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ON LIE-YAMAGUTI COLOR ALGEBRAS

A. Nourou Issa and Patricia L. Zoungrana

Abstract. Lie-Yamaguti color algebras are defined and some examples are provided. It
is shown that any Leibniz color algebra has a natural Lie-Yamaguti structure. For a given
Lie-Yamaguti color algebra, an enveloping Lie color algebra is constructed and it is proved
that any Lie color algebra with reductive decomposition induces a Lie-Yamaguti structure
on some of its subspaces.

1. Introduction

Lie-Yamaguti algebras (first called “generalized Lie triple systems”) were introduced
in [18] as an algebraic treatment of tangent spaces of homogeneous spaces with in-
variant affine connections [12]. Lie-Yamaguti algebras were also called “Lie triple
algebras” in [9] and the recent terminology is introduced in [10].

In the framework of G-graded algebras (see [4, 5, 8]), a Z2-graded generalization
of Lie-Yamaguti algebras is considered in [13] (see also [22] for some aspects of Lie-
Yamaguti superalgebras and their connections with Lie superalgebras; in [23] Killing
forms and invariant forms of Lie-Yamaguti superalgebras are defined and studied).
In [16] Lie color algebras (called ε-Lie algebras) were considered. However, a particular
type of ε-Lie algebras were called Lie color algebras in [15]. For an earlier work
on Lie color algebras, one refers to [14]. The interest of researchers in Lie color
algebras increased since the work [8] on the classification of Lie superalgebras. The
important role in theoretical physics played by Lie color algebras (and particularly
Lie superalgebras) is well-known. Commutative color algebras were defined and used
in [11] in the development of a color quantization theory.

In this paper we consider a color generalization of Lie-Yamaguti algebras that
we call Lie-Yamaguti color algebras. They contain usual Lie-Yamaguti algebras and
Lie-Yamaguti superalgebras as special cases.
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In Section 2 useful basic notions are collected and the definition of our basic object
is given. The Section 3 is devoted to the construction of a natural Lie-Yamaguti
structure on any Leibniz color algebra and, as a specific example, we point out a
Lie-Yamaguti structure on the direct sum gl(V ) ⊕ V , where V is a G-graded vector
space and gl(V ) the Lie color algebra of endomorphisms of V . In fact, gl(V )⊕ V has
a Leibniz color algebra structure [20]. For an application of Leibniz color algebras one
may refer to [21]. In Section 4, for a given Lie-Yamaguti color algebra T , we construct
an enveloping Lie color algebra L(T ) containing as a subalgebra the algebra of inner
derivations of T . It turns out that L(T ) has a reductive decomposition. Conversely,
any Lie color algebra with reductive decomposition induces a Lie-Yamaguti structure
on some of its subspace.

All vector spaces and algebras are finite-dimensional over a fixed ground field K
of characteristic zero. The group of nonzero elements of K is denoted by K∗ and G is
an abelian group.

2. Definitions and examples

In this section we recall some useful and basic notions that could be found in [4, 5]
and we define the basic object of this paper.

Definition 2.1 ([4, 5]). (i) A K-vector space V is said to be G-graded whenever we
are given a family (Vg)g∈G of subspaces of V such that V =

⊕
g∈GVg (direct sum).

An element v ∈ V is said to be homogeneous of degree g ∈ G if v ∈ Vg.
(ii) If V =

⊕
g∈GVg and W =

⊕
g∈GWg are two G-graded vector spaces, a linear

mapping φ : V → W is said to be homogeneous of degree δ ∈ G if φ(Vg) ⊆ Wg+δ for
all g ∈ G.

Definition 2.2 ([4, 5]). An algebra A is called a (binary) G-graded algebra if it is
a G-graded vector space A =

⊕
g∈GAg and if, moreover, AgAg′ ⊆ Ag+g′ for all

g, g′ ∈ G.

Definition 2.3 ([4, 5]). A mapping ε : G × G → K∗ is called a bicharacter on G if
the following identities:

ε(i, j + k) = ε(i, j)ε(i, k), ε(i+ j, k) = ε(i, k)ε(j, k), ε(i, j)ε(j, i) = 1

hold for all i, j, k ∈ G.

