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A FIXED POINT THEOREM FOR MAPPINGS WITH A
CONTRACTIVE ITERATE IN RECTANGULAR b-METRIC SPACES

Zoran D. Mitrović

Abstract. In this paper, we give a proof for Sehgal-Guseman theorem of fixed point in
rectangular b-metric spaces. Our result is supported with a suitable example. As a corollary
of our results, we obtain fixed point results of contraction mappings in b-metric spaces.

1. Introduction and preliminaries

In 1922, Banach proved the following contraction mapping principle.

Theorem 1.1. Let (X, d) be a complete metric space. Let T be a contractive mapping
on X, that is, one for which exists q ∈ [0, 1) satisfying

d(Tx, Ty) ≤ qd(x, y)

for all x, y ∈ X. Then there exists a unique fixed point x ∈ X of T .

This theorem is a forceful tool in nonlinear analysis, has many applications and
has been extended by a great number of authors. In 1969, Sehgal [8] proved the
following generalization of the contraction mapping principle.

Theorem 1.2. Let (X, d) be a complete metric space, q ∈ [0, 1) and T : X → X be a
continuous mapping. If for each x ∈ X there exists a positive integer k = k(x) such
that

d(T k(x)x, T k(x)y) ≤ qd(x, y)

for all y ∈ X, then T has a unique fixed point u ∈ X. Moreover, for any x ∈ X,
u = lim

n→∞
Tnx.

In 1970, Guseman [5] generalized the result of Sehgal to mappings which are both
necessarily continuous and which have a contractive iterate at each point in a (possibly
proper) subset of the space.
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In the paper [4] authors introduced the concept of rectangular b-metric space,
which is not necessarily Hausdorff and which generalizes the concept of metric space,
rectangular metric space (RMS) and b-metric space.

Definition 1.3. [4] Let X be a nonempty set and the mapping d : X ×X → [0,∞)
satisfies:

(RbM1) d(x, y) = 0 if and only if x = y;

(RbM2) d(x, y) = d(y, x) for all x, y ∈ X;

(RbM3) there exists a real number s ≥ 1 such that d(x, y) ≤ s[d(x, u) + d(u, v) +
d(v, y)]

for all x, y ∈ X and all distinct points u, v ∈ X\{x, y}.
Then d is called a rectangular b-metric on X with coefficient s and (X, d, s) is

called a rectangular b-metric space (in short RbMS).

Note that every rectangular metric space is a rectangular b-metric space (with
coefficient s = 1). However the converse of the above implication is not necessarily
true.

Also in [4] the concept of convergence in such spaces is similar to that of standard
metric spaces (see for example [6, 7]).

Definition 1.4. [4] Let (X, d) be a b-rectangular metric space, {xn} be a sequence
in X and x ∈ X. Then:

(a) The sequence {xn} is said to be convergent in (X, d) and converges to x, if for
every ε > 0 there exists n0 ∈ N such that d(xn, x) < ε for all n > n0 and this
fact is represented by lim

n→∞
xn = x or xn → x as n→∞.

(b) The sequence {xn} is said to be Cauchy sequence in (X, d) if for every ε > 0 there
exists n0 ∈ N such that d(xn, xn+p) < ε for all n > n0, p > 0 or equivalently, if
lim
n→∞

d(xn, xn+p) = 0 for all p > 0.

(c) (X, d) is said to be a complete b-rectangular metric space if every Cauchy se-
quence in X converges to some x ∈ X.

In the papers of Bakhtin [1] and Czerwik [2], the notion of b-metric space has
been introduced and some fixed point theorems for single-valued and multi-valued
mappings in b-metric spaces were proved.

Definition 1.5. Let X be a nonempty set and let b ≥ 1 be a given real number. A
function d : X ×X → [0,∞) is said to be a b-metric if and only if for all x, y, z ∈ X
the following conditions are satisfied:

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x);
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(3) d(x, z) ≤ b[d(x, y) + d(y, z)].

