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TIME-LIKE HAMILTONIAN DYNAMICAL SYSTEMS IN
MINKOWSKI SPACE R3

1 AND THE NONLINEAR EVOLUTION
EQUATIONS

T. Bayrakdar and A. A. Ergin

Abstract. We show that all of the curve motions specified in the Frenet-Serret frame
are described by the time evolution of an integral curve of a time-like Hamiltonian dynamical
system in Minkowski space such that the integral curve under consideration is a geodesic
curve on a leaf of the foliation determined by the Poisson structure. Accordingly, any
nonlinear soliton equation related to curve dynamics is obtained as the time evolution of
an integral curve of a Hamiltonian system. As an expository example, we define Hashimoto
function in the Darboux frame which is reduced to the classical Hashimoto function provided
that the Poisson vector corresponds to principal normal of an integral curve and show that
the defocusing version of the nonlinear Schrödinger equation and the mKdV equation are
obtained by the time evolution of this function.

1. Introduction

The study of nonlinear soliton equations as a moving curve dates back to the pioneer-
ing work of Hashimoto, which is manifesting the nonlinear Schrödinger equation as a
time evolution of a vortex filament in an incompressible inviscid fluid [12], and has
gained more attraction in recent years. A considerable number of works in literature
are devoted to study of the nonlinear soliton equations emanating from the curve
dynamics in various geometries [4, 5, 8, 10,14,15,19,22].

Theory of moving curves and its relation to nonlinear evolution equations in three
dimensions is somehow interesting in the breadth of Hamiltonian dynamical systems.
In literature, all of the non-stretching curve motions describing the time evolution of
a curve with respect to an independent parameter, are specified (in general) in the
Frenet-Serret frame and many integrable models are obtained from the time evolu-
tion of the curvature quantities in Minkowski spaces [6, 7, 9, 18]. On the other hand
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owing to the existence of an isomorphism between bi-vectors and vector fields, form
of the Hamilton’s equations tell us that Poisson vector corresponding to a Poisson
structure is an ingredient of normal bundle of a trajectory of the flow determined by
the Hamiltonian vector field in three dimensions. Due to the Jacobi identity, Poisson
structure itself defines a codimension one foliation and accordingly, the time evolution
of the normal curvature, geodesic curvature and geodesic torsion of an integral curve
in three space are determined by the compatibility condition for s and t derivatives
of the Hamiltonian vector field and Poisson vector. In this sense, according to us
representation of the evolution equations in the frame composed of the Hamiltonian
vector field, Poisson vector and the gradient of Hamiltonian function serves richer
information for the time evolution of a curve under consideration.

By virtue of this point of view in this work we consider the time evolution of a
trajectory of the flow determined by the Hamiltonian vector field. In order to prove
the major result of this work we firstly define the notion of a time-like Hamiltonian
dynamical system in accordance with the pseudo-Riemannian metric in Minkowski
space R3

1. Afterwards we define an orthonormal frame field composed of the Hamil-
tonian vector field, Poisson vector and the gradient of Hamiltonian function and we
show that this frame defines Darboux frame along an integral curve on a leaf of the
foliation determined by the Poisson vector. We show as the main result of this pa-
per that all of the non-stretching curve motions specified in the Frenet-Serret frame
are described by the time evolution of an integral curve of a time-like Hamiltonian
dynamical system in Minkowski space R3

1 such that corresponding integral curve is a
geodesic curve on a leaf of the foliation determined by the Poisson structure. This
result manifests the form of the evolution equations is depend on the choice of the
Poisson vector and the all existing results related to the time evolution of a time-like
curve in literature are obtained from the time evolution of an integral curve of a
Hamiltonian dynamical system with Poisson vector n. In the final part of this paper
we define the Hasimoto function in Darboux frame and we show as an illustrative
example that the defocusing version of the nonlinear Schrödinger equation and the
mKdV equation are represented as the time evolution of this function.

