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Halima Meddour

Abstract. The current paper deals with the local well-posedness problem for the two-
dimensional partial viscous Boussinesq system when the initial vorticity belongs to the patch
class. We prove in particular some results concerning the regularity persistence of the patch
boundary and establish the convergence towards the inviscid limit when the molecular dif-
fusivity goes to zero.

1. Introduction

We are mainly concerned with studying the local well-posedness theory for the partial
viscous Boussinesq system given by the coupled equations,

∂tvκ + vκ · ∇vκ +∇πκ = ρκ~e2, t ≥ 0, x ∈ R2

∂tρκ + vκ · ∇ρκ − κ∆ρκ = 0,

div vκ = 0.

(1)

It describes the evolution of stratified incompressible fluids in R2 under the influence
of the gravity force which is proportional to ρκ in the direction ~e2 = (0, 1); for the
derivation of this model, see for instance [24]. Above, the velocity vector field vκ ∈ R2

is solenoidal, πκ ∈ R is the pressure and ρκ ∈ R+ is the density. The parameter κ ≥ 0
denotes the molecular diffusivity of the fluid. We will consider the Cauchy problem
to the Boussinesq system by prescribing the initial data vκ|t=0 = v0

κ, ρκ|t=0 = ρ0
κ.

Note that if the initial density vanishes, ρ0
κ ≡ 0, then the system (1) reduces to the

classical Euler equations given by
∂tv + v · ∇v +∇π = 0,

div v = 0,

v|t=0 = v0.

(2)
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286 Vortex patch

One of the basic features in the dynamics of Euler equations is related to the vorticity
ω , ∂1v

2 − ∂2v
1 which is transported by the flow,

∂tω + v · ∇ω = 0,

ω|t=0 = ω0,

v = N2 ? ω,

(3)

where N2 is the Biot-Savart kernel defined by N2(x) = ∇⊥E2(x), E2(x) = 1
2π log ‖x‖,

∇⊥ , (−∂2, ∂1).

Let us denote by Ψ = (Ψt) the flow (particle-trajectory mapping) associated to
the time-dependent velocity vector field v, so that ∂tΨt(x) = v(t,Ψt(x)), Ψ0(x) = x.
Thus the solution of (3) is determined explicitly by ω(t,Ψt(x)) = ω0(x) and admits in
turn infinite conservation laws. For example, all the Lp norms are time invariant, that
is, ‖ω(t)‖Lp = ‖ω0‖Lp for p ∈ [1,∞]. Under this pattern, Yudovich succeed in [26]
to obtain global unique weak solutions for the system (2) whenever ω0 ∈ L1 ∩ L∞.
Furthermore, the velocity vector field, which is not necessary Lipschitz, belongs to
the class of log-Lipschitz functions and the corresponding flow map Ψ is a planar
homeomorphism. Notice that Yudovich’s class encompasses vortex patches, that is,
ω0 is represented by the characteristic function of a bounded domain Ω0 ⊂ R2. This
structure is preserved during the time, meaning that ω(t) = 1Ωt , with Ωt = Ψt(Ω0)
is the patch that moves with the flow.

In-depth study of vortex patches, whose dynamics is governed by the motion of
closed curves in the complex plane, has led to several questions especially about the
boundary regularity. A remarkable result in this direction, due to Chemin [7] (see
also P. Serfati [25]), ensures that when the boundary ∂Ω0 belongs to the Hölderian
class C1+ε, with 0 < ε < 1, then the regularity of ∂Ωt is shown to be retained over
the time. Actually, Chemin’s strategy requires essentially the control of the Liscphitz
norm of the velocity with respect to the co-normal regularity ∂Xtω of the vorticity
in Hölder spaces Cε−1 by means of logarithmic estimate. The choice of the family
Xt = (Xt,λ)λ∈Λ can be done in such way that it is non-degenerate and being tangential
to ∂Ωt. The vector field Xt,λ is the push-forward of X0,λ by the flow Ψ(t),

(∂t + v · ∇)Xt,λ = ∂Xt,λv. (4)

Those vector fields commute with the transport operator ∂t + v ·∇, and consequently

(∂t + v · ∇)∂Xt,λω = 0. (5)

This allows to follow the tangential regularity of the vorticity which is a central step
in the study of the vortex patch issue.

