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REMARKS ON ALMOST η-SOLITONS

Adara M. Blaga

Abstract. A general definition of almost soliton is considered and the particular cases
of almost η-Ricci, -Einstein and -Yamabe solitons are stretched. Conditions of existence
of conjugate solitons are also provided and examples from paracontact geometry are con-
structed. In the gradient case, two inequalities are deduced and a Bochner-type formula is
obtained.

1. Introduction

Solitons are stationary solutions of geometric flows with applications in different
branches of physics. They are basically defined on a pseudo-Riemannian manifold
by a vector field (that generates the flow with respect to the metric) and a tensor
field that encodes its geometrical meaning. The most studied solitons in Riemannian
geometry are Ricci solitons, Einstein solitons and Yamabe solitons, where the Ricci
tensor (and the scalar curvature) plays a definitory rôle. Nevertheless, solitons can be
considered in a more general context, not necessary Riemannian, by fixing a vector
field, a linear connection and an arbitrary tensor field. Precisely, for a couple (∇, J)
consisting of a linear connection ∇ and a (1, 1)-tensor field J on a smooth manifold
M , Crasmareanu introduced in [3] the (∇, J)-soliton as being the data (∇, J, ξ, λ)
satisfying ∇ξ + J + λI = 0, where ξ is a vector field on M and λ is a real constant.
If the manifold M carries a Riemannian metric g and the vector field ξ is of gradient
type, (∇, J, ξ, λ) is called a gradient (∇, J)-soliton.

Generalizing the definition of a (∇, J)-soliton, Crasmareanu [3] also defined the
(∇, J, η)-soliton on (M, g) as being the data (∇, J, ξ, λ, µ) which satisfy:

∇ξ + J + λI + µη ⊗ ξ = 0, (1)

where ξ is a vector field on M , η is the g-dual 1-form of ξ and λ, µ are real constants. If
the vector field ξ is of gradient type, (∇, J, ξ, λ, µ) is called a gradient (∇, J, η)-soliton.
More general, if λ and µ are smooth functions on M , we say that (∇, J, ξ, λ, µ) is a
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(gradient) almost (∇, J, η)-soliton which will be called steady if λ = 0, shrinking if
λ < 0 or expanding if λ > 0.

From the soliton equation (1), the relation between the curvature R∇ and the
torsion T∇ of ∇ can be obtained:

R∇(·, ·)ξ + λT∇(·, ·) + d∇J + [dλ, I] + ([dµ, η] + µdη)⊗ ξ + µ[η, J + λI] = 0, (2)

where (d∇J)(X,Y ) := (∇XJ)Y −(∇Y J)X+J(T∇(X,Y )) and [α, T ] := α⊗T−T⊗α,
for α being a 1-form and T being a (1, 1)-tensor field. If η is closed (in particular, for
gradient solitons) and ∇ is a flat (i.e. R∇ = 0), torsionless (i.e. T∇ = 0) and J-special
connection (i.e. d∇ = 0), from (2) we get µ[η, J + λI] + [dλ, I] + [dµ, η]⊗ ξ = 0 which
in the particular case when λ and µ are constant (µ 6= 0) yields [η, J + λI] = 0 which
is equivalent to [η,∇ξ] = 0.

Examples of almost (∇, J, η)-solitons are provided by semi-symmetric metric con-
nections∇ [7] which can be expressed in terms of the Levi-Civita connection on (M, g)
∇ = ∇g + I ⊗ η − g ⊗ ξ, for η the g-dual 1-form of the vector field ξ. In this case,
(∇, J, ξ, λ, µ) defines a shrinking almost (∇, J, η)-soliton for J := −∇gξ, λ := −|ξ|2
and µ := 1.

After a brief description of almost (∇, J, η)-solitons in the special case when the
vector field is torse-forming, we give some examples of such solitons on a para-
Kenmotsu and para-Sasakian manifold and introduce the conjugate solitons speci-
fying existence conditions in almost tangent an almost product geometries. The main
results consist in proving a double inequality for the gradient almost (∇g, J, η)-soliton
on a Riemannian manifold (M, g) and deducing a Bochner-type formula for this case,
both of the results being followed by some remarks.

2. Solitons with torse-forming vector fields. Conjugate solitons

In this section we shall treat the case when the potential vector field ξ of an almost
(∇, J, η)-soliton on (M, g) is torse-forming. Also, we shall determine the conditions
such that in different geometries (tangent, product and paracontact), the J-conjugate
connection of ∇ to define an almost soliton, too, which we shall call conjugate soliton.