2. Basic notions

2.1 Minkowski space R3
1

Minkowski space R3
1 is a three dimensional manifold endowed with pseudo-Riemannian

metric

η( , ) = ηijdx
idxj , (1)

where ηij is given in coordinate basis ∂xi as

(ηij) =

 1 0 0
0 1 0
0 0 −1

 .
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The norm of a vector field X is defined by ||X|| =
√
|η(X,X)|. A vector field X on R3

1

is called space-like if η(X,X) > 0 or X = 0, time-like if η(X,X) < 0 and light-like if
η(X,X) = 0 and X 6= 0. Accordingly, a parametrized curve γ = γ(t) on R3

1 is called
space-like (respectively time-like, light-like) if its velocity field has the corresponding
causality. Also for a regular space-like or time-like curve γ : I 7→ R3

1 there exist an
arc length parametrization which is given by

s =

∫ t

a

√
|η(γ̇, γ̇)| du.

The Lorentzian cross product ×L of two vector fields X,Y ∈ TR3
1 is defined by

η(X ×L Y,Z) := volη(X,Y, Z), ∀Z ∈ TR3
1, (2)

here volη denotes the volume form. As a direct consequence of this definition cross
product can be also represented by

X ×L Y =

∣∣∣∣∣∣
i j −k
X1 X2 X3

Y 1 Y 2 Y 3

∣∣∣∣∣∣ . (3)

The Frenet-Serret frame for a space-like or time-like curve with non-lightlike normals
with respect to arc length parametrization and its structure equations along curve
are given respectively by

t = γ′, n =
1√

|η(γ′′, γ′′)|
γ′′, b = t×L n

and

d

ds

 t
n
b

 =

 0 ε2κ 0
−ε1κ 0 −ε1ε2τ

0 −ε2τ 0

 t
n
b

 , (4)

where the curvature κ and the torsion τ are defined by κ = η(t′,n), τ = η(n′,b)
(see [13]). Here over prime denotes the derivative with respect to arc length parameter
s. Since η(t, t) = ε1 and η(n,n) = ε2 for ε1, ε2 ∈ {−1, 1} by definition we have
η(b,b) = −ε1ε2. Due to the pseudo-Riemannian metric (1) there are three cases for
such a Frenet-Serret frame in Minkowski space R3

1:

ε1 = −1, ε2 = 1, η(b,b) = 1

ε1 = 1, ε2 = ±1, η(b,b) = ∓1 (5)

From (2) or (3) the multiplication rule for Frenet-Serret frame follows as

t×L n = b, n×L b = −ε2t, b×L t = −ε1n

3. Hamiltonian systems in Minkowski space R3
1

A Hamiltonian dynamical system is described by a system of ordinary differential
equations and completely determined by Hamiltonian function and the Poisson struc-
ture and it is formulated geometrically within a Poisson manifold [16, 20]. Poisson
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structure on a manifold can be interpreted as a skew-symmetric contravariant rank
two tensor subject to the Jacobi identity which is identified with a holonomic vec-
tor field, so called Poisson vector, in Minkowski space R3

1 and therefore it defines a
codimension one foliation.

In this section we define the notion of a Hamiltonian dynamical system in Minkow-
ski space and we consider time-like Hamiltonian systems locally with non-vanishing
velocity vector field and we also restrict ourselves to non-lightlike Poisson vector
and non-lightlike gradient of Hamiltonian function. All constructions/objects will be
considered on the whole R3

1 or on some domain of R3
1.

Let (x1, x2, x3) be a local coordinates on the Minkowski space R3
1, an autonomous

dynamical system associated to a vector field v = vi∂xi is given by the system of
autonomous ordinary differential equations:

ẋi = vi(x), x = (x1, x2, x3).

Here overdot denotes the derivative with respect to time t.