As the Boussinesq system (1) is in some sense a perturbation of (2), it will be of
interest to ask whether the known results for Euler equations can be extended to the
Boussinesq system as well. The topic of local/global posedness for (1) for κ > 0 has
drawn great attention and has been widely studied during the last years. Particularly,
it is worth mentioning that Chae showed in [4] that (1) is globally well-posed whenever
(v0, ρ0) ∈ Hs×Hs, with s > 2. This result was improved later by Hmidi and Keraani

in [19], where they imposed that (v0, ρ0) ∈ B
1+ 2

p

p,1 × B−1+ 2
p

p,1 ∩ Lr, with r > 2. In
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the same fashion, Hmidi and Zerguine [20] established similar result in the setting
of fractional laplacian (−∆)

α
2 , α ∈]1, 2]. In [10], Danchin and Paicu extended weak

solutions of Yudovich’s type to the system (1). For further discussions about this
subject, we refer to [2, 5, 6, 9, 14] and the references therein.

In this paper we intend to conduct a detailed study of the vortex patch problem
for the system (1) and to investigate the convergence towards the inviscid system
when the parameter κ tends to zero. Note that the limit system is simply obtained
by taking κ = 0, that is

∂tv + v · ∇v +∇π = ρ~e2, t ≥ 0, x ∈ R2

∂tρ+ v · ∇ρ = 0,

div v = 0.

(6)

We point out that for the latter system local well-posedness can be implemented in
various function spaces similarly to Euler equations. For instance, Chae and Nam
showed in [5] that (6) is locally well-posed in Sobolev spaces Hs with s > 2. This

result was extended to critical Besov spaces B
1+ 2

p

p,1 , p ∈]1,∞[ by Liu, Wang and Zhang
in [22]. The global existence of classical solutions is an outstanding open problem.

A study of the vortex patch problem for the system (1) was done in [21] with
κ = 1. It was shown that if the boundary of the initial vortex patch belongs to C1+ε for
0 < ε < 1 then the velocity is a Lipschitz function globally in time and the transported
patch, that is, Ωt keeps its initial regularity. Furthermore, the vorticity is given by the
decomposition ω(t) = 1Ωt + ρ̃(t), with ρ̃ a smooth function. A similar result has been
done recently in [27] for the system (1) with critical fractional dissipation where a
sharper result has been obtained compared to the incompressible Euler equations [7].
In the same spirit, Hassainia and Hmidi [16] showed that the system (6) is locally
well-posed whenever the initial patch has a regular/singular structure. The related
subject about the aforementioned topics are selected in [11–13, 15, 17, 23] and the
references therein.

At this stage, the first main result of this paper is summarized in the following
theorem where we deal with local theory for the vortex patch problem uniformly with
respect to the parameter κ. More accurately we have the following.

Theorem 1.1. Let κ ∈ [0, 1] and consider a bounded domain Ω0 in R2 whose boundary
∂Ω0 is a Jordan curve of C1+ε-regularity, with 0 < ε < 1. Let v0

κ be a divergence-free
vector field such that its vorticity ω0

κ = 1Ω0
and the initial density ρ0

κ ∈ L2 ∩ C1+ε

with ∇ρ0
κ ∈ L2. Then there exists T > 0 independent of κ such that the system (1)

admits a unique local solution (vκ, ρκ) ∈
(
L∞
(
[0, T ]; Lip(R2)

))2
. Furthermore, for all

t ∈ [0, T ] the boundary ∂Ωt is a Jordan curve of class C1+ε, with Ωt = Ψt(Ω0).

Remark 1.2. We note that the initial condition ρ0
κ ∈ C1+ε does not persist in time,

that is ρκ(t) ∈ C1+ε is false in general for any positive time. Hence, the velocity field
requires more regularity than the Lipschitz one.