Torse-forming vector fields were introduced by Yano [6] and appear in many
branches of differential geometry and physics. They are natural generalizations of
concircular vector fields. Particular cases of torse-forming vector fields naturally arise
in different geometries (para-Kenmotsu, para-Sasaki etc.) where the function f is
constant ±1 and ±γ is the g-dual of ξ.

Assume that ξ is a torse-forming vector field (i.e. ∇ξ = fI + γ ⊗ ξ, f a smooth
function and γ a 1-form on M) and remark that:

(i) (∇, 0, ξ,−f, 1) defines an almost (∇, 0,−γ)-soliton on (M, g) if and only if −γ is
the g-dual of ξ;
(ii) for J := −(f + λ)I − (γ + µη) ⊗ ξ, with λ and µ smooth functions on M

and η the g-dual 1-form of ξ, (∇, J, ξ, λ, µ) defines an almost (∇, J, η)-soliton on
(M, g). In this case J2 = (f + λ)2I + [2(f + λ) + γ(ξ) + µ|ξ|2](γ + µη) ⊗ ξ, hence



246 Almost η-solitons

J2ξ = [f + λ+ γ(ξ) + µ|ξ|2]2ξ so J cannot be an almost complex structure.

Example 2.1. Let ∇ be a linear connection on the Riemannian manifold (M, g), ξ
a vector field on M such that ∇ξ = fI + γ ⊗ ξ, f a smooth function, γ a 1-form on
M , J := −(f + λ)I − (γ + µη) ⊗ ξ, with λ and µ smooth functions on M and η the
g-dual 1-form of ξ.
1. If J is an almost tangent structure on M (i.e. J2 = 0), then (∇, J, ξ, λ, µ) defines

an almost (∇, J, η)-soliton on (M, g), for λ = −f − γ(ξ)− µ|ξ|2.
2. If J is an almost product structure on M (i.e. J2 = I), then (∇, J, ξ, λ, µ) defines

an almost (∇, J, η)-soliton on (M, g), for λ = −f − γ(ξ)− µ|ξ|2 ± 1.

Example 2.2. Let (M,J, ξ, η, g) be a para-Kenmotsu manifold [5]. Then (∇g, J, ξ,−1, µ)
and (∇g, J, ξ,−µ, µ) with µ a smooth function on M , define almost (∇g, J, η)-solitons
on (M, g).

Example 2.3. Let (M,J, ξ, η, g) be a para-Sasakian manifold [4]. Then (∇g, J, ξ,−µ, µ)
with µ a smooth function on M , defines an almost (∇g, J, η)-soliton on (M, g).

For the almost (∇, J, η)-soliton given by (∇, J, ξ, λ, µ), with ∇ξ = fI + γ ⊗ ξ,
computing ∇J from (1) we obtain:

(∇XJ)Y :=∇XJY − J(∇XY ) = −X(f + λ)Y − f [γ(Y ) + µη(Y )]X

− [X(γ(Y )) +X(µ)η(Y ) + γ(X)γ(Y ) + µγ(X)η(Y )

+ µX(η(Y ))− µη(∇XY )− γ(∇XY )]ξ.

Observe that if ξ is a concurrent vector field (i.e. f = 1 and γ = 0) and ∇ is a
J-connection (i.e. ∇J = 0), then grad (λ+ µ|ξ|2) is g-orthogonal to ξ. In particular,
for λ and µ constants we get either µ = 0 or ξ(|ξ|2) = 0.

Assume now ∇ξξ = 0 [which is true also for torse-forming vector fields with
f = −γ(ξ)] and let (∇, J, ξ, λ, µ) be an almost (∇, J, η)-soliton on (M, g). In this
case, h := −(λ+ µ|ξ|2) is an eigenfunction of J corresponding to the eigenvector ξ.

Consider the J-conjugate connection ∇(J) of ∇ defined by:

∇(J)
X Y := ∇XY + J((∇XJ)Y ) = (I − J2)(∇XY ) + J(∇XJY ).

Then ∇(J)
X ξ − J3X + (h− λ)J2X + (hλ+ 1)JX + λX

+ [(h2 + 1)µη − hdh](X)ξ − µη(X)J2ξ + J(∇X∇ξξ) = 0

and the following proposition holds.