A triplet (X, d, b), is called a b-metric space.

Note that a metric space is included in the class of b-metric spaces with coefiicent
s ≥ 1. Note also that every b-metric space is a rectangular b-metric space (with
coefficient s2) but the converse is not necessarily true ( [4], Examples 2.7).

We have the following diagram where arrows stand for inclusions. The inverse
inclusions do not hold.

metric space −→ b-metric space
↓ ↓

rectangular metric space −→ b-rectangular metric space

The aim of this paper is to obtain Theorem 1.2. in rectangular b-metric spaces.

2. Main result

Lemma 2.1. Let (X, d, s) be a complete rectangular b-metric space and T : X → X a
mapping satisfying the condition: for each x ∈ X there exists k (x) ∈ N such that

d
(
T k(x)x, T k(x)y

)
≤ λd (x, y) ,

for all y ∈ X, where λ ∈ (0, 1) . Then for each x ∈ X, r(x) = sup{d(Tn(x), x) : n ∈ N}
is finite or T has a fixed point.

Proof. Let x ∈ X and let

l(x) = sup{d(T k(x), x) : k ∈ {1, . . . , k1 + k2 + · · ·+ kn0
+ kn0+1}},

where n0 ∈ N such that λn0 < 1
2s and

k1 = k(x), k2 = k(T k1x), k3 = k(T k2+k1x), . . . , kn0+1 = k(T kn0
+...+k1x).

Let S = k1 + k2 + · · ·+ kn0 and S1 = k1 + k2 + · · ·+ kn0 + kn0+1. We have,

d(TSx, TS+mx) = d(T k1+k2+...+kn0x, T k1+k2+...+kn0 (Tm)x)

≤ λd(T k1+k2+...+kn0−1x, T k1+k2+...+kn0−1(Tm)x)

...

≤ λn0d(x, Tmx).

So d(TSx, TS+mx) ≤ λn0d(x, Tmx) for all m ∈ N. (1)

Similarly, we get

d(TS1x, TS1+mx) ≤ λn0+1d(x, Tmx) for all m ∈ N. (2)

Let n ∈ N.

1. If Tnx = TSx then d(x, Tnx) ≤ l(x) and proof is holds.
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2. If TSx = TS1x then TSx = TS+1x and TSx is a fixed point of T and proof is
finished. Namely, if TSx 6= TS+1x, we obtain

d(TSx, TS+1x) = d(TS1x, TS1+1x) ≤ λd(TSx, TS+1x) < d(TSx, TS+1x).

It is a contradiction.

3. If TS1x = x then Tx = x and proof is holds. Namely, if Tx 6= x then we have

d(x, Tx) = d(TS1x, TS1+1x) ≤ λn0+1d(x, Tx)
(2)
< d(x, Tx).

It is a contradiction.

So, TSx and TS1x distinct point and TSx, TS1x ∈ X\{Tnx, x}. If n > S then
there exists an integer t ≥ 0 such that tS < n ≤ (t+ 1)S. From (RbM3), (1) and (2),
we obtain

d(Tnx, x) ≤ s[d(TS+(n−S)x, TSx) + d(TSx, TS1x) + d(TS1x, x)]

≤ s
[
λn0d(Tn−Sx, x) + λn0d(x, T kn0+1x) + l(x)

]
≤ s

[
1

2s
d(Tn−Sx, x) +

1

2s
l(x) + l(x)

]
≤ 1

2
d(Tn−Sx, x) +

(
1

2
+ s

)
l(x).

Similarly, we obtain

d(Tn−Sx, x) ≤ 1

2
d(Tn−2Sx, x) +

(
1

2
+ s

)
l(x).

So, d(Tnx, x) ≤ 1

22
d(Tn−2Sx, Tx) +

(
1 +

1

2

)(
1

2
+ s

)
l(x).