The main step in the proof of Theorem 1.1 is to get an estimate for the Lipschitz
norm of the velocity locally in time uniformly on κ ∈ [0, 1]. For this purpose, we will



288 Vortex patch

employ the original Chemin’s approach [7]. Thus we shall control ‖∇vκ(t)‖L∞ with
respect to the co-normal regularity of the vorticity ∂Xtωκ in Cε−1, with 0 < ε < 1
by means of logarithmic estimate. The family of vector fileds Xt = (Xt,λ)λ∈Λ obeys
the equation (4). The tangential derivative of the vorticity ∂Xtωκ satisfies, similarly
to (5), (∂t+vκ ·∇)∂Xt,λωκ = ∂Xt,λ∂1ρκ. This follows from the fact that the vorticity-
density formulation of (1) is given by

∂tωκ + vκ · ∇ωκ = ∂1ρκ, t ≥ 0, x ∈ R2

∂tρκ + vκ · ∇ρκ − κ∆ρκ = 0,

div vκ = 0.

(7)

Writing ∂Xt∂1ρκ = ∂1(∂Xtρκ) + [∂Xt , ∂1]ρκ and keeping in mind that the commu-
tator behaves well, the problem reduces to follow the regularity of ∂Xtρκ in Cε. It
is straightforward that the quantity ∂Xtρκ satisfies the following evolution equation
(∂t + vκ · ∇− κ∆)Xt,λρκ = −κ[∆, Xt,λ]ρκ. Observe that for the inviscid case, we can
check easily that the co-normal derivative of the density is transported by the flow
which simplifies a lot the analysis, see [16]. In our context the commutator term con-
tributes with additional drawbacks. The remedy is to treat carefully the commutator
using the maximal smoothing effect of the transport diffusion equation in the spirit
of the approach developed in [8, 17].

Our second main result deals with the inviscid limit problem. To be precise we
have the following.

Theorem 1.3. Let (vκ, ρκ) and (v, ρ) be the solutions of (1) and (6) respectively with
the same initial data given by Theorem 1.1. Then the following assertions hold true.
(i) For every p ∈ [2,∞] supt∈[0,T ]

(
‖vκ(t)−v(t)‖Lp+‖ρκ(t)−ρ(t)‖Lp

)
≤ C0κ

1/4+1/2p.

(ii) If Ψκ and Ψ denote the flow associated to vκ and v respectively. Then we have
supt∈[0,T ] ‖Ψκ(t)−Ψ(t)‖L∞ ≤ C0κ

1/4, where C0 = C(‖∇ρ0‖L2∩L∞ , T ).

The proof of the above theorem relies on some classical Lp-estimates, the classical
complex interpolation between Lebesgue spaces and the so-called Gagliardo Nerenberg
inequality.

The next section starts with a brief overview of the Littlewood-Paley theory, par-
ticularly the cut-off operators, paradifferential calculus. Thereafter, we undertake
the concept of Besov, Hölder spaces and their connections with worthwhile lemmas
concerning the persistence of Besov spaces and maximal regularity for a transport-
diffusion equation. In Section 3, we state the general version of the Thoerem 1.1. For
the sake of clarity, we divide its proof in several steps. Section 4 encloses the proof
of Theorem 1.3.

2. Basic tools

This preparatory section comprises some basic tools that we shall freely use during
this work. It starts with a short introduction to the Littlewood-Paley theory through
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the dyadic decomposition of unity, cut-off operators and Besov spaces. Afterwards,
we state Bernstein’s inequalities and Bony’s decomposition which are required in
particular, when it comes to the analysis of the commutator estimates. At the end,
we state some technical lemmas freely used troughout this work.

2.1 Notation

Throughout this article, we will adopt the following notation.
• We denote by C a positive constant which may be different in each occurrence
but it does not depend on the initial data. We shall sometimes alternatively use the
notation X . Y for an inequality of the type X ≤ CY , with C independent of X and
Y . The notation C0 means a constant depending on the involved norms of the initial
data.

• S ′(R2) stands for the space of tempered distributions defined on R2.

• For any u ∈ S ′(R2) both û and Fu (resp. F−1u) denote the Fourier transform
(resp. inverse Fourier transform) of u.

• For every p ∈ [1,∞], ‖ · ‖Lp denotes the norm in the Lebesgue space Lp.

