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TRANSPORT IN POROUS MEDIA

Ritu Agarwal, M. P. Yadav, Ravi P. Agarwal and Rohit Goyal

Abstract. Advection and dispersion are the movements of contaminants/solute parti-
cles along with flowing groundwater at the seepage velocity in porous media. The aim of
this paper is to find concentration of contaminant in flowing groundwater using fractional
advection dispersion equation with decay involving Hilfer derivative with respect to time.
Time fractional advection-dispersion equation describe particle’s motion with memory in
time. The solution of time fractional advection dispersion equation with decay is obtained
in terms of Mittag-Leffler function and Green function. The effect of the decay is to reduce
mass and concentration of the solution, which is a function of time and space variable.

1. Introduction

Groundwater hydrology may be defined as the science of the occurrence, distribution
and flow of the ground water below the surface of the earth. Groundwater contami-
nation usually occurs by natural or man made resources. The contaminants enter in
the groundwater system from the land surface by seawater intrusion.

Groundwater composition may be changed due to natural process by evapotran-
spiration, percolation of chemicals in groundwater (chlorides, sulphates, nitrates, flu-
oride, arsenic), radioactive elements etc. Also, man made products and waste are the
sources of the groundwater contamination. Groundwater contamination also occurs
by spills and leaks, agricultural products, mining, saltwater, acid rain, surface water,
improper well construction, maintenance etc.
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2. Mathematical model

Advection - dispersion is the transport process of groundwater contaminants. Advec-
tion is the movement of contaminants along with flowing groundwater at the seepage
velocity in porous media and dispersion is a process caused by velocity variations
in the porous media. The derivation of the advection dispersion equation for solute
transport is derived from the law of conservation of mass. The derivation of advection
dispersion equation is presented in [4].

We consider that the medium is homogeneous and isotropic, the flow is in non-
steady state and the Darcy’s law applies. The flow is described by the seepage velocity,
which transports the dissolved substance by advection. There is an additional mix-
ing process, hydrodynamic dispersion, which is caused by velocity variations within
groundwater flow.

Figure 1: Mass balance in a cubic element in space

Figure 1 shows the solute flux into and out of a representative volume in the
porous medium. The velocity v has components vx, vy, vz and the seepage velocity
v̄ = v

n , n being effective porosity of the porous medium, has components v̄x, v̄y, v̄z.

In the x direction, the mass of solute transported is given as

Transport by advection = v̄xnC dA,

Transport by dispersion = nDx
∂C

∂x
dA,

where Dx is the dispersion coefficient and dA is the cross section area of cubic element.
Governing equation of solute concentration C = C(x, y, z, t) in three dimensions is

∂C

∂t
= −

[
vx
∂C

∂x
+ vy

∂C

∂y
+ vz

∂C

∂z

]
+

[
Dx

∂2C

∂x2
+Dy

∂2C

∂y2
+Dz

∂2C

∂z2

]
. (1)
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In one dimension, (1) reduces to

∂C(x, t)

∂t
= −v ∂C(x, t)

∂x
+D∂

2C(x, t)

∂x2
, (2)

where initial and boundary conditions depend on the type of the model. Here C is
the solute concentration, t(> 0) is the time, x(∈ R) is the soil depth, v(> 0) is the
seepage velocity and D(> 0) is the dispersion coefficient.

Bastian and Lapidus, Banks and Ali, Ogata, Marino, Al-Niami and Rushton,
Singh et al. solved the advection dispersion equation (2) for different initial conditions
analytically, to predict the contaminant concentration distribution along and against
transient groundwater flow in finite aquifer.

Analytic solutions of generalized one dimensional advection-dispersion equation
were also obtained by adding some variable or constant term in equation (2). Robert
[16] got an exact analytical solution to the advection-dispersion equation with decay
coefficient subject to a continuous load of finite duration. Mazaheri et al. [9] presented
the analytical solution of the one dimensional advection dispersion equation with
different initial and boundary conditions.

