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Abstract. In 1999, De Smet et al. conjectured the generalized Wintgen inequality for
submanifolds in real space forms. This conjecture is also known as the DDVV conjecture and
it was proved by Ge and Tang. Recently, Mihai established such inequality for Lagrangian
submanifold in complex space forms. In this paper, we obtain the generalized Wintgen
inequality for bi-slant submanifolds in locally conformal Kaehler space forms. Further, we
discuss the particular cases of this inequality i.e. for semi-slant submanifolds, hemi-slant
submanifolds, CR-submanifolds, invariant submanifolds and anti-invariant submanifolds in
the same ambient space.

1. Introduction

The locally conformally Kaehler manifolds are those complex manifolds which have
the property that on their universal cover there exists a Kaehler metric upon which
the deck transformations act by homotheties (see the next section for definition).
I. Vaisman [11] introduced the notion of locally conformal manifolds. In the last
three decades, locally conformal Kaehler manifolds have been studied intensively by
many geometers due to its rich geometric importance [6, 12].

On the other hand, Wintgen inequality is a sharp geometric inequality for surfaces
in 4-dimensional Euclidean space involving Gauss curvature (intrinsic invariant), nor-
mal curvature and square mean curvature (extrinsic invariants).

P. Wintgen [13], proved that the Gauss curvature K, the normal curvature K⊥
and the squared mean curvature ‖H‖2 for any surface N 2 in E4 satisfy the following
inequality: ‖H‖2 ≥ K+ |K⊥|. The equality holds if and only if the ellipse of curvature
N 2 in E4 is a circle.
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Further, it was extended by I. V. Gaudalupe et al. [2] for arbitrary codimension

m in real space forms Nm+2
(c) as ‖H‖2 + c ≥ K + |K⊥|. They also discussed the

equality case of the inequality.

In 2014, I. Mihai [9] obtained the DDVV inequality for Lagrangian submanifolds in
complex space forms and investigated some of its applications. In 2017, M. N. Boyom
et al. [10] studied generalized Wintegen type inequality for Lagrangian submanifolds
in holomorphic statistical space forms and provided some of its applications.

In the present article, we obtain generalized Wintgen inequalities for bi-slant sub-
manifolds in locally conformal Kaehler space forms. We also investigate such inequal-
ity for different slant cases.

2. Submanifolds in locally conformal Kaehler space form

A Hermitian manifold (N , J, g) equipped with complex structure J and Hermitian
metric g, is called locally Kaehler manifold if each point p ∈ N has an open neigh-
bourhood U with a differentiable map φ : U → R such that the local metric g =
e−2φg|U is a Kaehler metric on U . The fundamental 2-form ψ of N is defined by

ψ(X,Y ) = g(JX, Y ), for any tangent vector fields X,Y ∈ TN (see [1]).

Proposition 2.1. [5] A Hermitian manifold N is a locally conformal Kaehler man-
ifold if and only if there exists a global 1-form ω, satisfying

g(∇ZJX, Y ) = ω(JX)g(Y,Z)− ω(X)g(JY, Z)− ω(JY )g(X,Z)− ω(Y )g(JX,Z),

for all X,Y, Z ∈ TN .

The 1-form ω is called the Lee form and its dual vector field is said to be the Lee
vector field. On a locally conformal Kaehler manifold, a symmetric (0, 2)-tensor P is
defined as

P (X,Y ) = −(∇Xω)Y − ω(X)ω(Y ) +
1

2
‖ω‖2g(X,Y ),

where ‖ω‖ is the length of the Lee form ω with respect to g. The tensor field P is
said to be hybrid if P (JX, Y ) + P (X,JY ) = 0, for X,Y ∈ TN .

The locally conformal Kaehler manifold with constant holomorphic sectional cur-
vature c is called locally conformal Kaehler space form and is denoted by N (c). In
the rest part of the paper we assume that P is hybrid in a locally conformal Kaehler
space form.

The curvature tensor R for locally conformal Kaehler space forms is given as [5,8]

R(X,Y,Z,W ) =
c

4
{g(Y, Z)g(X,W )− g(X,Z)g(Y,W )}

+
c

4
{g(JX,W )g(JY, Z)− g(JX,Z)g(JY,W )− 2g(JX, Y )g(JZ,W )}

−3

4
{g(Y,Z)P (X,W )− g(X,Z)P (Y,W ) + g(X,W )P (Y, Z)− g(Y,W )P (X,Z)}
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−1

4
{g(JY, Z)P (JX,W )− g(JX,Z)P (JY,W ) + g(JX,W )P (JY, Z)

−g(JY,W )P (JX,Z)− 2g(JZ,W )P (JX, Y )− 2g(JX, Y )P (JZ,W )}, (1)

for all X,Y, Z,W ∈ TN .