• The norm in the mixed space time Lebesgue space Lp([0, T ], Lr(R2)) is denoted by
‖ · ‖LpTLr .

• For any pair of operators P and Q, the commutator [P,Q] is defined by PQ−QP .

• B(0, R) denotes the ball centered at origin with radius R > 0.

• A (0, R1, R2) represents the annulus centered at origin with radii R1 < R2.

2.2 Brief review of the Littlewood-Paley theory

We start by the so-called Littlewood-Paley decomposition, based on a nonhomoge-
neous dyadic partition of unity with respect to the Fourier variables. For this purpose,
let χ ∈ D(R2) be a radial cut-off function, monotonically decaying along rays and so
that

χ(ξ) =

{
1 if ‖ξ‖ ≤ 1

2

0 if ‖ξ‖ ≥ 1,

with suppχ ⊂ B(0, 1). Furthermore, define ϕ(ξ) , χ( ξ2 )− χ(ξ), ϕ ≥ 0; thus we have
suppϕ ⊂ A (0, 1

2 , 2) and for all ξ ∈ R2, χ(ξ) +
∑
q≥0 ϕ(2−qξ) = 1.

The Littlewood-Paley or frequency cut-off operators (∆q)q≥−1 are defined for u ∈
S ′(R2) by

∆qu =

{
χ(D)u if q = −1

ϕ(2−q D)u if q ≥ 0,

where in general case f(D) stands for the pseudo-differential operator u 7→ F−1(fFu)
with constant symbol. Also, the sequence (Sq)q≥0 of lower frequencies for q ≥ 0 is

defined by Squ ,
∑
j≤q−1 ∆ju.
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A few basic properties of the cut-off operators (∆q)q≥−1 and (Sq)q≥0 are listed in
the following proposition.

Proposition 2.1. Let u, v ∈ S ′(R2). Then we have
(i) |p−q| ≥ 2 =⇒ ∆p∆qu ≡ 0, (ii) |p−q| ≥ 4 =⇒ ∆q(Sp−1u∆pv) ≡
0,

(iii) ∆q, Sq : Lp → Lp uniformly with respect to q and p, (iv) u =∑
q≥−1 ∆qu.

With these notations at our disposal, we now provide the definition of the inho-
mogeneous Besov space.

Definition 2.2. For (p, r, s) ∈ [1,+∞]2 ×R, the inhomogeneous Besov space Bsp,r is
defined by Bsp,r = {u ∈ S ′(R2) : ‖u‖Bsp,r < +∞}, where

‖u‖Bsp,r ,


(∑

q≥−1 2rqs‖∆qu‖rLp
)1/r

if r ∈ [1,+∞[,

supq≥−1 2qs‖∆qu‖Lp if r = +∞.

Remark 2.3. We notice that:
(i) If s ∈ R+\N, the Hölder space denoted by Cs coincides with Bs∞,∞.

(ii)
(
Cs, ‖ · ‖Cs

)
as a Banach space coincides with the usual Hölder space Cs with

equivalent norms, ‖u‖Cs . ‖u‖L∞ + supx 6=y
|u(x)−u(y)|
|x−y|s . ‖u‖Cs .

(iii) If s ∈ N, the obtained space is so-called Hölder-Zygmund space, still denoted by
Bs∞,∞.

2.3 Paradifferential calculus

The well-known Bony’s decomposition [3] enables us to split formally the product of
two tempered distributions u and v into three pieces.

Definition 2.4. For a given u, v ∈ S ′ we have uv = Tuv + Tvu + R(u, v), where

Tuv =
∑
q Sq−1u∆qv and R(u, v) =

∑
q ∆qu∆̃qv, with the notation ∆̃q = ∆q−1 +

∆q + ∆q+1. Tuv is called the paraproduct of v by u and R(u, v) the remainder term.

The mixed space-time spaces are stated as follows.

Definition 2.5. Let T > 0 and (β, p, r, s) ∈ [1,∞]3 × R. The spaces LβTB
s
p,r and

L̃βTB
s
p,r are defined respectively by:

LβTB
s
p,r ,

{
u : [0, T ]→ S

′
; ‖u‖LβTBsp,r =

∥∥(2qs‖∆qu‖Lp
)
`r

∥∥
LβT

<∞
}
,

L̃βTB
s
p,r ,

{
u : [0, T ]→ S

′
; ‖u‖L̃βTBsp,r =

(
2qs‖∆qu‖LβTLp

)
`r
<∞

}
.