We assume throughout this paper that ε is a fixed bicharacter on G. All elements
in a graded algebra A are assumed to be homogeneous. If x ∈ Ai (Ai ⊂ A), then we
write x̄ for the degree i of x, x̄ := i and for x ∈ Ai, y ∈ Aj , we set ε(x̄, ȳ) := ε(i, j).

Definition 2.4 ([14,16]). A Lie color algebra is a G-graded vector space L =
⊕

i∈GLi
along with a bracket [, ] : L× L→ L such that
(i) [Li, Lj ] ⊆ Li+j , ∀i, j ∈ G,

(ii) [x, y] = −ε(x̄, ȳ)[y, x] (ε-skew symmetry),
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(iii) [[x, y], z] + ε(x̄, ȳ + z̄)[[y, z], x] + ε(x̄+ ȳ, z̄)[[z, x], y] = 0 (ε-Jacobi identity)
for all x ∈ Li, y ∈ Lj , z ∈ Lk.

Observe that the ε-Jacobi identity can be written in another equivalent form as
ε(z̄, x̄)[[x, y], z] + ε(x̄, ȳ)[[y, z], x] + ε(ȳ, z̄)[[z, x], y] = 0.

Lie color algebras were first called ε-Lie algebras (see [16]). In [15] the ε-Lie
algebras with the grading group G such that ε(g, g) = 1 for all g ∈ G were called
color algebras.

Example 2.5. (i) If G = Z2 (the additive group of integers modulo 2) and if one
defines ε as ε(i, j) := (−1)ij for all i, j ∈ Z2, then Lie color algebras are just Lie
superalgebras.

(ii) If one chooses ε as ε(i, j) := 1 for all i, j ∈ G, then a Lie color algebra is a
G-graded Lie algebra [16].

(iii) Let A be any associative G-graded algebra and ε any bicharacter on G. If one
defines on A the bracket [, ] as

[x, y] = xy − ε(x̄, ȳ)yx (1)

(the ε-commutator of x, y) for all x ∈ Ai, y ∈ Aj , i, j ∈ G, then (A, [, ]) turns out to
be a Lie color algebra [16].

Observe that Lie color algebras are examples of nonassociative G-graded algebras.
Another variety of such algebras is the one of Leibniz color algebras [6] (see Section 3).

Definition 2.6. A G-graded vector subspace H =
⊕

i∈GHi of a Lie color algebra
L =

⊕
i∈GLi, where Hi ⊂ Li, for all i ∈ G, is

(i) a color subalgebra of L if [Hi, Hj ] ⊂ Hi+j for all i, j ∈ G;

(ii) a color ideal of L if [Li, Hj ] ⊂ Hi+j for all i, j ∈ G.

The notion of a (binary) G-graded algebra is extended to the one of a ternary
G-graded algebra in [17] with the introduction of Lie supertriple systems (first called
G-Lie-graded triples).

Definition 2.7. A Lie color triple system (T, [, , ]) is a G-graded vector space T =⊕
g∈GTg along with a ternary operation [, , ] : T ×T ×T → T satisfying [Ti, Tj , Tk] ⊆

Ti+j+k, i, j, k ∈ G, such that, for all u, v, x, y, z in T ,
(i) [x, y, z] = −ε(x̄, ȳ)[y, x, z],

(ii) [x, y, z] + ε(x̄, ȳ + z̄)[y, z, x] + ε(x̄+ ȳ, z̄)[z, x, y] = 0,

(iii) [u, v, [x, y, z]]=[[u, v, x], y, z]+ε(ū+v̄, x̄, )[x, [u, v, y], z]+ε(ū+v̄, x̄+ȳ, )[x, y, [u, v, z]].

In view of [21], a Lie color triple system is a 3-Lie color algebra with additional
conditions.