We define a Hamiltonian system with respect to a Poisson structure on R3
1 by

ẋ = v(x) := −Ω(x)(dH(x), .), (6)

where H(x) is the Hamiltonian function and Ω(x) is the Poisson bi-vector. Poisson
bi-vector is a skew-symmetric contravariant two-tensor satisfying the Jacobi iden-
tity [Ω(x),Ω(x)] = 0, which is given by the Schouten-Nijenhuis bracket. System of
equations (6) are called Hamilton’s equations. In terms of the local coordinate basis
∂i = ∂xi , the Poisson bi-vector is interpreted as Ω = Ωij∂i ∧ ∂j . Bi-vector Ω in fact
determines a Poisson structure on manifold by {f, g} = Ω(df, dg).

A manifold endowed with a Poisson structure is called a Poisson manifold. For
a Hamiltonian system on a Poisson manifold constants of motion or the conserved
quantities are determined by the equation ḟ = {f,H}.

A Hamiltonian dynamical system (6) is said to be space-like if η(v, v) > 0 and
time-like if η(v, v) < 0. Since ıΩvolη defines a 1-form, by means of the Minkowski
metric (1) we can define pairing between bi-vectors and vector fields on R3

1 as

Jj := ηij (ıΩvolη)i , (7)

where the vector field J = (Ω23,Ω31,−Ω12) is called the Poisson vector associated to
the Poisson structure [1, 11]. Here ıΩvolη stands for the contraction of the volume
form with Poisson bi-vector. By favour of η the gradient of a differentiable function
H is defined by

∇H = ηij
∂H

∂xj
∂

∂xi
, (8)

and therefore Hamilton’s equations (6) and the Jacobi identity are interpreted respec-
tively by

v = J ×L ∇H, (9)

and η(J, curl J) = 0, (10)
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where the curl J is defined as

curl J =

∣∣∣∣∣∣
i j −k
∂x1 ∂x2 −∂x3

J1 J2 J3

∣∣∣∣∣∣ .
The holonomicity condition (10) implies the existence of a family of surfaces orthog-
onal to the vector field J or a codimension one foliation [3, 21] in Minkowski space
R3

1. The leaves of this foliation determined by a level surfaces of a function, say
ψ(x1, x2, x3), and Poisson vector is of the form φ∇ψ. In this sense, any Hamiltonian
dynamical system is described by the Hamiltonian function and a holonomic vector
field. An integral curve of (9) lies on a symplectic leaf ψ(x1, x2, x3) = c. Since J is
determined by the principal and binormal vector fields n and b according to (5) at a
given point, tangent planes to these leaves can have space-like and time-like casuality.

Let δ/δs1, δ/δs2 and δ/δs3 denote the local directional derivative operators in the
direction of tangent, normal and binormal of a curve and commutation relations of
these vector fields are determined by structure functions of the Frenet-Serret triad.
For the explicit values of these structure functions see for example [17, 22]. In terms
of these we can write the gradient operator (8) as

∇H = ηkls
δH

δsk
δ

δsl
,

where ηkls = ηij
∂sk

∂xj
∂sl

∂xi
. (11)

The functions si = si(x1, x2, x3) can be seen as (non-commutative) coordinates asso-
ciated to the Frenet-Serret frame and they represent the arc-lengths along the flows
of the vector fields (t,n,b). In [17], authors uses the term anholonomic coordinates
for the functions si. The columns (rows) of the Jacobian matrix(

∂sk

∂xj

)
=

 ∂s1

∂x1
∂s1

∂x2
∂s1

∂x3

∂s2

∂x1
∂s2

∂x2
∂s2

∂x3

∂s3

∂x1
∂s3

∂x2
∂s3

∂x3

 ,

represented by the Frenet-Serret frame (t,n,b). Accordingly we see from (11) that

η11
s = ε1, η

22
s = ε2, η

33
s = −ε1ε2,

and hence the gradinet operator in the Frenet-Serret basis takes the form

∇ = ε1t
δ

δs1
+ ε2n

δ

δs2
− ε1ε2b

δ

δs3
.

This implies that the gradient operator is depend on the casual characters of the
frame elements.

Since η(∇H, v) = 0, i.e. δs1H = 0, the Hamiltonian function is of the form
H = H(s2, s3) and its gradient is therefore determined by

∇H = ε2
δH

δs2
n− ε1ε2

δH

δs3
b.