The relationship between these spaces is given by the following embeddings. Let
ε > 0, then {

LβTB
s
p,r ↪→ L̃βTB

s
p,r ↪→ LβTB

s−ε
p,r if r ≥ β,

LβTB
s+ε
p,r ↪→ L̃βTB

s
p,r ↪→ LβTB

s
p,r if β ≥ r.
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Accordingly, we have the following interpolation result.

Corollary 2.6. Let T > 0, s1 < s < s2 and η ∈]0, 1[ such that s = ηs1 + (1− η)s2.
Then we have ‖u‖L̃βTBsp,r ≤ C‖u‖

η

L̃βTB
s1
p,∞
‖u‖1−η

L̃βTB
s2
p,∞

.

Now we shall state Bernstein’s inequalities, see for instance [1, 7].

Lemma 2.7. There exists a constant C > 0 such that for 1 ≤ a ≤ b ≤ ∞, for every
function u and every q ∈ N ∪ {−1}, we have

(i) sup
|α|=k

‖∂αSqu‖Lb ≤ Ck2q
(
k+2
(

1
a−

1
b

))
‖Squ‖La ,

(ii) C−k2qk‖∆qu‖La ≤ sup
|α|=k

‖∂α∆qu‖La ≤ Ck2qk‖∆qu‖La .

A noteworthy consequence of Bernstein’s inequality (i) is the following embedding

Bsp,r ↪→ Bs̃p̃,r̃ whenever p̃ ≥ p, with s̃ < s − 2
(

1
p −

1
p̃

)
or s̃ = s − 2

(
1
p −

1
p̃

)
and

r̃ ≤ r.

2.4 Useful results

Most of the results concerning the system (7) rely strongly on a priori estimates in
Besov spaces for the transport-diffusion equation:{

∂ta+ v · ∇a− κ∆a = f

a|t=0 = a0.
(8)

We start by the persistence of Besov regularity for (8), whose proof may be found for
example in [1, 18].

Proposition 2.8. Let (s, r, p) ∈] − 1, 1[×[1,∞]2 and v be a smooth divergence-free
vector field. We assume that a0 ∈ Bsp,r and f ∈ L1

loc(R+;Bsp,r). Then for every
smooth solution a of (8) and t ≥ 0 we have

‖a(t)‖Bsp,r ≤ Ce
CV (t)

(
‖a0‖Bsp,r +

∫ t

0

e−CV (τ)‖f(τ)‖Bsp,rdτ
)
,

with V (t) =

∫ t

0

‖∇v(τ)‖L∞dτ

and C being a constant which depends only on s and not on κ.

Next, we state the maximal smoothing effect result for (8) in mixed time-space
spaces, whose proof can be found in [1, 18].

Proposition 2.9. Let (s, p1, p2, r) ∈] − 1, 1[×[1,+∞]3 and v be a divergence- free
vector field belonging to L1

loc(R+; Lip). Then for every smooth solution a of (8) we
have

κ
1
r ‖a‖

L̃rtB
s+ 2

r
p1,p2

≤ CeCV (t)(1 + κt)
1
r

(
‖a0‖Bsp1,p2 + ‖f‖L1

tB
s
p1,p2

)
, ∀t ∈ R+.
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We end this paragraph by the Calderón-Zygmund estimate which is a deep result
of harmonic analysis.

Proposition 2.10. Let p ∈]1,∞[ and v be a divergence-free vector field whose vor-

ticity ω ∈ Lp. Then ∇v ∈ Lp and ‖∇v‖Lp ≤ C p2

p−1‖ω‖Lp , with C being a universal
constant.

2.5 Vortex patch tool box

In this section we state some aspects and properties about admissible family of vector
fields often used in the definition of anisotropic Hölder spaces.

