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A FIXED POINT THEOREM FOR MAPPINGS WITH A
CONTRACTIVE ITERATE IN RECTANGULAR -METRIC SPACES

Zoran D. Mitrovié

Abstract. In this paper, we give a proof for Sehgal-Guseman theorem of fixed point in
rectangular b-metric spaces. Our result is supported with a suitable example. As a corollary
of our results, we obtain fixed point results of contraction mappings in b-metric spaces.

1. Introduction and preliminaries

In 1922, Banach proved the following contraction mapping principle.

THEOREM 1.1. Let (X, d) be a complete metric space. Let T be a contractive mapping
on X, that is, one for which exists q € [0,1) satisfying

d(Tx, Ty) < qd(z,y)
for all x,y € X. Then there exists a unique fixed point v € X of T.

This theorem is a forceful tool in nonlinear analysis, has many applications and
has been extended by a great number of authors. In 1969, Sehgal [8] proved the
following generalization of the contraction mapping principle.

THEOREM 1.2. Let (X,d) be a complete metric space, ¢ € [0,1) and T : X — X be a
continuous mapping. If for each x € X there exists a positive integer k = k(x) such
that

d(TF® 2, TF®y) < qd(z,y)

for all y € X, then T has a unique fixed point w € X. Moreover, for any x € X,
u= lim T"z.

n—oo

In 1970, Guseman [5] generalized the result of Sehgal to mappings which are both
necessarily continuous and which have a contractive iterate at each point in a (possibly
proper) subset of the space.
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In the paper [4] authors introduced the concept of rectangular b-metric space,
which is not necessarily Hausdorff and which generalizes the concept of metric space,
rectangular metric space (RMS) and b-metric space.

DEFINITION 1.3. [4] Let X be a nonempty set and the mapping d : X x X — [0, c0)
satisfies:

(RbM1) d(z,y) =0 if and only if z = y;
(RbM2) d(x,y) = d(y,z) for all z,y € X;

(RbM3) there exists a real number s > 1 such that d(z,y) < s[d(x,u) + d(u,v) +
d(v, y)]

for all ,y € X and all distinct points u,v € X\{z, y}.
Then d is called a rectangular b-metric on X with coefficient s and (X,d, s) is
called a rectangular b-metric space (in short RbMS).

Note that every rectangular metric space is a rectangular b-metric space (with
coefficient s = 1). However the converse of the above implication is not necessarily
true.

Also in [4] the concept of convergence in such spaces is similar to that of standard
metric spaces (see for example [6,7]).

DEFINITION 1.4. [4] Let (X,d) be a b-rectangular metric space, {x,} be a sequence
in X and z € X. Then:

(a) The sequence {x,} is said to be convergent in (X, d) and converges to z, if for
every € > 0 there exists ng € N such that d(x,,z) < € for all n > ng and this
fact is represented by lim z, = x or x, — x as n — oo.

n— oo

(b) The sequence {x, } is said to be Cauchy sequence in (X, d) if for every € > 0 there
exists ng € N such that d(z,, zn4p) < € for all n > ng,p > 0 or equivalently, if
lim d(zn,Zn4p) =0 for all p > 0.
n—oo

(¢) (X,d) is said to be a complete b-rectangular metric space if every Cauchy se-
quence in X converges to some x € X.

In the papers of Bakhtin [1] and Czerwik [2], the notion of b-metric space has
been introduced and some fixed point theorems for single-valued and multi-valued
mappings in b-metric spaces were proved.

DEFINITION 1.5. Let X be a nonempty set and let b > 1 be a given real number. A
function d : X x X — [0,00) is said to be a b-metric if and only if for all z,y,z € X
the following conditions are satisfied:

(1) d(z,y) =0 if and only if z = y;

(2) d(x,y) = d(y,);
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(3) d(z,2) < bld(z,y) + d(y, z)].
A triplet (X,d,b), is called a b-metric space.

Note that a metric space is included in the class of b-metric spaces with coefiicent
s > 1. Note also that every b-metric space is a rectangular b-metric space (with
coefficient s?) but the converse is not necessarily true ( [4], Examples 2.7).
We have the following diagram where arrows stand for inclusions. The inverse
inclusions do not hold.
metric space — b-metric space

1 3

rectangular metric space — b-rectangular metric space

The aim of this paper is to obtain Theorem 1.2. in rectangular b-metric spaces.