On the other hand, from (9) J is orthogonal to v and hence it can be written as
J = αn+βb. It is also important to note that transformation is the Poisson structure
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is invariant under the transformation J 7→ fJ due to the dimensional reason, and that
in general, the multiplication of the Poisson bi-vector by a function is not a Poisson
structure. Accordingly, without loss of generality we can take the Poisson vector as
J = n + µb. The Jacobi identity for J = n + µb in Frenet-Serret frame reads

η(J, curl J) = Ωn + µΩnb + µ2Ωb + η(n,∇µ×L b) = 0 (12)

where the scalar quantities Ωn,Ωnb and Ωb are defined by

Ωn = η(n,∇×L n)

Ωnb = η(n,∇×L b) + η(b,∇×L n)

Ωb = η(b,∇×L b).

These scalar quantities completely determine the value of non-holonomicity of the
complexified vector field ξ = n + ib (see [3]).

Since η(n,∇µ ×L b) = −η(∇µ,n ×L b) = ε2η(∇µ, t) from the definition of the
gradient operator in the Frenet-Serret basis we have

η(n,∇µ×L b) = ε2ε
2
1

δµ

δs1
. (13)

As a consequence the following is immediate.

Proposition 3.1. The Jacobi identity for non-lightlike Poisson structure J = n+µb
associated to Hamiltonian dynamical system in R3

1 is described by the Riccati type pde

Ωn + µΩnb + µ2Ωb = −ε2
δµ

δs1
. (14)

Proof. Substituting (13) into (12) results in (14). �

This expression manifests that the Jacobi identity for a Poisson structure can
be expressible as a partial differential equation involving arc length coordinate only
and this equation does not depend on the casual character of the velocity vector
field. That is (14) describes the Jacobi identity for the Poisson structure for both of
the space-like and time-like Hamiltonian dynamical systems, and can be seen as the
Minkowski space analogue of the Riccati equation obtained in [1].

4. Darboux Frame associated to a Hamiltonian system

Since a Hamiltonian dynamical system is completely determined by the Hamiltonian
function H and Poisson structure J = n + µb, (v, J,∇H) forms a natural frame
field associated to the Hamiltonian dynamical system in R3

1. ∇H and J need not be
orthogonal with respect to the metric (1) in general. Any vector field X in TR3

1 can
be (locally) uniquely decomposed into three components for an orthonormal frame
(e1, e2, e3) with e3 = e1 ×L e2 as X = ε1η(X, e1)e1 + ε2η(X, e2)e2 − ε1ε2η(X, e3)e3,
and thereby we can define an orthonormal frame on an integral curve of a given
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Hamiltonian system by applying Gram-Schmidt process as follows:

e1 =
v

‖v‖
, e2 =

1

‖J‖
J,

e3 =
1

‖∇H − ε2η(∇H, e2)e2‖
(∇H − ε2η(∇H, e2)e2) .

Since ‖J‖ =
√
|1− ε1µ2|, for convenience we assume 1 − ε1µ2 > 0. This is readily

satisfied for a time-like dynamical system. By a direct calculation we find

∇H − ε2η(∇H, e2)e2 = − ε2
1− ε1µ2

(
µ
δH

δs2
+ ε1

δH

δs3

)
(ε1µn + b).

In this work we only focus on the time-like case ε1 = −1. This case implies ε2 = 1
and η(b,b) = 1. Accordingly for µ δHδs2 −

δH
δs3 > 0 we obtain

e1 =
v

‖v‖
, e2 =

1√
1 + µ2

J, e3 = e2 ×L e1 =
1√

1 + µ2
J⊥, (15)

where J⊥ = µn − b. In terms of the Frenet-Serret basis, this frame is given in the
matrix form as

e1 = t,

(
e2

e3

)
=

1√
1 + µ2

(
1 µ
µ −1

)(
n
b

)
.