Definition 2.11. Let ε ∈]0, 1[. A family of vector fields X = (Xλ)λ∈Λ is said to be
admissible if and only if the following assertions hold.
(i) Regularity : Xλ,divXλ ∈ Cε ∀λ ∈ Λ.

(ii) Non-degeneracy : I(X) , infx∈R2 supλ∈Λ

∣∣Xλ(x)
∣∣ > 0.

The class X is equipped with the norm ‖̃Xλ‖Cε , ‖Xλ‖Cε + ‖divXλ‖Cε .

Definition 2.12. Let X = (Xλ)λ∈Λ be an admissible family. The action of each
member Xλ on u ∈ L∞ is defined as the directional derivative of u along Xλ by the
formula ∂Xλu = div(uXλ)− u divXλ.

Now, we are in position to define the anisotropic Hölder spaces.

Definition 2.13. Let ε ∈]0, 1[ and X = (Xλ)λ∈Λ be an admissible family of vector
fields. We say that u ∈ Cε(X) if and only if u ∈ L∞ and satisfies ∂Xλu ∈ Cε−1

and supλ∈Λ ‖∂Xλu‖Cε−1 < +∞, for all λ ∈ Λ. The set Cε(X) is equipped with the
canonical norm

‖u‖Cε(X) ,
1

I(X)

(
‖u‖L∞ sup

λ∈Λ
‖̃Xλ‖Cε + sup

λ∈Λ
‖∂Xλu‖Cε−1

)
.

Let v be a time-dependent Lipschitz vector field and let Ψ(t) be its flow. The time
evolution of a given initial family X0 = (X0,λ)λ∈Λ is defined by

Xt,λ(x) , X0,λΨ(t,Ψ−1(t, x)). (9)

Notice that Xt is nothing but the push-forward of X0 by the flow Ψ(t), and from
straightforward algebraic computations one finds that{

(∂t + v · ∇)Xt,λ = ∂Xt,λv if (t, x) ∈ R+ × R2

Xt,λ|t=0 = X0,λ.
(10)

One of the main features of the family (Xt,λ)λ∈Λ is its commutativity with the trans-
port operator ∂t + v · ∇. This implies an important consequence about the dynamics
of the tangential regularity of the vorticity subject to the system (7). Actually, one
obtains easily the following result.

Proposition 2.14. Let (ωκ, ρκ) be a solution of the system (7) and Xt , (Xt,λ)λ∈Λ

be a family of vector fields satisfying (10). Then we have
(
∂t + vκ · ∇

)
∂Xt,λωκ =

∂Xt,λ∂1ρκ.
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The following result deals with a special logarithmic result involving striated reg-
ularity for the vorticity, see for instance [7].

Theorem 2.15. Let ε ∈]0, 1[ and X = (Xλ)λ∈Λ be a family of vector fields as in
Definition 2.11. Let v be a divergence-free vector field such that its vorticity ω belongs
to L2 ∩ Cε(X). Then there exists a constant C depending only on ε, such that

‖∇v(t)‖L∞ ≤ C
(
‖ω(t)‖L2 + ‖ω(t)‖L∞ log

(
e+
‖ω(t)‖Cε(X)

‖ω(t)‖L∞

))
. (11)

We end this section with the following geometric definition.

Definition 2.16. Let ε > 0. A closed curve Σ is said to be of class C1+ε, if there
exists f ∈ C1+ε(R2) such that Σ is locally a zero set of f , i.e., there exists a neigh-
borhood V of Σ such that Σ = f−1({0}) ∩ V, ∇f(x) 6= 0 ∀x ∈ V .

3. Smooth vortex patch

This section cares with more general class of initial data than the vortex patches
stated in Theorem 1.1. This theorem is a consequence of the following one.

Theorem 3.1. Let κ ∈ [0, 1], ε ∈]0, 1[ and take an admissible family of vector fields
X0 = (X0,λ)λ∈Λ according to the Definition 2.11. Let v0

κ be the initial velocity with
div v0

κ = 0, and such that its vorticity ω0
κ ∈ L2∩Cε(X0). Assume that the initial den-

sity ρ0
κ ∈ L2 ∩ C1+ε(X0) with ∇ρ0

κ ∈ L2. Then there exist a time T > 0 independent
of κ and a unique solution (vκ, ρκ) for the system (1), such that
(i) vκ ∈ L∞

(
[0, T ]; Lip(R2)

)
and ωκ ∈ L∞

(
[0, T ];L2 ∩ L∞

)
;

(ii) ρκ ∈ L∞
(
[0, T ];L2 ∩ Lip(R2)

)
.

