tx), b(y, Ty)} = b(x, Tx).

If x = Tx, then b(x, Tx) = b(x, x) ≤ b(x, y) = db(x, y). Therefore, (4) holds. If
x 6= Tx, then b(x, Tx) = db(x, Tx). It also implies that (4) holds.

By the above two cases, we see that (4) holds for all x 6= y. It follows from (3)
and (4) that, for all x 6= y,

max {db(x, y), db(x, Tx), db(y, Ty)} = max {b(x, y), b(x, Tx), b(y, Ty)} .
Therefore,

db(Tx, Ty) ≤ b(Tx, Ty) ≤ λmax {b(x, y), b(x, Tx), b(y, Ty)}
= λmax {db(x, y), db(x, Tx), db(y, Ty)}

for all x 6= y. If x = y, we have db(Tx, Ty) = 0. Then

db(Tx, Ty) ≤ λmax {db(x, y), db(x, Tx), db(y, Ty)}
for all x, y ∈ X. �

In what follows, by using Theorem 2.6, we show that fixed point theorems on
partial b-metric spaces in [17] can be implied from certain fixed point theorems on
b-metric spaces.

Corollary 2.7 ( [17], Theorem 1). Let (X, b) be a complete partial b-metric space
with coefficient s and T : X → X be a map. If b(Tx, Ty) ≤ λb(x, y) for all x, y ∈ X
and some λ ∈ [0, 1), then T has a unique fixed point u and b(u, u) = 0.

Proof. From Lemma 2.2, since (X, b) is complete, (X, b) is 0-complete. Then (X, db)
is complete by Theorem 2.4. From Theorem 2.6.(1), we have db(Tx, Ty) ≤ λdb(x, y)
for all x, y ∈ X. It follows from Theorem 1.6 that T has a unique fixed point u. Since

b(u, u) = b(Tu, Tu) ≤ λb(u, u)

and λ ∈
[
0, 1
)
, we have b(u, u) = 0. �

In the proof of [17, Theorem 2], on page 6, at lines 19-20, we see that the inequality

b(u, Tu) ≤ s

1− sλ
b(u, xn+1) +

s.λ

1− s.λ
b(xn, xn+1)

only holds if λ < 1
s . Therefore, the assumption λ 6= 1

s in [17, Theorem 2] may not be
suitable. In what follows, we restate [17, Theorem 2], where the assumption λ 6= 1

s is
replaced by λ < 1

s .

Corollary 2.8. Let (X, b) be a complete partial b-metric space with coefficient s and
T : X → X be a map. If b(Tx, Ty) ≤ λ [b(x, Tx) + b(y, Ty)] for all x, y ∈ X and
some λ ∈

[
0, 12
)

and λ < 1
s , then T has a unique fixed point u and b(u, u) = 0.
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Proof. From Lemma 2.2, since (X, b) is complete, (X, b) is 0-complete. Then (X, db)
is complete by statement 3 of Theorem 2.4. From statement 3 of Theorem 2.6, we
have db(Tx, Ty) ≤ λ [db(x, Tx) + db(y, Ty)] for all x, y ∈ X.

Note that the condition (2) in Theorem 1.7 was used to prove the inequality (3.16)
and the inequality

K(a2 + a3 + a4 + a5) < 2

at line -3, on page 7 in the proof of [9, Theorem 3.7], where K plays the role of s.
These claims hold if a1 = 0 and a2 + a3 + s(a4 + a5) < min

{
1, 2s
}

. Therefore, using
this modification of Theorem 1.7 with g being the identity and a2 = a3 = λ, we see
that T has a unique fixed point u. Since

b(u, u) = b(Tu, Tu) ≤ λ
[
b(u, Tu) + b(u, Tu)

]
= 2λb(u, u)

and 2λ ∈ [0, 1), we have b(u, u) = 0. �

Corollary 2.9 ( [17], Theorem 3). Let (X, b) be a complete partial b-metric space
with coefficient s and T : X → X be a map. If

b(Tx, Ty) ≤ λmax {b(x, y), b(x, Tx), b(y, Ty)}
for all x, y ∈ X and λ ∈

[
0, 1s
)
, then T has a unique fixed point u and b(u, u) = 0.

Proof. From statement 3 of Theorem 2.6, we have

db(Tx, Ty) ≤ λmax {db(x, y), db(x, Tx), db(y, Ty)}
for all x, y ∈ X. By using Theorem 1.8 with g being the identity, we see that T has
a unique fixed point u. Since

b(u, u) = b(Tu, Tu) ≤ λmax {b(u, u), b(u, Tu), b(u, Tu)} = λb(u, u)

and λ ∈
[
0, 1s
)
, we have b(u, u) = 0. �

The following example shows that for a partial b-metric space (X, b), the function
db in Theorem 2.4 may not be a metric. Then the results of [7] may not be applicable
to the above proofs.

Example 2.10. Let (X, b) be a partial b-metric space in Example 1.10 with p = 2.
Then we have

db(x, y) =

{
0 if x = y
(max{x, y})2 + |x− y|2 if x 6= y.

We have db(2, 0) = 22 + 22 = 8, db(2, 1) = 22 + 12 = 5, db(1, 0) = 12 + 12 = 2. Then

db(2, 0) = 8 > 7 = db(2, 1) + db(1, 0).

This proves that db is not a metric on X.

Acknowledgement. The authors wish to express their thanks to anonymous
reviewers for several helpful comments. They also sincerely thank The Dong Thap
Seminar on Mathematical Analysis and its Applications (DtSMA) for the relevant
discussions.



240 Remarks on partial b-metric spaces and fixed point theorems

References

[1] I. Altun, A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces,
Fixed Point Theory Appl. 2011 (2011), 1–10.
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