Example 2.8. Any Lie color algebra (L, [, ]), L =
⊕

g∈GLg, is turned into a Lie color
triple system (L, [, , ]) if one defines [a, b, c] := [[a, b], c] for all a, b, c ∈ L.
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Observe that for ε(i, j) := (−1)ij with i, j ∈ Z2, a Lie color triple system is just a
Lie super triple system.

The notion of a binary color algebra can also be extended to the one of binary-
ternary color algebra (an example is an Akivis color algebra as defined below). First
recall that Akivis algebras were introduced in [1,2] under the name “W -algebras” and
it is shown [2] that any ordinary nonassociative algebra (A, ·) has an Akivis algebra
structure with respect to commutator “[, ]” and associator “as(, , )” on A:

[x, y] := xy − yx, as(x, y, z) := xy · z − x · yz
for all x, y, z ∈ A. Next, Akivis algebras were generalized to Akivis superalgebras
in [3] and a color generalization is given by the following definition.

Definition 2.9. An Akivis color algebra (A, [, ], {, , }) is a G-graded vector space
A =

⊕
g∈GAg along with a binary operation [, ] : A×A→ A and a ternary operation

{, , } : A× A× A→ A satisfying [Ai, Aj ] ⊆ Ai+j , {Ai, Aj , Ak} ⊆ Ai+j+k, i, j, k ∈ G,
such that [x, y] = −ε(x̄, ȳ)[y, x],

ε(z̄, x̄)[[x, y], z] + ε(x̄, ȳ)[[y, z], x] + ε(ȳ, z̄)[[z, x], y]

= ε(z̄, x̄){x, y, z}+ ε(x̄, ȳ){y, z, x}+ ε(ȳ, z̄){z, x, y}
− ε(z̄, x̄)ε(x̄, ȳ){y, x, z} − ε(z̄, x̄)ε(ȳ, z̄){x, z, y} − ε(x̄, ȳ)ε(ȳ, z̄){z, y, x} (2)

for all x, y, z ∈ A. The identity (2) is called the ε-Akivis identity.

Remark 2.10. (i) If {x, y, z} = 0 for all x, y, z ∈ A in Definition 2.9 then one gets a
Lie color algebra (A, [, ]) (the identity (2) reduces to the ε-Jacobi identity).

(ii) For ε(i, j) := (−1)ij for all i, j ∈ Z2, an Akivis color algebra is just an Akivis
superalgebra.

The construction described above is extended to the color algebra setting as it
could be seen from the following.

Proposition 2.11. Let A =
⊕

g∈GAg be a nonassociative color algebra. If one
defines on A a binary operation by (1) and a ternary operation {, , } := as(, , ), then
(A, [, ], {, , }) is an Akivis color algebra.

Proof. The ε-skew symmetry of “[, ]” is obvious. For any x, y, z ∈ A, we have

ε(z̄, x̄)[[x, y], z] = ε(z̄, x̄)xy · z − ε(z̄, x̄)ε(x̄, ȳ)yx · z − ε(ȳ, z̄)z · xy + ε(x̄, ȳ)ε(ȳ, z̄)z · yx,
ε(x̄, ȳ)[[y, z], x] = ε(x̄, ȳ)yz · x− ε(x̄, ȳ)ε(ȳ, z̄)zy · x− ε(z̄, x̄)x · yz + ε(z̄, x̄)ε(ȳ, z̄)x · zy,
ε(ȳ, z̄)[[z, x], y] = ε(ȳ, z̄)zx · y − ε(ȳ, z̄)ε(z̄, x̄)xz · y − ε(x̄, ȳ)y · zx+ ε(x̄, ȳ)ε(z̄, x̄)y · xz.
Adding memberwise the equalities above and next rearranging terms in a suitable
way, we come to the identity (2). �

An Akivis color algebra constructed from a given non-associative color algebra A
as in Proposition 2.11 is said to be associated to A.