Continuing in this process we obtain

d(Tnx, x) ≤ 1

2t
d(Tn−tSx, Tx) +

(
1 +

1

2
+ · · ·+ 1

2t−1

)(
1

2
+ s

)
l(x)

≤ 1

2t
l(x) + 2

(
1

2
+ s

)
l(x) ≤ 2(1 + s)l(x)

and r(x) is finite. �

Theorem 2.2. Let (X, d, s) be a complete rectangular b-metric space and T : X → X
a mapping satisfying the condition: for each x ∈ X there exists k (x) ∈ N such that

d
(
T k(x)x, T k(x)y

)
≤ λd (x, y) , (3)

for all y ∈ X, where λ ∈ (0, 1) . Then T has a unique fixed point, say u ∈ X, and
Tnx→ u for each x ∈ X.

Proof. Let x0 ∈ X be arbitrary. Let k1 = k(x0), x1 = T k1x0 and inductively
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ki+1 = k(xi), xi+1 = T ki+1xi, i ∈ N. Let n, p ∈ N. We have

d(xn+p, xn) = d(T kn+pxn+p−1, T
knxn−1)

= d(T kn+p+kn+p−1xn+p−2, T
kn+kn−1xn−2)

...

= d(T kn+p+kn+p−1+···+kp+1xp, T
kn+kn−1+···+k1x0)

= d(T kn+p+kn+p−1+···+kp+1+kpxp−1, T
kn+kn−1+···+k1x0)

...

= d(T kn+p+kn+p−1+···+kn+···+k1x0, T
kn+kn−1+···+k1x0)

= d(T kn+kn−1+···+k1(T kn+1+···+kn+px0), T kn+kn−1+···+k1x0)

≤ λnd(T kn+1+···+kn+px0, x0).

Therefore, d(xn+p, xn) ≤ λnr(x0).

1. If r(x0) is not finite, from Lemma 2.1. we conclude that T has the fixed point
and the proof is finished.

2. If r(x0) < +∞ we infer that (xn) is Cauchy. From the completeness of (X, d, s)
we have xn → u, for some u ∈ X. Now, we shall show that Tu = u. For this u there
is k(u) ∈ N such that d(T k(u)u, T k(u)xn) ≤ λd(xn, u). Hence,

lim
n→∞

d(T k(u)xn, T
k(u)u) = 0. (4)

Now, from (3) we have

d(T k(u)xn, xn) = d(T k(u)+kn−1xn−1, T
kn−1xn−1) ≤ λd(T k(u)xn−1, xn−1)

and it follows that

d(T k(u)xn, xn) ≤ λnd(T k(u)x0, x0) ≤ λnr(x0).

From Lemma 2.1 we obtain

lim
n→∞

d(T k(u)xn, xn) = 0. (5)

From triangle inequality (RbM3) we obtain

d(T k(u)u, u) ≤ s[d(T k(u)u, T k(u)xn) + d(T k(u)xn, xn) + d(xn, u)]

and together with (4) and (5) we obtain d(T k(u)u, u) = 0. By (3), u is the unique
fixed point for T k(u). Then Tu = T (T k(u)) = T k(u)(Tu) implies that Tu = u. But
then u is the unique fixed point of T �

Example 2.3. The space lp = {(xn) ⊂ R :
+∞∑
n=1
|xn|p < +∞}, p ∈ (0, 1), together with

the function d : lp × lp → R,

d(x, y) =

(
+∞∑
n=1

|xn − yn|p
) 1

p

,

where x = (xn), y = (yn) ∈ lp, is a rectangular b-metric space with s = 22+
2
p . Indeed,
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by an elementary calculation we obtain d(x, y) ≤ 22+
2
p [d(x, u) + d(u, v) + d(v, y)], for

all x, y ∈ lp and all distinct points u, v ∈ lp\{x, y}. Let T : lp → lp be a mapping
defined by

T (x1, x2, x3, x4 . . .) =
(
0, x1,

x2
2
,
x3
2
,
x4
2
, . . .