Analytic solutions of fractional advection dispersion equation are obtained by
many authors for equation (2) by fractionalizing the integer order derivatives with re-
spect to time and space variables. Liu et al. [7] derived complete solution of the time
fractional advection dispersion equation of order α using integral transform meth-
ods, where the first-order derivative with respect to time was replaced by Caputo
fractional derivative. Tariq and Ahmad [18] obtained exact solution of the time
fractional advection dispersion equation with decay. Schumer et al. [17] obtained
solutions of fractional advection dispersion equation by various approaches. Ben-
son et al. [2] derived the solution for the multidimensional advection and fractional
dispersion equation. Benson et al. [1] emphasized that fractional derivatives come
from the governing equations of stable Levy motion. They discussed the Eulerian
and Lagrangian numerical solutions for solving fractional partial differential equa-
tions. These numerical approximations are nearly as robust as proven methods for
classical diffusion. Eulerian approximations has been proven stable for the fractional
advection dispersion equation. Recently, Schumer et al. [17] have derived results using
fractional order derivatives which give better prediction of groundwater flow problems
when compared to the experimental data.

In this paper, we present analytic solution of the one-dimensional advection dis-
persion equation, fractionalized with respect to time variable using Hilfer derivative
which is more general in nature than Caputo and Riemann-Liouville derivatives. So,
it provides unification and generalization of the already existing results. We consider
the following time fractional advection-dispersion equation

Dµ,ρ
0 (C(x, t)) = −v ∂C(x, t)

∂x
+D ∂2C(x, t)

∂x2
− λC(x, t),

0 < µ ≤ 1, 0 ≤ ρ ≤ 1, t > 0, x ∈ (−∞,∞), (3)

where λ ≥ 0 is the first order decay rate and the source of contamination is unknown.
The decay could be caused by radioactive decay, biodegradation or hydrolysis.
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In equation (3) if we take λ = 0, we get generalized time fractional advection
dispersion equation. We shall make use of Laplace transform for time variable and
Fourier transform for space variable as the source of contamination is unknown.

3. Mathematical preliminaries

Let Re(ρ) > 0 and f be piecewise continuous on interval J ′ = (0,∞) and integrable
on any finite subinterval of J = [0,∞). Then(

Iρa+f
)

(t) =
(
RLD−ρa+f

)
(t) =

1

Γ(ρ)

∫ t

a

(t− ξ)ρ−1f(ξ) dξ, t > 0,

is called the Riemann-Liouville fractional integral [8, Eq. 2.2, p. 45] of order ρ, and(
RLDρ

a+f
)

(t) =

(
d

dt

)m+1
1

Γ(ρ)

∫ t

a

(t− ξ)m−ρf(ξ) dξ, m ≤ ρ < (m+ 1), (4)

is called the Riemann-Liouville fractional derivative of order ρ [8, Eq. 2.1, p. 82].
Caputo’s definition [3, Eq. 5, p. 530] of fractional derivative of f : [a, b] → R of

order ρ is given by

CDρ
a+f(t) =


1

Γ(ρ− n)

∫ t

a

f (n)(τ) dτ

(t− τ)ρ+1−n , (n− 1) < ρ < n,

dnf(t)

dtn
, ρ = n.

Remark 3.1. In Riemann-Liouville fractional derivative, the function need not be
continuous and/or differentiable at the origin. Riemann-Liouville fractional deriva-
tive has some disadvantages when trying to solve model real-world problems which
reduce its applicability in the field. The Caputo derivative allows initial and bound-
ary conditions to be included in the formulation of the problem when dealing with
real-world problems.

Hilfer [6] studied a generalized fractional operator having the Riemann-Liouville
and the Caputo derivatives as its particular cases. Hilfer derivative of order µ and
type ρ with respect to time t is defined as

Dµ,ρ
a+ f(t) =

(
I
ρ(1−µ)
a+

d

dt

(
I
(1−µ)(1−ρ)
a+ f

))
(t), 0 < µ ≤ 1, 0 ≤ ρ ≤ 1, (5)

where I
ρ(1−µ)
a+ and I

(1−µ)(1−ρ)
a+ are the Riemann-Liouville fractional integral operators

of order ρ(1− µ) and (1− µ)(1− ρ), respectively.
Definition (5) reduces to the Riemann-Liouville fractional derivative for ρ = 0,

and for ρ = 1, it reduces to the Caputo fractional derivative.
Laplace transformation of Hilfer derivative of f in equation (5) was given by

Tomovski [20, Eq. 1.5] in the following form:

L{Dµ,ρ
a+ f(t)}(u)=uµL{f(t)}(u)−uρ(µ−1)

(
I
(1−µ)(1−ρ)
a+ f

)
(0), Re(µ) > 0,Re(ρ) > 0, (6)
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where the initial value
(
I
(1−µ)(1−ρ)
a+ f

)
(0) is the Riemann-Liouville integral of f

evaluated in the limit as t→ 0.