Proposition 2.4. For (∇, J, ξ, λ, µ) an almost (∇, J, η)-soliton on (M, g) with ∇ξξ = 0:
(i) if J is an almost tangent structure, then (∇(J), J, ξ, λ, µ) defines an almost

(∇(J), J, η)-soliton on (M, g) if and only if dλ = 1−λ2

|ξ|2 η and µ = λ2−1
λ|ξ|2 ; in particular, if

λ is constant, then the necessary and sufficient condition is (λ, µ) ∈ {(−1, 0), (1, 0)};
(ii) if J is an almost product structure, then (∇(J), J, ξ, λ, µ) defines an almost

(∇(J), J, η)-soliton on (M, g) if and only if (λ, µ) ∈ {(−1, 1), (1, 1)}.

Corollary 2.5. Under the hypotheses of Proposition 2.4, there exists no conjugate
steady almost (∇(J), J, η)-solitons.
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Example 2.6. Also, if (∇, J, ξ, λ, µ) is an almost (∇, J, η)-soliton on (M, g) with
∇ξξ = 0, different other almost solitons can be constructed if h := −(λ + µ|ξ|2)
satisfies certain conditions.
1. If J is an almost tangent structure, then (∇(J), J ′, ξ, λ, 1) defines an almost

(∇(J), J ′, η′)-soliton on (M, g) if and only if h · grad (h) = [(1 + h2)µ − 1]ξ, where
J ′ =: (hλ+ 1)J and η′ =: (h2 + 1)µη − hdh;
2. If J is an almost product structure, then (∇(J), J ′, ξ, h, 1) defines an almost

(∇(J), J ′, η′)-soliton on (M, g) if and only if h ·grad (h) = (h2µ−1)ξ, where J ′ =: hλJ
and η′ =: h(hµη − dh).

Remark 2.7. If we consider an almost (∇, J, η)-soliton (∇, J, ξ, λ, µ) on (M, g) with
∇ξ = −γ(ξ)I + γ ⊗ ξ, for γ a 1-form, then we can check that (∇(J), 0, ξ, λ′, µ′) is an
almost (∇(J), 0, η)-soliton if and only if γ = 1

3{hdh − [µ(h2 + 4) − h − 1]η}, where
h := −(λ+ µ|ξ|2), with λ′ and µ′ depending on |ξ|2, λ and µ.

Example 2.8. Let (M,J, ξ, η, g) be an almost paracontact metric manifold [8] and
∇ a linear connection on M . If (∇, J, ξ, λ, µ) defines an almost (∇, J, η)-soliton on
(M, g), then (∇(J), 0, ξ, 0, λ+µ) defines a steady almost (∇(J), 0, η)-soliton on (M, g).

3. Gradient solitons

Let (M, g) be an n-dimensional Riemannian manifold. Remark that in the gradient
case, for ξ = grad (u) with u ∈ C∞(M), if ∇ = ∇g is the Levi-Civita connection of
g, from the soliton equation (1) we get:

Hess (u) + g(·, J ·) + λg + µdu⊗ du = 0 (3)

with g(·, J ·) =: Ω a symmetric (0, 2)-tensor field, therefore the gradient solitons will
be considered only for tensor fields J with g(JX, Y ) = g(X, JY ).

Remark 3.1. If (∇g, J, ξ, λ, µ) defines a gradient almost (∇g, J, η)-soliton on (M, g),
then it is a gradient almost η-Ricci soliton if J := Q with Q the Ricci operator
g(QX,Y ) := Ric(X,Y ), a gradient almost η-Einstein soliton if J := Q− scal

2 · I and
a gradient almost η-Yamabe soliton if J := −scal · I.

In the geometry of gradient almost solitons two inequalities will be further ob-
tained inspired by the inequalities in the gradient Ricci soliton case discussed by M.
Crasmareanu in [3], but using a slightly different argument.