)
has a unique fixed point (0, 0, 0, . . .). Then,

T 2(x1, x2, x3, x4 . . .) =
(
0, 0,

x1
2
,
x2
22
,
x3
22
,
x4
22
, . . .

)
,

T 3(x1, x2, x3, x4, . . .) =
(
0, 0, 0,

x1
22
,
x2
23
,
x3
23
,
x4
23
, . . .

)
,

...

Tn(x1, x2, x3, x4 . . .) =
(

0, . . . , 0︸ ︷︷ ︸
n

,
x1

2n−1
,
x2
2n
,
x3
2n
,
x4
2n
, . . .

)
.

Further, for fixed x ∈ lp and any y ∈ lp, we have

d(Tnx, Tny) =

(
|x1 − y1|p

2p(n−1)
+
|x2 − y2|p

2pn
+
|x3 − y3|p

2pn
+ · · ·

) 1
p

≤
[

1

2p(n−1)
(|x1 − y1|p + |x2 − y2|p + |x3 − y3|p + · · · )

] 1
p

≤ 1

2n−1
d(x, y).

Hence, for any fixed λ ∈ [0, 1) and every x ∈ lp there exists k(x) ∈ N such that for
every y ∈ lp

d
(
T k(x)x, T k(x)y

)
≤ λd (x, y) .

On the other hand, T is not a contraction. For x = (1, 0, 0, . . .) and y = (2, 0, 0, . . .),
we have Tx = (0, 1, 0, 0, . . .), Ty = (0, 2, 0, 0, . . .), d(x, y) = 1, d(Tx, Ty) = 1. So,
d(Tx, Ty) ≤ λd(x, y) implies λ ≥ 1.

From Theorem 2.2 we obtain the following variant of Banach and theorem in
rectangular b-metric spaces.

Corollary 2.4. Let (X, d) be a complete rectangular b-metric space with coefficient
s > 1 and T : X → X be a mapping satisfying d(Tx, Ty) ≤ αd(x, y), for all x, y ∈ X,
where α ∈ [0, 1). Then T has a unique fixed point.

3. Sehgal-Guseman theorem in b-metric spaces

Lemma 3.1. If (X, d) is a b-metric space with coefficient s, then (X, d) is a rectangular
b-metric space with coefficient s2.

Proof. Let (X, d) be a b-metric space with coefficient s. Let u and v be distinct points
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such that u, v ∈ X\{x, y}. Then we have

d(x, y) ≤ s[d(x, u) + d(u, y)]

≤ s[d(x, u) + s[d(u, v) + d(v, y)]] ≤ s2[d(x, u) + d(u, v) + d(v, y)].

So, (X, d) is a rectangular b-metric space with coefficient s2. �

From Lemma 3.1 and Theorem 2.2 we obtain the next result in b-metric space.

Theorem 3.2. Let (X, d, s) be a complete b-metric space and T : X → X a mapping
satisfying the condition: for each x ∈ X there exists k (x) ∈ N such that

d
(
T k(x)x, T k(x)y

)
≤ λd (x, y) ,

for all y ∈ X, where λ ∈ (0, 1) . Then T has a unique fixed point, say u ∈ X, and
Tnx→ u for each x ∈ X.

Note that, from Theorem 3.2. we obtain the Banach contraction principle in
b-metric spaces.

Theorem 3.3. [3, Theorem 2.1] Let (X, d, s) be a complete b-metric space and let
T : X → X be a map such that for all x, y ∈ X and some λ ∈ [0, 1),

d(Tx, Ty) ≤ λd(x, y).

Then T has a unique fixed point u and lim
n→∞

Tnx = u for all x ∈ X.

Remark 3.4. Corollary 2.4 provides a complete solution to an open problem 1 raised
by George, Radenović, Reshma and Shukla in [4].
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