The Mittag-Leffler function Eα,β is a special function obtained by generalizing
the definition of exponential function. Its importance is realized due to its direct
involvement in the problems of physics, biology, engineering and applied sciences.
Mittag-Leffler function is useful to find the solution of fractional order differential
and integral equations.

One parameter Mittag-Leffler function was given by Mittag-Leffler [10] as

Eα(z) =

∞∑
n=0

zn

Γ(nα+ 1)
, Re(α) > 0, α ∈ C, z ∈ C.

Two parameters Mittag-Leffler function is defined by Wiman [21] as

Eα,β(z) =

∞∑
n=0

zn

Γ(nα+ β)
, Re(α) > 0, Re(β) > 0, α, β ∈ C, z ∈ C.

The series converges for all values of the argument z ∈ C, so the Mittag-Leffler
function is an entire function.

4. Time fractional advection dispersion equation

In this section we derive the solution of one dimensional time fractional advection
dispersion equation with decay by applying Fourier transform and Laplace transform.

Theorem 4.1. Consider time fractional advection dispersion equation

Dµ,ρ
0 C(x, t) = −v ∂C(x, t)

∂x
+D ∂2C(x, t)

∂x2
− λC(x, t), x ∈ (−∞,∞), t > 0 (7)

with initial and boundary conditions

I
(1−µ)(1−ρ)
0 C(x, 0) = f(x), 0 < µ ≤ 1, 0 ≤ ρ ≤ 1, (8)

lim
|x|→∞

C(x, t) = 0, t > 0, (9)

where Dµ,ρ
0 is the Hilfer derivative. I

(1−µ)(1−ρ)
0 C(x, 0) is the Riemann-Liouville frac-

tional integral operator of order (1− µ)(1− ρ). C(x, t) is concentration of solute and
f(x) is the real valued function. Then the solution of equation (7) is given by

C(x, t) =

∫ ∞
−∞

G(x− y, t)f(y) dy,

where G(x, t) =
1

2π

∫ ∞
−∞

Eµ,µ+ρ(1−µ)[(ivk − λ+ k2)tµ]e−ikx dk

is the Green’s function.
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Proof. We take the Fourier transform of equation (7) w.r.t. space variable x as

Dµ,ρ
0 (C∗(k, t)) = ivkC∗(k, t) +Dk2C∗(k, t)− λC∗(k, t), (10)

where C∗(k, t) is the Fourier transform of function C(x, t).
Now we take Laplace transform of equation (10) w.r.t. time variable t and use

equation (6); we obtain

sµC̃∗(k, s)− sρ(µ−1)I(1−µ)(1−ρ)0 C(k, 0)

= ivkC̃∗(k, s) +Dk2C̃∗(k, s)− λC̃∗(k, s), Re(s) > 0. (11)

Taking the Fourier transform of the initial condition (8), we get F{I(1−µ)(1−ρ)0 f(x)}(k) =
f∗(k). Therefore, equation (11) becomes

(sµ− ivk−Dk2+ λ)C̃∗(k, s)= sρ(µ−1)f∗(k)⇒ C̃∗(k, s) =
sρ(µ−1)f∗(k)

sµ − ivk −Dk2 + λ
. (12)

Taking inverse Laplace transform of equation (12) and using the following result by
Haubold et al. [5, Eq. 18]

L−1
(
sβ−1

sα + a

)
= tα−βEα, α−β+1(−atα), Re(s) > 0, Re(α) > 0, Re(α− β) > −1,

we obtain

C∗(k, t) = tµ+ρ(1−µ)−1Eµ, µ+ρ(1−µ)[(−λ+ ivk +Dk2)tµ]f∗(k). (13)