Let N be a submanifold of an almost Hermitian manifold N with induced metric
g; if ∇ and ∇⊥ are the induced connections on the tangent bundle TN and the normal
bundle T⊥N of N , respectively, then the Gauss and Weingarten formulas are given
by

∇XY = ∇XY + h(X,Y ),

∇XN = −SNX +∇⊥XN,
for vector fields X,Y ∈ TN and N ∈ T⊥N , where h, SN and ∇⊥ are the second
fundamental form, the shape operator and the normal connection, respectively.

The second fundamental form and the shape operator are related by the equation
g(h(X,Y ), N) = g(SNX,Y ), for vector fields X,Y ∈ TN and N ∈ T⊥N .

The equation of Gauss is given by

R(X,Y, Z,W ) = R(X,Y, Z,W ) + g(h(X,Z), h(Y,W ))− g(h(X,W ), h(Y,Z)), (2)

for X,Y, Z,W ∈ TN , where R and R represent the curvature tensor of N (c) and N
respectively.

For any tangent vector field X ∈ TN , we can write JX = PX + QX, where P
and Q are the tangential and normal components of JX respectively. If P = 0, the
submanifold is said to be an anti-invariant submanifold and if Q = 0, the submanifold
is said to be an invariant submanifold.

The squared norm of P at p ∈ N is given as

‖P‖2 =
n∑

i,j=1

g2(Jei, ej), (3)

where {e1, . . . , en} is any orthonormal basis of the tangent space TN of N .

Let {e1, . . . , en} and {en+1, . . . , e2m} be tangent orthonormal frame and normal
orthonormal frame, respectively, on N . The mean curvature vector field is given by

H =
1

n

n∑
i=1

h(ei, ei).

3. Generalized Wintgen inequality

We denote by K and R⊥ the sectional curvature function and the normal curvature
tensor on N , respectively. Then the normalized scalar curvature ρ is given by [9]

ρ =
2τ

n(n− 1)
=

2

n(n− 1)

∑
1≤i<j≤n

K(ei ∧ ej), (4)

where τ is the scalar curvature.
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In terms of the components of the second fundamental form, we can express the
scalar normal curvature KN of N by the formula [9]

KN =
∑

1≤r<s≤2m−n+1

∑
1≤i<j≤n

( n∑
k=1

hrjkh
s
ik − hrjkhsik

)2
. (5)

A submanifold N of a locally conformal Kaehler manifold N is said to be a C-
totally real submanifold if J maps each tangent space of N into the normal space, i.e.
J(TN ) ⊂ T⊥N . In particular, if n = 2m, then N is called a Lagrangian submanifold.

A submanifold N of an almost Hermitian manifold N is said to be a slant sub-
manifold if for any p ∈ N and a non zero vector X ∈ TpN , the angle between JX
and TpN is constant, i.e., the angle does not depend on the choice of p ∈ N and
X ∈ TpN . The angle θ ∈ [0, π2 ] is called the slant angle of N in N .

A submanifold N of an almost Hermitian manifold N is said to be a bi-slant
submanifold, if there exist two orthogonal distributions D1 and D2, such that:

(i) TN admits the orthogonal direct decomposition i.e TN = D1 +D2.

(ii) For i=1,2, Di is the slant distribution with slant angle θi.

In fact, semi-slant submanifolds, hemi-slant submanifolds, CR-submanifolds, slant
submanifolds can be obtained from bi-slant submanifolds in particular. We can see
the cases in the following table:

Table 1: Definition

S.N. N N D1 D2 θ1 θ2

(1) N bi-slant slant slant slant angle slant angle

(2) N semi-
slant

invariant slant 0 slant angle

(3) N hemi-
slant

slant anti-
invariant

slant angle π
2

(4) N CR invariant anti-
invariant

0 π
2

(5) N slant either D1 = 0 or D2 = 0 either θ1 = θ2 = θ or θ1 = θ2 6= θ

Invariant and anti-invariant submanifolds are the slant submanifolds with slant
angle θ = 0 and θ = π

2 , respectively, and when 0 < θ < π
2 , then the slant submanifold

is called a proper slant submanifold.
If N is a bi-slant submanifold in generalized locally conformal Kaehler space form

N (c), then one can easily see that

‖P‖2 = 2(d1 cos2 θ1 + d2 cos2 θ2), (6)

where dimD1 = 2d1 and dimD2 = 2d2.
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The normalized scalar normal curvature is given by [9] ρN = 2
n(n−1)

√
KN .

Now, we shall state and prove the generalized Wintgen inequality for bi-slant
submanifolds in locally conformal Kaehler space forms.