As we mentioned above, due to the conformal invariance in three dimensions the
vector field e2 is the Poisson vector associated to the given Poisson structure and
readily satisfies the Jacobi identity η(e2, curle2) = 0. Since e2 defines a family of
surfaces, let us restrict ourselves to a member of this family and denote it by S.
Clearly an integral curve of the time-like Hamiltonian system is contained in S and
we assume that integral curve under consideration is re-parametrized by its arc-length.

Proposition 4.1. Let v = e2 ×L ∇H be a time-like Hamiltonian dynamical system
with Poisson structure e2 = 1√

1+µ2
(n + µb). Then the frame (15) defines Darboux

frame along an integral curve on the surface S with unit normal e2. Moreover, deriva-
tive of (e1, e2, e3) along the trajectory of the flow determined by the Hamiltonian vector
field v described by the following system of equations

d

ds

 e1

e2

e3

 =

 0 κn κg
κn 0 ττ
κg −ττ 0

 e1

e2

e3

 , (16)

where κn, κg and ττ are defined by

κn =
κ√

1 + µ2
, κg =

κµ√
1 + µ2

, ττ = −
(
τ +

µ̇

1 + µ2

)
, µ̇ = δsµ. (17)

Proof. By definition (e1, e2, e3) defines Darboux frame on S. Equations in (16) are
obtained by a straightforward calculation. �

The quantities κn, κg and ττ in (16) describes the normal curvature, geodesic
curvature and geodesic torsion of an integral curve of the Hamiltonian dynamical
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system (9). The appearance of µ and µ̇ in these equations determines the values
of non-holonomicity Ωn and Ωb and hence the vanishing of the curvature quantities
have a direct geometrical meaning for the determination of Poisson structures with
the normal legs of Frenet-Serret frame for underlying Hamiltonian system. It follows
directly from (17) that an integral curve of the Hamiltonian dynamical system is an
asymptotic curve iff it is a straight line, it is a geodesic for κ > 0 iff µ = 0, and it is
a line of curvature iff τ = − µ̇

1+µ2 .

It is also suitable to note here that setting µ = 0 in (21) gives

e1 = t, e2 = n, e3 = −b (18)

Using these and setting µ = 0 in (16) and (17) we obtain the Frenet-Serret equations
for a time-like unit speed curve as it is stated in (4):

d

ds

 t
n
b

 =

 0 κ 0
κ 0 τ
0 −τ 0

 t
n
b

 .

We should also emphasis that the existence of a Poisson structure J with µ = 0
is determined by the existence of trivial solution of the Riccati equation and this
holds if and only if Ωn = 0 and can be seen more transparently for the dynamical
systems admitting two functionally independent conserved quantities in three dimen-
sions. Consider the dynamical system on the domain D : x2 + y2 < 2 of R3

1 given by
the set of equations

ẋ = −y, ẏ = x, ż =
√

2, (19)

which integrates (up to position) to x = r cos t, y = r sin t, z =
√

2t.

Clearly the vector field v = (ẋ, ẏ, ż) is time-like. The domain D is foliated by the
constant values of function H1(x, y, z) = 1

2 (x2 + y2) and an integral curve of v lies on
a leaf of this foliation. Frenet-Serret frame associated to an arbitrary speed time-like
curve t 7→ γ(t) is constructed in some domain of R3

1 as follows:

t =
v

‖v‖
, n =

v ×L (∇×L v)

‖v ×L (∇×L v)‖
, b =

v ×L n

‖v ×L n‖
. (20)

For v = γ̇ = (−y, x,
√

2) and γ̈ = (−x,−y, 0), (20) can be equivalently given by

t =
v

‖v‖
, b =

γ̇ ×L γ̈

‖γ̇ ×L γ̈‖
, n = b×L t. (21)

It follows from (20) or (21) that

t =
1

‖v‖
(−y, x,

√
2), ‖v‖ =

√
2− (x2 + y2)

b =
1

φ
(
√

2y,−
√

2x,−(x2 + y2)), φ =
√

(x2 + y2)(2− (x2 + y2))

n = − (2− (x2 + y2))

φ‖v‖
(x, y, 0) = − 1√

x2 + y2
∇H1.