Taking inverse Fourier transform of equation (13), w.r.t. k we get

C(x, t) =
tµ+ρ(1−µ)−1

2π

∫ ∞
−∞

Eµ, µ+ρ(1−µ)[(−λ+ ivk +Dk2)tµ]e−ikxf∗(k) dk

=
tµ+ρ(1−µ)−1

2π

∫ ∞
−∞

Eµ, µ+ρ(1−µ)[(−λ+ ivk +Dk2)tµ]e−ikx
∫ ∞
−∞

eikyf(y) dy dk

=

∫ ∞
−∞

(
tµ+ρ(1−µ)−1

2π

∫ ∞
−∞
Eµ, µ+ρ(1−µ)[(−λ+ ivk +Dk2)tµ]e−ik(x−y) dk

)
f(y) dy

=

∫ ∞
−∞

G(x− y, t)f(y) dy,

is the formal solution of equation (7), where

G(x, t) =
tµ+ρ(1−µ)−1

2π

∫ ∞
−∞

Eµ, µ+ρ(1−µ)[(−λ+ ivk +Dk2)tµ]e−ikx dk.

is the Green function. �

5. Special cases

By giving particular values to different parameters, a number of special cases can be
obtained.

1. Consider λ = 0; then Theorem 4.1 becomes
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Theorem 5.1. Consider the time fractional advection dispersion equation

Dµ,ρ
0 C(x, t) = −v ∂C(x, t)

∂x
+D ∂2C(x, t)

∂x2
, x ∈ (−∞,∞), t > 0 (14)

with initial and boundary conditions

I
(1−µ)(1−ρ)
0 C(x, 0) = f(x), 0 < µ < 1, 0 ≤ ρ ≤ 1, lim

|x|→∞
C(x, t) = 0,

where Dµ,ρ
0 is the Hilfer derivative, I

(1−µ)(1−ρ)
0 C(x, 0) involves the Riemann-Liouville

fractional integral operator of order (1 − µ)(1 − ρ) evaluated in the limit as t → 0.
C(x, t) is the concentration of solute and f(x) is the real valued function. The solution
of (14), subject to the given conditions is

C(x, t) =
tµ+ρ(1−µ)−1

2π

∫ ∞
−∞

Eµ, µ+ρ(1−µ)[(ivk +Dk2)tµ]e−ikxf∗(k) dk,

where Eα,β(.) is the two parameter Mittag-Leffler function.

2. When ρ = 1, Hilfer derivative reduces to the Caputo fractional derivative operator,
and Theorem 4.1 reduces to

Theorem 5.2. Consider the time fractional advection dispersion equation

CDµ
0C(x, t) = −v ∂C(x, t)

∂x
+D ∂2C(x, t)

∂x2
− λC(x, t), x ∈ (−∞,∞), t > 0 (15)

with initial and boundary conditions

C(x, 0) = f(x), 0 < µ < 1, lim
x→∞

C(x, t) = 0,

where CDµ
0 is the Caputo derivative. C(x, t) is the concentration of solute and f(x)

is the real valued function. Solution of (15), subject to the given conditions is

C(x, t) =
1

2π

∫ ∞
−∞

Eµ[(−λ+ ivk +Dk2)tµ]e−ikxf∗(k) dk,

where Eµ(.) is one parameter Mittag-Leffler function.

3. When ρ = 0, Hilfer derivative becomes the Riemann-Liouville fractional derivative
operator, defined by equation (4). Theorem 4.1 reduces to

Theorem 5.3. Consider the time fractional advection dispersion equation

RLDµ
0C(x, t) = −v ∂C(x, t)

∂x
+D ∂2C(x, t)

∂x2
− λC(x, t), x ∈ (−∞,∞), t > 0 (16)

with initial and boundary conditions
RLD1−µ

0 C(x, 0) = f(x), 0 < µ < 1, lim
|x|→∞

C(x, t) = 0, t > 0,

where RLDµ
0 is the Riemann-Liouville derivative. C(x, t) is the concentration of solute

and f(x) is the real valued function. Solution of (16), subject to the given conditions
is

C(x, t) =
tµ−1

2π

∫ ∞
−∞

Eµ,µ[(−λ+ ivk +Dk2)tµ]e−ikxf∗(k) dk. (17)
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If we take λ = 0, equation (17) reduces to the problem discussed by Povstenko et
al. [14].

6. Applications

We now discuss an applications of our main Theorem 4.1 for the functions f(x) = δ(x),
the Dirac-delta function, and the exponential function f(x) = e−x.