Another type of binary-ternary color algebras is the one of Lie-Yamaguti color
algebras that is defined as follows.
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Definition 2.12. A Lie-Yamaguti color algebra (LY color algebra for short) is a G-
graded vector space T =

⊕
g∈GTg with a binary operation, denoted by juxtaposition,

satisfying TiTj ⊆ Ti+j and a ternary operation “[, , ]” satisfying [Ti, Tj , Tk] ⊆ Ti+j+k,
i, j, k ∈ G, such that

(LY1) xy = −ε(x̄, ȳ)yx,

(LY2) [x, y, z] = −ε(x̄, ȳ)[y, x, z],

(LY3) ε(z̄, x̄)[x, y, z] + ε(x̄, ȳ)[y, z, x] + ε(ȳ, z̄)[z, x, y] + ε(z̄, x̄)xy · z + ε(x̄, ȳ)yz · x +
ε(ȳ, z̄)zx · y = 0,

(LY4) ε(z̄, x̄)[xy, z, u] + ε(x̄, ȳ)[yz, x, u] + ε(ȳ, z̄)[zx, y, u] = 0,

(LY5) [u, v, xy] = [u, v, x]y + ε(ū+ v̄, x̄)x[u, v, y],

(LY6) [u, v, [x, y, z]] = [[u, v, x], y, z]+ε(ū+v̄, x̄)[x, [u, v, y], z]+ε(ū+v̄, x̄+ȳ)[x, y, [u, v, z]],

for all u, v, x, y, z in T .

Remark 2.13. If [u, v, w] = 0 for all u, v, w in T , then T is a Lie color algebra. For
uv = 0 for all u, v in T , we get a Lie color triple system.

Example 2.14. (i) If ε(i, j) = 1 for all i, j in G in a LY color algebra T , then T is a
G-graded LY algebra.

(ii) Let G = Z2 and let ε(i, j) := (−1)ij for all i, j ∈ Z2. Then the LY color algebra
T is just a Lie-Yamaguti superalgebra [13,22].

(iii) Any Lie color algebra is a LY color algebra with respect to the operations xy :=
[x, y] and [x, y, z] := [[x, y], z].

Other examples of LY color algebras could be derived from the construction in
Section 3 below.

3. Lie-Yamaguti color algebra structures on Leibniz color algebras

In this section we point out that Leibniz color algebras [6] have natural LY color
algebra structures (this extends the result from [10] relating Leibniz algebras and
Lie-Yamaguti algebras). For a proof of this fact, we shall use properties of the Akivis
color algebra associated to a given Leibniz color algebra, as in [7] for Leibniz algebras.

Definition 3.1 ( [6]). A (left) Leibniz color algebra is a G-graded vector space
L =

⊕
g∈GLg with a binary operation, denoted by juxtaposition, satisfying LiLj ⊆

Li+j , i, j ∈ G and

x (yz) = (xy) z + ε(x̄, ȳ)y (xz) . (3)

The identity (3) is refered as to the ε-Leibniz rule. In particular, any Lie color
algebra is a Leibniz color algebra.
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Proposition 3.2. Let L be a Leibniz color algebra and (L, [, ] , {, , }) its associated
Akivis color algebra. Then, for any x, y, z ∈ L,

{x, y, z} = −ε(x̄, ȳ)y (xz) , (4)

(xy + ε(x̄, ȳ)yx) z = 0, (5)

x [y, z] = [xy, z] + ε(x̄, ȳ) [y, xz] . (6)

Proof. The identity (3) implies (xy) z − x (yz) = −ε(x̄, ȳ)y (xz) which is (4).
Next, in (3), switching x and y, we have (yx) z = y (xz) − ε(ȳ, x̄)x (yz), so that

ε(x̄, ȳ)(yx)z = ε(x̄, ȳ)y (xz)−x (yz). Then (xy + ε(x̄, ȳ)yx) z = (xy) z+ε(x̄, ȳ) (yx) z =
x (yz)− ε(x̄, ȳ)y (xz) + ε(x̄, ȳ)y (xz)− x (yz) = 0, so we get (5).