2. Main result

LEMMA 2.1. Let (X,d,s) be a complete rectangular b-metric space and T : X — X a
mapping satisfying the condition: for each x € X there exists k (z) € N such that

d (Tk(””)a:, Tk(””)y) < Ad(z,y),

for ally € X, where A € (0,1). Then for each x € X, r(z) = sup{d(T"(z),z) : n € N}
is finite or T has a fized point.

Proof. Let x € X and let
I(x) =sup{d(T*(z),x) : k€ {1,..., k1 + ko4 -+ Eny + kng11}},
where ng € N such that A" < i and
ky = k(x), ke = (T x), ks = k(T* ™1 2), ... kpg1 = k(THmo T Fhig),
Let S=ky +kao+---+kn, and S1 = k1 + ko + -+ + kny + kno+1. We have,
A(TSz, TS+my) = d(TF+hetthng g phithat. by (7MY

< )\d(Tk1+k2+"'+k"0_1£L‘ Tk1+k2+'“+k"0_1(Tm)x)
— b

< A'd(z, T™x).

So d(T%z, TS ™) < \od(x, T™x) for all m € N. (1)
Similarly, we get

(T x, TS+ mg) < \otld(z, T™x) for all m € N. (2)
Let n € N.

1. If T"z = Tz then d(z,T"x) < I(z) and proof is holds.
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2. If TSz = Tz then Tz = T°*'x and T°z is a fixed point of T and proof is
finished. Namely, if T°2 # T9%'z, we obtain

ATz, T x) = d(T% 2, TS ) < N(T%2, T 2) < d(T%z, T ).

It is a contradiction.

3. If 752 = & then Tz = 2 and proof is holds. Namely, if Tz # x then we have

2
d(z, Tz) = d(T% z, 5 z) < X tld(z, Ta) (<) d(z,Tx).

It is a contradiction.

So, TSz and Tz distinct point and TSz, T2z € X\{T"z,z}. If n > S then
there exists an integer ¢ > 0 such that tS <n < (¢+1)S. From (RbM3), (1) and (2),
we obtain

d(T"z,z) < s[d(T5T D, T92) + d(T52, T &) + d(T% 2, x)]

s [Ad(T" 5z, z) + A"d(z, T o+ 2) + ()]

IAIA

s Q—Ed(T”_Sx,x) + %l(m) + l(m)]

1 1 1
So, d(T"z,z) < —d(T" >z, Tx) + (1 + ) ( + s) I(x).
Continuing in this process we obtain

1 1 1 1
d(T"z, ) < —d(T" Sz, Tx) + <1 + 3 +-- 4 2)51) (2 + s) I(x)

ot
1 1
< gl(m) +2 (2 + s) I(z) <201+ s)l(x)
and r(z) is finite. U

THEOREM 2.2. Let (X,d,s) be a complete rectangular b-metric space and T : X — X
a mapping satisfying the condition: for each x € X there exists k (x) € N such that

a (750 e, TH)y) < A (,y), 3)

for ally € X, where A € (0,1). Then T has a unique fized point, say v € X, and
Tz — u for each x € X.

Proof. Let o € X be arbitrary. Let k; = k(z0), 21 = T*x and inductively
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kiv1 = k(z;), zi41 = TF+12;,5 € N. Let n,p € N. We have
d(xn+p7 xn) = d(Tk”eranrpfla Tknmnfl)

_ d(Tkn+p+kn+p71 Tkn"l‘knfl

xn+p72a $n72)

(Tkn,+p+kn+p—l +"'+kp+1mp’ Tkn,+k7L71+"'+k1 -'IJO)

d
— d(Tkn+y+kn+p—1+~~+kp+1+kpxp_1’ Tkn+kn_1+'-~+k1x0)

= d(Tk"+p+kn+p—1+"‘+k5n+"'+k1 To, Thntkn—1+-+k xO)

— d(Tkn+k5n71+"'+kl (Tkn+1+"'+kn+p$0) Tk:n+kn71+"'+kl xO)
)

S )\nd(Tk"JrlJr“'Jrk"erIo, l‘o).
Therefore, d(zp+p, Tn) < A" (z0).
1. If 7(z) is not finite, from Lemma 2.1. we conclude that T has the fixed point
and the proof is finished.
2. If r(xp) < 400 we infer that (z,) is Cauchy. From the completeness of (X, d, s)

we have z,, — u, for some u € X. Now, we shall show that Tuw = u. For this u there
is k(u) € N such that d(T*Wu, TFWg,) < Xd(z,,,u). Hence,

lim d(T*Wg,,, TFWqy) = 0. (4)

n—oo

Now, from (3) we have
d(Tk(“)mn,xn) = d(T’“(“Hk"*lxn,l,Tk'"*lacn,l) < )\d(Tk(“)xn,l,mn,l)
and it follows that
A(T* W, 2,) < XNA(T* W g, 20) < Ar(x0).
From Lemma 2.1 we obtain
lim d(T*Wx,,z,) = 0. (5)

n—oo

From triangle inequality (RbM3) we obtain
d(TF W, u) < s[d(T*Du, TFW z,)) + d(T* 2, 2,) + d(, )]

and together with (4) and (5) we obtain d(T*"u,u) = 0. By (3), u is the unique
fixed point for 7). Then Twu = T(T*™) = T*®)(Tw) implies that Tu = u. But
then u is the unique fixed point of T’ O