Theorem 3.2. If (3) defines a gradient almost (∇g, J, η)-soliton on the n-dimensional
Riemannian manifold (M, g) and η = du is the g-dual of the gradient vector field
ξ := grad (u), then:

|Hess(u)|2 + µ2|ξ|4 + µξ(|ξ|2)− (∆(u) + µ|ξ|2)2

n
≤ |Ω|2

≤ |Hess(u)|2 + µ2|ξ|4 + µξ(|ξ|2) +
(trace(Ω))2

n
. (4)
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Proof. From (3) we obtain:

|Hess (u)|2 = |Ω|2 + λ2n+ 2λtrace (Ω)− µ2|ξ|4 − µξ(|ξ|2)

and |Ω|2 = |Hess (u)|2 + λ2n+ 2λ(∆(u) + µ|ξ|2) + µ2|ξ|4 + µξ(|ξ|2). (5)

Note that the conditions for an existence of a solution (in λ) are:

(trace (Ω))2 − n[|Ω|2 − |Hess (u)|2 − µ2|ξ|4 − µξ(|ξ|2)] ≥ 0

and (∆(u) + µ|ξ|2)2 − n[|Hess (u)|2 − |Ω|2 + µ2|ξ|4 + µξ(|ξ|2)] ≥ 0,

which just imply the double inequality from the conclusion. �

Remark 3.3. (i) In [1] we obtained the corresponding inequalities for the particular
case of gradient almost η-Ricci soliton, which generalizes the case of gradient Ricci
soliton treated by Crasmareanu in [3]. A similar estimation holds for gradient almost
η-Einstein solitons [1]: the lower and the upper bound of |Ric|2 are the lefthand side
of (4), but in the righthand side term of (4), µ ·scal · |ξ|2 will be supplementary added.
(ii) If ξ is of constant length, |ξ|2 =: k, then (4) simplifies to:

|Hess (u)|2 + µ2k2 − (∆(u) + µk)2

n
≤ |Ω|2 ≤ |Hess (u)|2 + µ2k2 +

(trace (Ω))2

n
.

(iii) The simultaneous equalities hold for (trace (Ω))2 = −(∆(u) + µ|ξ|2)2 (= 0) i.e.
for steady gradient almost soliton (λ = 0) with trace (Ω) = 0 and ∆(u) = −µ|ξ|2. In
this case, if |ξ|2 =: k is constant, then |Ω|2 = |Hess (u)|2 + µ2k2.

A Bochner-type formula will be obtained for a gradient almost (∇g, J, η)-soliton.

Theorem 3.4. If (3) defines a gradient almost (∇g, J, η)-soliton on the n-dimensional
Riemannian manifold (M, g) and η = du is the g-dual of the gradient vector field
ξ := grad (u), then:

1

2
(∆ + µ∇gξ)(|ξ|

2) = |Hess (u)|2 − ξ(λ)− µ∆(u)ξ(µ)− div (Ω)(ξ). (6)

Proof. First note that trace (µη⊗η) = µ|ξ|2 and div (µη⊗η) = µ
2 d(|ξ|2) +µ∆(u)du+

dµ(ξ)du. Taking the trace of the equation (3), we obtain ∆(u)+trace (Ω)+nλ+µ|ξ|2 =
0 and by differentiating it:

d(∆(u)) + d(trace (Ω)) + ndλ+ µd(|ξ|2) + |ξ|2dµ = 0. (7)

Now taking the divergence of the same equation, we get:

div (Hess (u)) + div (Ω) + dλ+
µ

2
d(|ξ|2) + µ∆(u)du+ dµ(ξ)du = 0. (8)

We obtain (6) by subtracting the relations (8) and (7) computed in ξ and using [2]:

div (Hess (u)) = d(∆(u)) + iQξg,

(div (Hess (u)))(ξ) =
1

2
∆(|ξ|2)− |Hess (u)|2.

Remark 3.5. Denoting the diffusion operator by ∆u := ∆ − ∇gξ , for µ = −1 in

Theorem 3.4, we get 1
2∆u(|ξ|2) = |Hess (u)|2−ξ(λ)−div (Ω)(ξ). Under the assumption

div (Ω)(ξ) ≤ −ξ(λ) we get ∆u(|ξ|2) ≥ 0 and from the maximum principle it follows
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that |ξ|2 is constant in a neighborhood of any local maximum. If |ξ| achieves its
maximum, then div (Ω)(ξ) = −ξ(λ) and Hess (u) = 0 which implies from the soliton
equation that Ω = −λg + du⊗ du. Therefore, div (Ω) = −dλ and ξ(λ) = 0.

Remark 3.6. For M compact, ξ of constant length |ξ|2 =: k and λ and µ real
constants, from (6) we get div (Ω)(ξ) = |Hess (u)|2 and by integrating (5):∫

M

|Ω|2 =

∫
M

|Hess (u)|2 + [(n− 1)λ2 + (λ+ µk)2] · vol (M) ≥
∫
M

div (Ω)(ξ).
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