Corollary 6.1. Consider time fractional advection dispersion equation

Dµ,ρ
0 C(x, t) = −v ∂C(x, t)

∂x
+D ∂2C(x, t)

∂x2
− λC(x, t), x ∈ (−∞,∞), t > 0

with initial and boundary conditions

I
(1−µ)(1−ρ)
0 C(x, 0) = δ(x), 0 < µ ≤ 1, 0 ≤ ρ ≤ 1, lim

|x|→∞
C(x, t) = 0, t > 0.

where δ(x) is Dirac-Delta function. The concentration C(x, t) is given by

C(x, t) =
tµ+ρ(1−µ)−1

2π

∫ ∞
−∞

Eµ, µ+ρ(1−µ)[(−λ+ ivk +Dk2)tµ]e−ikx dk.

Corollary 6.2. Consider time fractional advection dispersion equation

Dµ,ρ
0 C(x, t) = −v ∂C(x, t)

∂x
+D ∂2C(x, t)

∂x2
− λC(x, t), x ∈ (−∞,∞), t > 0

with initial and boundary conditions

I
(1−µ)(1−ρ)
0 C(x, 0) = e−x, 0 < µ ≤ 1, 0 ≤ ρ ≤ 1, lim

|x|→∞
C(x, t) = 0, t > 0.

Then the solute concentration C(x, t) is given by

C(x, t) =
tµ+ρ(1−µ)−1

2π

∫ ∞
−∞

Eµ, µ+ρ(1−µ)[(−λ+ ivk +Dk2)tµ]e−ikxg(k) dk,

where g(k) = 1
2π

[
e−(1+ik)−1

1+ik

]
.

If we take ρ = 0, µ = 1 and λ = 0, Corollary 6.1 reduces to the result discussed
by Pandey et al. [12].

7. Illustration And Discussion

To obtain the effect of fractional order derivatives to the advection dispersion equation
with decay term, we compare the analytic solution obtained with the experimental
data. Figures are simulations of the concentration of chloride as a function of time and
the distance from a point or line source in an aquifer with known properties and are
plotted in Matlab with hydraulic conductivity = 2.5 × 10−5m/s; hydraulic gradient
= 0.001; effective porosity = 0.25; effective diffusion coefficient = 0.75 × 10−9m2/s,
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λ = 1.32 days−1, v = 1 × 10−7m/s, D = 1.9 × 10−7m2/s. The aquifer properties
for reference purpose have been taken from [19, p. 384]. Graphs are plotted for
fractional and integer order values of µ and ρ in the advection dispersion equation (7)
for x = 0, f(x) = δ(x), the Dirac delta function.

Solution of fractional advection dispersion equation is plotted graphically for
Riemann-Liouville case (ρ = 0) in Figure 2 and for Caputo derivative case (ρ = 1)
in Figure 3 for the values µ = 1, 0.95, 0.90, ρ = 1, respectively. The solution of
fractional advection dispersion equation (7) is plotted graphically for values ρ = 0.90
and µ = 1, 0.95, 0.90, respectively in Figure 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t
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0.15
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0.25

0.3

0.35

C
(x

,t)

=1
=0.95
=0.90

Figure 2: Concentration profile of chloride varying with time for ρ = 0 i.e. the derivative
involved is Riemann Liouville fractional derivative
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Figure 3: Concentration profile of chloride varying with time for ρ = 1 i.e. the derivative
involved is Caputo fractional derivative.

The Caputo fractional derivative is more appropriate in solving the real-world
problems compared to the Riemann-Liouville fractional derivative because it allows
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traditional initial and boundary conditions to be included in the formulation of the
problem as already mentioned in Remark 3.1.
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t

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

C
(x

,t)

 = 0.90
 = 0.95
 = 1

Figure 4: Concentration profile of chloride varying with time for ρ = 0.90.

Development of the advection dispersion equation begins with assumptions about
the random behavior of a single particle, possible velocities in a flow field and the
length of time it may hold. Fractional advection dispersion equation can arise, with
a non integer-order derivative on time or space variables. Fractional advection dis-
persion equation are nonlocal i.e. they describe the effect on transport by hydraulic
conditions at a distance. Time fractional advection-dispersion equation arise as a
result of power law particle residence time distributions and describe particle motion
with memory in time. The numerical simulation in Figures 2, 3 and 4 shows that
the order of derivative plays an important role on the concentration profile of the
pollutant.
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