It remains to prove (6). Again, by switching y and z in (3), we have (xz) y =
x (zy) − ε(x̄, z̄)z (xy) and ε(ȳ, z̄) (xz) y = ε(ȳ, z̄)x (zy) − ε(x̄ + ȳ, z̄)z (xy). Hence,
(xy) z− ε(ȳ, z̄) (xz) y = x (yz)− ε(x̄, ȳ)y (xz)− ε(ȳ, z̄)x (zy) + ε(x̄+ ȳ, z̄)z (xy) that is
x (yz − ε(ȳ, z̄)zy) = (xy) z − ε(x̄ + ȳ, z̄)z (xy) + ε(x̄, ȳ) [y (xz)− ε(ȳ, x̄+ z̄) (xz) y] or
x [y, z] = [xy, z] + ε(x̄, ȳ) [y, xz], which is (6). �

In an Akivis color algebra (A, [, ], {, , }) consider the ternary product defined by
(x, y, z) = ε(x̄, ȳ){y, x, z} − {x, y, z}.

Proposition 3.3. For any x, y, z in A,

(x, y, z) = −ε(x̄, ȳ) (y, x, z) , (7)

[[x, y] , z] + ε(x̄, ȳ + z̄) [[y, z] , x] + ε(x̄+ ȳ, z̄) [[z, x] , y]

+ (x, y, z) + ε(x̄, ȳ + z̄) (y, z, x) + ε(x̄+ ȳ, z̄) (z, x, y) = 0. (8)

Proof. We have, for any x, y, z in A,

(x, y, z) = ε(x̄, ȳ){y, x, z} − {x, y, z}
= −ε(x̄, ȳ) [ε(ȳ, x̄){x, y, z} − {y, x, z}] = −ε(x̄, ȳ){y, x, z}

and so (7) is verified.
In an Akivis color algebra (A, [, ], {, , }), the identity (2) is transformed as

[[x, y] , z] + ε(x̄, ȳ + z̄) [[y, z] , x] + ε(x̄+ ȳ, z̄) [[z, x] , y]

= {x, y, z}+ ε(x̄, ȳ + z̄){y, z, x}+ ε(x̄+ ȳ, z̄){z, x, y} − ε(x̄, ȳ){y, x, z}
− ε(ȳ, z̄){x, z, y} − ε(x̄, ȳ + z̄)ε(ȳ, z̄){z, y, x}

= − [ε(x̄, ȳ) {y, x, z} − {x, y, z}]− ε(x̄, ȳ + z̄) [ε(ȳ, z̄) {z, y, x} − {y, z, x}]
− ε(x̄+ ȳ, z̄) [ε(z̄, x̄) {x, z, y} − {z, x, y}]

= − (x, y, z)− ε(x̄, ȳ + z̄) (y, z, x)− ε(x̄+ ȳ, z̄) (z, x, y)

and so (8) follows. �

Corollary 3.4. Let L be a Leibniz color algebra and (L, [, ] , {, , }) its associated
Akivis color algebra. Then, for any x, y, z ∈ L,

(x, y, z) = − (xy) z = −1

2
[x, y] z, (9)

[[x, y] , z] + ε(x̄, ȳ + z̄) [[y, z] , x] + ε(x̄+ ȳ, z̄) [[z, x] , y]
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= (xy) z + ε(x̄, ȳ + z̄) (yz)x+ ε(x̄+ ȳ, z̄) (zx) y. (10)

Proof. We have

(x, y, z) = ε(x̄, ȳ){y, x, z} − {x, y, z} (4)
= ε(x̄, ȳ) (−ε(ȳ, x̄)x (yz)) + ε(x̄, ȳ)y (xz)

= − [x (yz)− ε(x̄, ȳ)y (xz)]
(3)
= − (xy) z

[x, y] z
(1)
= (xy − ε(x̄, ȳ)yx) z = (xy) z − ε(x̄, ȳ) (yx) z

(5)
= 2 (xy) z.