+o00
EXAMPLE 2.3. The space I” = {(z,) CR: Y |z,|P < +o0},p € (0,1), together with
n=1

the function d : [P x I[P — R,
1

+o00 P
d(z,y) = <Z |z — yn|p> )
n=1

where z = (z,,),y = (yn) € IP, is a rectangular b-metric space with s = 22+3. Indeed,
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by an elementary calculation we obtain d(z,y) < 22+3 [d(z,u) 4+ d(u,v) + d(v,y)], for
all z,y € [P and all distinct points u,v € IP\{z,y}. Let T : [? — [ be a mapping
defined by

T2 T3 T4
T ...)=1(0 —
($1,$27x3,l‘4 ) ( y L1, 297 9" )
has a unique fixed point (0,0,0,...). Then,
1 Lo X3 T4
T? L) =1(0,0,%,5,55, 55,
($1,$2,$3,$4 ) ( 3 Uy 2a227227225 )a
Tr1 T X3 T4
T3($17$2,$37Z‘4,...): (0a0507§a¥a27372737"')7
Tm($1,$2,$37$4..J = (0, 0 11 fz fﬁ gﬁ )

0 o1 g gni g )

n

Further, for fixed z € I and any y € [P, we have

|21 — y1|P |2 — y2|P |z3 — y3|?
d(T"z, T"y) = < D) 4 oo + 5o 4.

=

1

1
< {21’("1) (|1 —y1|p+|x2—y2p+|x3—y3p+-~-)}

1
< aopd(@,y)-

Hence, for any fixed A € [0,1) and every = € [P there exists k(z) € N such that for
every y € [P

d (Tk("’”)w7 Tk(I)y) < Md(z,y).

On the other hand, T is not a contraction. For = (1,0,0,...) and y = (2,0,0,...),
we have Tz = (0,1,0,0,...), Ty = (0,2,0,0,...), d(z,y) = 1, d(Tx,Ty) = 1. So,
d(Tx,Ty) < Ad(z,y) implies A > 1.

From Theorem 2.2 we obtain the following variant of Banach and theorem in
rectangular b-metric spaces.

COROLLARY 2.4. Let (X,d) be a complete rectangular b-metric space with coefficient
s>1andT: X — X be a mapping satisfying d(Tz, Ty) < ad(x,y), for all z,y € X,
where a € [0,1). Then T has a unique fized point.

3. Sehgal-Guseman theorem in b-metric spaces

LEMMA 3.1. If (X, d) is a b-metric space with coefficient s, then (X, d) is a rectangular
b-metric space with coefficient s2.

Proof. Let (X, d) be a b-metric space with coefficient s. Let u and v be distinct points
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such that u,v € X\{z,y}. Then we have
d(x,y) < sld(z,u) + d(u, y)]
< sld(z,u) + s[d(u,v) + d(v,y)]] < $*[d(x,u) + d(u,v) + d(v, y)].
So, (X,d) is a rectangular b-metric space with coefficient s2. O

From Lemma 3.1 and Theorem 2.2 we obtain the next result in b-metric space.

THEOREM 3.2. Let (X,d,s) be a complete b-metric space and T : X — X a mapping
satisfying the condition: for each x € X there exists k (x) € N such that

a (T2, THy ) < A (),

for ally € X, where A € (0,1). Then T has a unique fized point, say v € X, and
Tz — u for each x € X.

Note that, from Theorem 3.2. we obtain the Banach contraction principle in
b-metric spaces.

THEOREM 3.3. [3, Theorem 2.1] Let (X,d,s) be a complete b-metric space and let
T:X — X be a map such that for all x,y € X and some X € [0, 1),

d(Tz, Ty) < Ad(z,y).

Then T has a unique fized point v and lim T"x = u for all z € X.
n—oo

REMARK 3.4. Corollary 2.4 provides a complete solution to an open problem 1 raised
by George, Radenovié, Reshma and Shukla in [4].
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