Theorem 3.1. Let N be a bi-slant submanifold of locally conformal Kaehler space
forms N (c). Then

ρN ≤ ‖H‖2 − (ρ− c)− 3

n− 1
traceP +

c

2n(n− 1)
(d1 cos2 θ1 + d2 cos2 θ2)

− 3

2n(n− 1)

∑
1≤i<j≤n

g(Jei, ej)P (Jei, ej). (7)

Proof. We choose {e1, . . . , en} and {en+1, . . . , e2m} as orthonormal frame and or-
thonormal normal frame on N respectively. Putting X = W = ei, Y = Z = ej , i 6= j,
from (1), we have

R(ei,ej , ej , ei) =
c

4
{g(ej , ej)g(ei, ei)− g(ei, ej)g(ej , ei)}

+
c

4
{g(ei, Jei)g(ej , Jej)− g(Jei, ej)g(Jej , ei)− 2g(Jei, ej)g(Jej , ei)}

− 3

4
{g(ej , ej)P (ei, ei)− g(ei, ej)P (ej , ei) + g(ei, ei)P (ej , ej)− g(ej , ei)P (ei, ej)}

+
1

4
{g(Jej , ej)P (Jei, ei)− g(Jei, ej)P (Jej , ei) + g(Jei, ei)P (Jej , ej)

− g(Jej , ei)P (Jei, ej)− 2g(Jej , ei)P (Jei, ej)− 2g(Jei, ej)P (Jej , ei). (8)

Combining equations (2) and (8), we obtain

R(ei,ej , ej , ei) =
c

4
{g(ej , ej)g(ei, ei)− g(ei, ej)g(ej , ei)}

+
c

4
{g(ei, Jei)g(ej , Jej)− g(Jei, ej)g(Jej , ei)− 2g(Jei, ej)g(Jej , ei)}

− 3

4
{g(ej , ej)P (ei, ei)− g(ei, ej)P (ej , ei) + g(ei, ei)P (ej , ej)− g(ej , ei)P (ei, ej)}

+
1

4
{g(Jej , ej)P (Jei, ei)− g(Jei, ej)P (Jej , ei) + g(Jei, ei)P (Jej , ej)

− g(Jej , ei)P (Jei, ej)− 2g(Jej , ei)P (Jei, ej)− 2g(Jei, ej)P (Jej , ei)

+ g(h(ei, ei), h(ej , ej))− g(h(ei, ej), h(ei, ej)). (9)

By taking summation for 1 ≤ i < j ≤ n and using (3) in (9), we derive∑
1≤i<j≤n

R(ei, ej , ej , ei) =
n(n− 1)

8
c+

1

8
c‖P‖2 +

3n

4
traceP

− 3

4

∑
1≤i<j≤n

g(Jei, ej)P (Jei, ej) +

2m−n∑
r=n+1

∑
1≤i<j≤n

[hriih
r
jj − (hrij)

2]. (10)

Also, we know that

τ =
∑

1≤i<j≤n

R(ei, ej , ej , ei). (11)
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Now, using equations (6) and (11) in (10), we obtain

τ =
n(n− 1)

8
c+

1

4
c(d1 cos2 θ1 + d2 cos2 θ2) +

3n

4
traceP

− 3

4

∑
1≤i<j≤n

g(Jei, ej)P (Jei, ej) +

2m−n∑
r=n+1

∑
1≤i<j≤n

[hriih
r
jj − (hrij)

2]. (12)

On the other hand, we have

n2‖H‖2 =

2m−n∑
r=n+1

( n∑
i=1

hrii
)2

=
1

n− 1

2m−n∑
r=n+1

∑
1≤i<j≤n

(hrii − hrjj)2

+
2n

n− 1

2m−n∑
r=n+1

∑
1≤i<j≤n

hriih
r
jj . (13)

Further, from [7] we have
2m−n∑
r=n+1

∑
1≤i<j≤n

(hrii − hrjj)2 + 2n

2m−n∑
r=n+1

∑
1≤i<j≤n

(hrij)
2 ≥

2n
[ ∑
n+1≤r<s≤2m−n

∑
1≤i<j≤n

( n∑
k=1

(hrjkh
s
ik − hrikhsjk)

)2] 1
2 . (14)

Now, combining (5), (13) and (14), we find

n2‖H‖2 − n2ρN ≥
2n

n− 1

2m−n∑
r=n+1

∑
1≤i<j≤n

[hriih
r
jj − (hrij)

2]. (15)

Taking into account (4), (12) and (15), we find (7). �

Remark 3.2. Using Table 1 and Theorem 3.1 one can derive the corresponding in-
equalities for a semi-slant submanifold, a hemi-slant submanifold, a CR-submanifold,
and a slant submanifold.

Remark 3.3. Since an invariant and anti-invariant submanifolds are slant submani-
folds with θ = 0 and θ = π

2 , it follows that the inequalities

ρN ≤‖H‖2 − (ρ− c)− 3

n− 1
traceP +

c

4(n− 1)

− 3

2n(n− 1)

∑
1≤i<j≤n

g(Jei, ej)P (Jei, ej).

and ρN ≤‖H‖2 − (ρ− c)− 3

n− 1
traceP .

are valid for them, respectively.
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