So (x, y, z) = − (xy) z = − 1
2 [x, y] z, which proves (9). The identity (10) is a conse-

quence of (8) and (9). �

Corollary 3.5. Let L be a Leibniz color algebra and (L, [, ] , {, , }) its associated
Akivis color algebra. Then, for any a, x, y, z ∈ L,

a (x, y, z) = (ax, y, z) + ε(ā, x̄) (x, ay, z) + ε(ā, x̄+ ȳ) (x, y, az) . (11)

Proof. We have

a (x, y, z)
(9)
= −a ((xy) z)

(3)
= − (a (xy)) z − ε(ā, x̄+ ȳ) (xy) (az)

(3)
= − [(ax) y + ε(ā, x̄)x (ay)] z − ε(ā, x̄+ ȳ) (xy) (az)

= − ((ax) y) z − ε(ā, x̄) (x (ay)) z − ε(ā, x̄+ ȳ) (xy) (az)

(9)
= (ax, y, z) + ε(ā, x̄) (x, ay, z) + ε(ā, x̄+ ȳ) (x, y, az)

so we get (11). �

We are now ready to prove the main result of this section.

Theorem 3.6. Let L be a Leibniz color algebra and (L, [, ] , {, , }) its associated Akivis
color algebra. If define (x, y, z) = ε(x̄, ȳ){y, x, z} − {x, y, z} for all x, y, z ∈ L, then
(L, [, ] , (, , )) is a LY color algebra.

Proof. (LY1) and (LY2) are obvious and (LY3) follows from (8). We have

ε(z̄, x̄) ([x, y] , z, v) + ε(x̄, ȳ) ([y, z] , x, v) + ε(ȳ, z̄) ([z, x] , y, v)

(9)
= −ε(z̄, x̄) ([x, y] z) v − ε(x̄, ȳ) ([y, z]x) v − ε(ȳ, z̄) ([z, x] y) v

(9)
= −2ε(z̄, x̄) ((xy) z) v − 2ε(x̄, ȳ) ((yz)x) v − 2ε(ȳ, z̄) ((zx) y) v

(3)
= −2ε(z̄, x̄) [x (yz)− ε(x̄, ȳ)y (xz)] v − 2ε(x̄, ȳ) ((yz)x) v − 2ε(ȳ, z̄) ((zx) y) v

(5)
= −2ε(z̄, x̄)[x(yz)− ε(x̄, ȳ)y(xz)]v − 2ε(x̄, ȳ)((yz)x)v − 2ε(ȳ, z̄)(−ε(z̄, x̄)(xz)y)v

= −2ε(z̄, x̄)[x(yz) + ε(x̄, z̄)ε(x̄, ȳ)(yz)x]v + 2ε(z̄, x̄)ε(x̄, ȳ)[y(xz) + ε(ȳ, x̄)ε(ȳ, z̄)(xz)y]v

= −2ε(z̄, x̄)[x(yz) + ε(x̄, ȳ + z̄)(yz)x]v + 2ε(z̄, x̄)ε(x̄, ȳ)[y(xz) + ε(ȳ, x̄+ z̄)(xz)y]v
(5)
= 0

and so (LY4) holds. Next,

(x, y, [z, v])
(9)
= − 1

2
[x, y] [z, v]

(6)
= −1

2
([[x, y] z, v] + ε(x̄+ ȳ, z̄) [z, [x, y] v])
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(9)
= [(x, y, z) , v] + ε(x̄+ ȳ, z̄) [z, (x, y, v)] ,

which proves (LY5). Finally,

(x, y, (z, v, w))
(9)
= − (xy) (z, v, w)

(11)
= − ((xy) z, v, w)− ε(x̄+ ȳ, z̄) (z, (xy) v, w)− ε(x̄+ ȳ, z̄ + v̄) (z, v, (xy)w)

= ((x, y, z) , v, w)− ε(x̄+ ȳ, z̄) (z, (x, y, v) , w) + ε(x̄+ ȳ, z̄ + v̄) (z, v, (x, y, w))

and so (LY6) holds. This completes the proof. �

Theorem 3.6 above is an interesting tool for constructing nontrivial examples of
LY color algebras as we shall see below.

If V =
⊕

g∈GVg is a G-graded vector space, then the associative algebra End (V ) is
equipped with the induced G-grading End (V ) =

⊕
g∈GEnd (V )g, where End (V )g :=

{A ∈ End (V ) | A(Vα) ⊆ Vg+α}. By (1) we get a Lie color algebra gl(V ) :=
(End (V ), [, ]).