Another conserved quantity or the Hamiltonian function can be found by inspec-
tion as H2 = z −

√
2 arctan

(
y
x

)
, x 6= 0, whose gradient is found as (x2 + y2)∇H2 =
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(√
2y,−

√
2x,−(x2 + y2)

)
. Thus we have

b =

√
x2 + y2

2− (x2 + y2)
∇H2,

Clearly H1 and H2 are functionally independent since ∇H1 and ∇H2 are orthogonal
vector fields with respect to the metric η. As a consequence, the dynamical system
(19) is written for the Poisson vector J = n and the Hamiltonian function H2 by
v = ψJ ×L ∇H2, and this implies µ = 0.

5. Main Result

Now we state and prove the theorem exhibiting the main result of this paper.

Theorem 5.1. All of the non-stretching time evolution of a time-like curve specified
in the form ṙ = Un + V b + W t are described by the time evolution of an integral
curve of a time-like Hamiltonian dynamical system in Minkowski space R3

1 such that
the integral curve under consideration is a geodesic curve on a leaf of the foliation
determined by the Poisson structure.

Proof. Consider one-parameter family of smooth curves r(s, t) such that for each fixed
time t, a point particle moves along a trajectory r(s, t) of the flow determined by the
Hamiltonian vector field (9) and re-parameterized by a natural parameter s. Time
evolution of a point particle is specified in the Darboux frame as

ṙ = Ue2 + V e3 +We1, ṙ =
∂r

∂t
. (22)

We assume here that motion is non-stretching, that is, the arc-length s =
∫ b
a
‖∂s′r‖ ds′

is independent from the parameter t i.e. ∂ts = 0. In this case we have the compatibil-
ity condition (∂s∂t − ∂t∂s)r = 0. Motion is said to be local if the functions U, V and
W are depend only on the local values of κn, κg and ττ and their invariant derivatives
with respect to arc-length s. Taking the s derivative of (22) and using the compati-
bility condition rst = rts, we find ė1 = (Us − V ττ + Wκn)e2 + (Vs + Uττ + Wκg)e3

and Ws + Uκn + V κg = 0. This condition is equivalent to say that the motion is
non-stretching. By a direct calculation we find ė1,s = (aκn + bκg)e1 + (as − bττ )e2 +
(bs+aττ )e3, where a and b are defined by a = Us−V ττ +Wκn, b = Vs+Uττ +Wκg.

A real matrix A is called pseudo-orthogonal with respect to the metric η if AT ηA =
η, and the Lie algebra so(2, 1) of the pseudo-orthogonal group SO(2, 1) consists of
matrices of the form XT = −ηXη−1. Therefore, the time-derivative of the frame
(e1, e2, e3) is determined by

˙ e1

e2

e3

 =

 0 a b
a 0 c
b −c 0

 e1

e2

e3

 , (23)

where a and b are as above.
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Using e1,st = (aκn + bκg)e1 + (κ̇n − cκg)e2 + (κ̇g + cκn)e3, from the compatibility
condition e1,st = e1,ts we find

κ̇n = as − bττ + cκg, κ̇g = bs + aττ − cκn. (24)

Here c is determined by these equations.

Using the identity κ2 = κ2
n + κ2

g from (24), we get

1

2

∂

∂t
κ2 = κn(as − bττ ) + κg(bs + aττ ). (25)

From the compatibility condition e2,st = e2,ts we also find

τ̇τ = cs + aκg − bκn. (26)

We see from (17) that κg = 0 with κ > 0 if and only if µ = 0. In this case we have
κn = κ and ττ = −τ . Also in the case of µ = 0 Poisson vector e2 transforms to n and
the Jacobi identity implies Ωn = 0. This is equivalent to say that integral curve of a
time-like Hamiltonian system is geodesic curve on the surface S with unit normal n.
If we set µ = 0 in (25) and (26) using the expressions a, b and c in terms of U, V,W
we find κ̇ and τ̇ as follows:

∂tκ = Uss − (κ2 + τ2)U − κs
∫ s

κU ds′ + 2τVs + τsV (27)

∂tτ = − ∂

∂s

[
1

κ

∂

∂s
(Vs − τU)− τ

κ
(Us + τV ) + τ

∫ s

κU ds′
]

+ κVs − κτU

If we set µ = 0 in (23) and use (18) we obtain

ṫ = (Us + V τ +Wκ)n + (Uτ − Vs)b,

ṅ = (Us + V τ +Wκ)t−
[

1

κ

∂

∂s
(Vs − Uτ)− τ

κ
(Us + τV + κW )

]
b, (28)

ḃ = −(Vs − Uτ)t +

[
1

κ

∂

∂s
(Vs − Uτ)− τ

κ
(Us + τV + κW )

]
n.

Corresponding point evolution of these equations is obtained by setting µ = 0 in (22)
and using again (18) as follows:

ṙ = Un− V b +W t. (29)

If we replace V for equations in (27), (28) and (29) by −Ṽ , then the proof follows. �

These equations are the Minkowski space analogues of the corresponding equations
for Euclidean space derived in [19] and any nonlinear soliton equation obtained from
the time evolution of the curvature and the torsion of a time-like curve in literature is
covered by the case of µ = 0, see for instance, the nonlinear Schrödinger equation as
the binormal motion of a time-like curve or as the Heisenberg spin chain in Minkowski
space [7,9,18]. We are going to obtain nonlinear Schrödinger equation and the mKdV
equation as the time evolution of the Hashimoto function, which is composed of the
geodesic curvature, normal curvature and geodesic torsion in the following section.
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6. Hashimoto function in Darboux frame

As an illustrative example for the main result of this paper, we shall construct
Hashimoto function in Darboux frame and we obtain the nonlinear Schrödinger equa-
tion and the mKdV equation by the time evolution of this function.

Equations in (16) are written in complexified form as

(e2 + ie3)s + iττ (e2 + ie3) = (κn + iκg)e1.

If we define ξ = (e2 + ie3)ε, ε = ei
∫ s ττ ds′ , then we can write (16) as ∂ξ

∂s = ψe1,
∂e1
∂s = 1

2 (ψξ∗ + ψ∗ξ), where ψ is defined by

ψ = (κn + iκg)ε, (30)

and asterisk denotes the complex conjugation. We call this function as Hashimoto
function in Darboux frame. In terms of ψ and ε, κn and κg are written as

κn =
1

2
(ψε∗ + ψ∗ε), κg =

1

2i
(ψε∗ − ψ∗ε). (31)

As one can easily see, if µ = 0 then κg = 0 and from (21) it follows that

ξ = (n− ib)e−i
∫ s τ ds′ and ψ = κe−i

∫ s τ ds′ .
In this case the Poisson vector is determined by the principal normal n. Since the
Hashimoto function (30) have complete description for an integral curve of a given
time-like Hamiltonian system, its time evolution determines the time evolution of an
integral curve. Accordingly we have the following:

Proposition 6.1. The defocusing version of the nonlinear Schrödinger equation

i∂tψ + ∂2
ssψ −

1

2
|ψ|2ψ = 0,

and the complex mKdV equation

∂tψ + ψsss −
3

2
ψs|ψ|2 = 0,

are obtained as the time evolution of an integral curve of a given time-like Hamiltonian
system.

Proof. The proof of this proposition is based on straightforward calculation. Using
the equations in (24) and (26) we can compute the time derivative of (30) as

∂tψ = [(a+ ib)s + iττ (a+ ib)]ε+ iψ

∫ s

(aκg − bκn) ds′, (32)

where aκg− bκn = Usκg−Vsκn− ττ (Uκn+V κg). Substituting a and b into equation
(32) results in

∂tψ = (Uε)ss + i(V ε)ss + [Ws(κn + iκg) +W (κn,s + iκg,s)

+ iττW (κn + iκg)]ε+ iψ

∫ s

[Us′κg − Vs′κn − ττ (Uκn + V κg)] ds
′.
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Due to the identities |ψ|2 = κ2
n + κ2

g, Ws = −(Uκn + V κg), we have

∂tψ = (Uε)ss + i(V ε)ss − iψ(Uκg − V κn)− (U + iV )|ψ|2ε

− ψs
∫ s

(Uκn + V κg) ds
′ + iψ

∫ s

[Us′κg − Vs′κn − ττ (Uκn + V κg)] ds
′.