Moreover, the family of vector fields transported by the flow defined in (9) still remains,
at every time, admissible of the class Cε and ρκ(t) ∈ C1+ε(Xt), ωκ(t) ∈ Cε(Xt). We
emphasize that the estimates of the solution in the above spaces are uniform with
respect to κ ∈ [0, 1].

The proof of Theorem 3.1 follows several steps that will be stated in details in the
following subsections. To simplify the notation, we will omit the index κ.

3.1 A priori estimates for the vorticity and density

We intend to establish the following elementary persistence results on weak regulari-
ties.

Proposition 3.2. Let (v, ρ) be a smooth solution of the system (1) defined on [0, T ].
Then, for every p ∈ [1,∞] and t ∈ [0, T ] the following assertions hold.
(i) ‖∇ρ(t)‖Lp ≤ ‖∇ρ0‖LpeCV (t),

(ii) κ‖∇ρ‖L̃1
tB

2
∞,∞
≤ C(1 + κt)‖∇ρ0‖L∞eCV (t),
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(iii) ‖ω(t)‖Lp ≤ ‖ω0‖Lp + ‖∇ρ0‖LpeCV (t)t,

with the notation V (t) =
∫ t

0
‖∇v(τ)‖L∞dτ .

Proof. (i) Applying the partial derivative ∂j to the density equation of (1), one obtains

∂t∂jρ+ v · ∇(∂jρ)− κ∆(∂jρ) = −∂jv · ∇ρ (12)

from which we infer the following classical estimate

‖∇ρ(t)‖Lp ≤ ‖∇ρ0‖Lp +

∫ t

0

‖∇ρ(τ)‖Lp‖∇v(τ)‖L∞dτ.

Gronwall’s inequality ensures that ‖∇ρ(t)‖Lp ≤ ‖∇ρ0‖LpeV (t).
(ii) Applying Proposition 2.9 to (12), one obtains

κ‖∇ρ‖L̃1
tB

2
∞,∞
≤ CeCV (t)(1 + κt)

(
‖∇ρ0‖B0

∞,∞
+

∫ t

0

‖∇v(τ) · ∇ρ(τ)‖B0
∞,∞

dτ
)
.

Then using the embedding L∞ ↪→ B0
∞,∞, one gets

κ‖∇ρ‖L̃1
tB

2
∞,∞
≤ CeCV (t)(1 + κt)

(
‖∇ρ0‖L∞ +

∫ t

0

‖∇v(τ)‖L∞‖∇ρ(τ)‖L∞dτ
)

≤ CeCV (t)(1 + κt)
(
‖∇ρ0‖L∞ + ‖∇ρ‖L∞t L∞

)
.

Inserting the estimate (i) for p =∞ into the last quantity of the above inequality, we
finally get

κ‖∇ρ‖L̃1
tB

2
∞,∞
≤ C(1 + κt)‖∇ρ0‖L∞eCV (t). (13)

(iii) The Lp-estimate for the vorticity can be derived without any difficulty from

the first equation of (7), ‖ω(t)‖Lp ≤ ‖ω0‖Lp +
∫ t

0
‖∇ρ(τ)‖Lpdτ that we combine

with (i) in order to get the desired estimate. �

3.2 A priori estimates for the co-normal regularity of the density

The main result of this paragraph is to prove the persistence of the tangential regu-
larity for the density. This latter unknown obeys to the following transport-diffusion
equation {

∂tρ+ v · ∇ρ− κ∆ρ = 0

ρ|t=0 = ρ0.
(14)

Proposition 3.3. Let v be a smooth free-divergence vector field and Xt = (Xt,λ)λ∈Λ

be the family defined in (9). Assume that ρ is a smooth solution of (14); then for
every t ≥ 0 we have

‖∂Xt,λρ(t)‖Cε . eCV (t)(1 + κt)
(
‖∂X0,λ

ρ0‖Cε + ‖∇ρ0‖L∞‖X‖L̃∞t Cε
)
.