Consider the direct sum E := gl(V ) ⊕ V and define on E an operation “◦” by
(A+ x) ◦ (B + y) = [A,B] +Ay.

Proposition 3.7 ([20]). (E , ◦) is a Leibniz color algebra.

Proof. Let e1 = A + x, e2 = B + y, e3 = C + z. Since ē1 = Ā = x̄, ē2 = B̄ = ȳ and
gl(V ) is a Lie color algebra, we have

{e1 ◦ e2} ◦ e3 + ε(ē1, ē2)e2 ◦ {e1 ◦ e3} − e1 ◦ {e2 ◦ e3}
= ([A,B] +Ay) + ε(Ā, B̄)(B + y) ◦ ([A,C] +Az)− (A+ x) ◦ ([B,C] +Bz)

= [[A,B], C]− [A, [B,C]] + ε(Ā, B̄)[B, [A,C]] + ([A,B]−AB + ε(Ā, B̄)BA)z = 0,

so the ε-Leibniz rule (3) holds for (E , ◦). �

Example 3.8. Define on the Leibniz color algebra (E , ◦) the operations “[, ]” and
“(, , )” by [X,Y ] := X ◦ Y − ε(X̄, Ȳ )Y ◦X (see (1)) and (X,Y, Z) := −(X ◦ Y ) ◦ Z
(see (9)). Then Theorem 3.6 says that (E , [, ], (, , )) := (gl(V ) ⊕ V, [, ], (, , )) is a LY
color algebra.

We observe that the construction of Example 3.8 could be extended to 3-Lie color
algebras since any 3-Lie color algebra gives rise to a Leibniz color algebra [21].

In case when G = Z2 and ε(i, j) = (−1)ij for all i, j ∈ Z2, Theorem 3.6 yields the
following:

Theorem 3.9. Let (L, ·) be a Leibniz superalgebra and (L, [, ], {, , }) its associated
Akivis superalgebra. If one defines (x, y, z) := (−1)x̄ȳ{y, x, z}−{x, y, z} for all x, y, z
in L, then (L, [, ], (, , )) is a LY superalgebra.

4. Enveloping Lie color algebras of Lie-Yamaguti color algebras

In this section we prove that, for each LY color algebra T , there exists an enveloping
Lie color algebra L(T ) such that T is a subspace in L(T ). It turns out that L(T )
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permits a reductive decomposition. Conversely, any Lie color algebra with reductive
decomposition induces a LY color algebra structure on some of its subspace.

Definition 4.1. Let T =
⊕

g∈GTg be a LY color algebra. An element D ∈ End (T )g
is called a derivation of degree g of T if, for any x, y, z ∈ T ,

D (xy) = D (x) y + ε (g, x̄)xD (y) ;

D ([x, y, z]) = [D (x) , y, z] + ε (g, x̄) [x,D (y) , z] + ε (g, x̄+ ȳ) [x, y,D (z)] .

Proposition 4.2. Let T =
⊕

g∈GTg be a LY color algebra. For any x, y ∈ T ,
consider the operators Dx,y defined by

Dx,y(z) := [x, y, z] (12)

for all z ∈ T . Then Dx,y are derivations of degree x̄+ ȳ of T .

Proof. The fact that Dx,y ∈ End (T )g for a given g ∈ G follows from (12). The

identities (LY5) and (LY6) imply that Dx,y are derivations of degree x̄+ ȳ of T . �

The derivations Dx,y as defined by (12) will be called inner derivations of the LY
color algebra T .

Denote by Dg(T, T ) the vector space spanned by all inner derivations of a given
degree g ∈ G. Then we may consider the G-graded space D(T, T ) :=

⊕
g∈GDg(T, T )

and we have the following color generalization of a result by K. Yamaguti [19] in the
case of LY algebras.