Using the identities ∫ s

Vs′κn ds
′ = V κn −

∫ s

V κn,s′ ds
′,∫ s

Us′κg ds
′ = Uκg −

∫ s

Uκg,s′ ds
′,

we obtain by a direct calculation that

iψ

∫ s

(Us′κg − Vs′κn) ds′ − iψ(Uκg − V κn) = iψ

∫ s

(V κn,s′ − Uκg,s′) ds′.

Therefore we have

∂tψ = (Uε)ss + i(V ε)ss − (U + iV )|ψ|2ε− ψs
∫ s

(Uκn + V κg) ds
′

+ iψ

∫ s

(V κn,s′ − Uκg,s′) ds′ − iψ
∫ s

ττ (Uκn + V κg) ds
′. (33)

From (31) it follows that

Uκn + V κg =
1

2
[ψ∗ε(U + iV ) + (ψ∗ε(U + iV ))∗] = Re(ψ∗ε(U + iV ))

κn,s =
1

2
(ψsε

∗ + ψ∗sε) + κgττ

κg,s =
1

2i
(ψsε

∗ − ψ∗sε)− κnττ .

Using the fact Re(ψsε
∗(V + iU)) = Im(ψ∗sε(U + iV )) we obtain

iψ

∫ s

(V κn,s′ − Uκg,s′) ds′ − iψ
∫ s

ττ (Uκn + V κg) ds
′ = iψ

∫ s

Im[(ψ∗s′ε)(U + iV )] ds′.

If we put these into (33) we finally get

∂tψ = (Uε)ss + i(V ε)ss − (U + iV )|ψ|2ε

− ψs
∫ s

Re(ψ∗ε(U + iV )) ds′ + iψ

∫ s

Im[(ψ∗s′ε)(U + iV )] ds′.

Therefore the time evolution of the function ψ is written by the integro-differential
operator as

∂tψ =

[
∂2
ss − |ψ|2 − ψs

∫ s

ds′Reψ∗ + iψ

∫ s

ds′Imψ∗s′

]
(U + iV )ε. (34)

Choosing U = 0 and V = κn+ iκg in (34) results in the defocusing version of the non-
linear Schrödinger equation: i∂tψ+ ∂2

ssψ− 1
2 |ψ|

2ψ = 0. If we set U = −(κn,s + iκg,s)
and V = −(κn+iκg)ττ we obtain (U+iV )ε = −∂sψ. Substituting this into (34) results
in the defocusing version of the modified KdV equation: ∂tψ+ψsss− 3

2ψs|ψ|
2 = 0. �

As it is indicated in [19], no choice of the pair {U, V } could give the defocusing
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version of the non-linear Schrödinger equation for non-strecthing curve motions in
R3. However, as we have shown and as it is stated in [7], the defocusing version can
be obtained by the moving curve in Minkowski space R3

1. We should also emphasis
that since U and V are depends on the curvature quantities κn, κg and ττ , they have
also µ dependence and hence the choice of U and V is determined by the choice of
Poisson structure associated to Hamiltonian system. Besides, since the equations in
(16) for a time-like curve in R3

1 reduce to Frenet-Serret equations for µ = 0, they
can be seen as the (AKNS) scattering problem [2] at zero eigenvalue for r = +q∗ [19]
provided that the integral curve of a given time-like Hamiltonian dynamical system
is a geodesic line on the surface with unit normal n. This is the circumstance that
we have κg = 0, κn = κ, ττ = −τ and all the existing results related to the motion
of a time-like curve in an ambient space in literature are covered within this special
case by setting µ = 0 in (30) and (34).
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