Theorem 4.3. Let T =
⊕

g∈GTg be a LY color algebra. Then there exist a Lie color
algebra (L(T ), [, ]) and a subalgebra D(T, T ) in L(T ) such that L(T ) = T ⊕D(T, T )
and [T,D(T, T )] ⊆ T .

Proof. For each g ∈ G consider the external direct sum Lg(T ) := Tg ⊕ Dg(T, T ),
and then we can form the G-graded space L(T ) =

⊕
g∈GLg(T ). Clearly, L(T ) =

T ⊕D(T, T ).
Now define on L(T ) a bracket “[, ]” by setting

[x, y] := xy +Dx,y, (13)

[Dx,y, z] := [x, y, z](= Dx,y(z)), (14)

[Dx,y, Dz,t] := D[x,y,z],t + ε(z̄, x̄+ ȳ)Dz,[x,y,t] (15)

for all x, y, z, t ∈ T . The ε-skew symmetry of “[, ]” as defined by (13)-(15) follows
from the ε-skew symmetry (LY1) and (LY2) of the operations of T . Next, using the
identities (LY3)–(LY6), one checks that

[[x, y], z] + ε(x̄, ȳ + z̄)[[y, z], x] + ε(x̄+ ȳ, z̄)[[z, x], y] = 0,

[[Dx,y, z], t] + ε(x̄+ ȳ, z̄ + t̄)[[z, t], Dx,y] + ε(x̄+ ȳ + z̄, t̄)[[t,Dx,y], z] = 0,

[[Dx,y, z], Du,v] + ε(x̄+ ȳ, z̄ + ū+ v̄)[[z,Du,v], Dx,y]

+ ε(x̄+ ȳ + z̄, ū+ v̄)[[Du,v, Dx,y], z] = 0,

[[Dx,y, Dz,t], Du,v] + ε(x̄+ ȳ, z̄ + t̄+ ū+ v̄)[[Dz,t, Du,v], Dx,y]

+ ε(x̄+ ȳ + z̄ + t̄, ū+ v̄)[[Du,v, Dx,y], Dz,t] = 0
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for all t, u, v, x, y, z ∈ T , i.e. the ε-Jacobi identity holds for “[, ]” and so (L(T ), [, ]) is
a Lie color algebra.

By (15) we get that D(T, T ) is a subalgebra of (L(T ), [, ]) and (14) implies that
[T,D(T, T )] ⊆ T . �

As for Lie algebras (see, e.g., [10]), a Lie color algebra satisfying the conditions
of Theorem 4.3 will be said to have a reductive decomposition. It turns out that the
converse of Theorem 4.3 is also true. Specifically we shall prove the following.

Theorem 4.4. Let g be a Lie color algebra with a reductive decomposition g = m⊕h,
[h,m] ⊆ m, where h is a subalgebra and m a subspace in g. Then m has a LY color
algebra structure.

Proof. Let (g, [, ]) be a Lie color algebra with a reductive decomposition. For any
x, y ∈ g, the decomposition g = m⊕h implies [x, y] := x ·y+Dx,y, where x ·y ∈ m and
Dx,y ∈ h which means that “[, ]” induces a binary operation “·” on m. The ε-skew
symmetry of “[, ]” implies the one of “·” and Dx,y. Now the inclusion [h,m] ⊆ m
induces a ternary operation on m if one sets [u, v, w] := [Du,v, w] for all u, v, w ∈ m
and the ε-skew symmetry of Du,v implies that [u, v, w] = −ε(u, v)[v, u, w]. Thus we
obtain (LY1) and (LY2) for (m, ·, [, , ]).

Next, considering in (g, [, ]) the suitable ε-Jacobi identities with respect to x ∈ m
and Du,v ∈ h with u, v ∈ m, one gets the identities (LY3)-(LY6). Thus one proves the
validity of the set of identities (LY1)–(LY6) in (m, ·, [, , ]). �

We conclude this paper with some suggestions for further research. First, the
classification problem of LY color algebras could be of interest. Next, as for some
algebras (or their generalizations) studied recently by various researchers, a study of
the cohomology theory for LY color algebras is topical.
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