Proof. Applying the directional derivative ∂Xt,λ to (14), one gets{
∂t∂Xt,λρ+ v · ∇∂Xt,λρ− κ∆∂Xt,λρ = −κ[∆, Xt,λ]ρ

∂Xt,λρ|t=0 = ∂X0,λ
ρ0,

(15)
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where [∆, Xt,λ] stands for the commutator between ∆ and Xt,λ. According to [8,17],
the commutator κ[∆, Xt,λ]ρ can be decomposed as follows κ[∆, Xt,λ]ρ = F + κG,
where

F = 2κR(∇Xi
t,λ, ∂i∇ρ) + κR(∆Xi

t,λ, ∂iρ) := κF1 + κF2

and G = 2T∇Xit,λ∂i∇ρ+ 2T∂i∇ρ∇Xi
t,λ + T∆Xit,λ

∂iρ+ T∂iρ∆X
i
t,λ.

To bound ∂Xt,λρ in Cε we apply [17, Theorem 2, pp. 1461] to (15) which implies that

‖∂Xt,λρ(t)‖Cε ≤ CeCV (t)
(
‖∂X0,λ

ρ0‖Cε + ‖F‖L̃1
tC

ε + (1 + κt)‖G‖L̃∞t Cε−2

)
(16)

• Estimate of ‖F‖L̃1
tC

ε . Using Bernstein’s inequality, one gets

‖∆qF1‖L1
tL
∞ ≤ C

∑
j≥q−4

‖∆j∇X‖L∞t L∞‖∆j∂i∇ρ‖L1
tL
∞

≤ C
∑
j≥q−4

‖∆jX‖L∞t L∞22j‖∆j∇ρ‖L1
tL
∞ ≤ C‖X‖L̃∞t Cε‖∇ρ‖L̃1

tB
2
∞,∞

2−qε.

Multiplying both sides by 2qε and taking the supremum over q, it holds

‖F1‖L̃1
tC

ε ≤ C‖X‖L̃∞t Cε‖∇ρ‖L̃1
tB

2
∞,∞

. (17)

The estimate of F2 can be done in a similar way and one finds that

‖F2‖L̃1
tC

ε ≤ C‖X‖L̃∞t Cε‖∇ρ‖L̃1
tB

2
∞,∞

. (18)

Finally, combining (17) and (18), we end up with

‖F‖L̃1
tC

ε ≤ Cκ‖X‖L̃∞t Cε‖∇ρ‖L̃1
tB

2
∞,∞

. (19)

• Estimate of ‖G‖L̃∞t Cε−2 . From the definition we have the splitting

G = 2T∇Xit,λ∂i∇ρ+ 2T∂i∇ρ∇Xi
t,λ + T∆Xit,λ

∂iρ+ T∂iρ∆X
i
t,λ = 2G1 + 2G2 +G3 +G4.

We start by estimating G1 in L̃∞t C
ε−2. For every q ≥ −1 we have from Bernstein’s

inequality

‖∆qG1‖L∞ ≤
∑
|j−q|≤4

‖∆q

(
Sj−1∇X∆j∂i∇ρ

)
‖L∞ ≤ C

∑
|j−q|≤4

2j‖Sj−1∇X‖L∞‖∆j∇ρ‖L∞ .

Multiplying both sides by 2q(ε−2) and using once again Bernstein’s inequality we
deduce that

2q(ε−2)‖∆qG1‖L∞ ≤ C
∑
|j−q|≤4

2j2q(ε−2)
∑
l≤j−2

‖∆l∇X‖L∞‖∆j∇ρ‖L∞

≤ C
∑
|j−q|≤4

2q(ε−2)2j‖∆j∇ρ‖L∞
∑
l≤j−2

2l(1−ε)2lε‖∆lX‖L∞

≤ C‖X‖Cε
∑
|j−q|≤4

2(j−q)(2−ε)‖∆j∇ρ‖L∞ .

Since L∞ ↪→ B0
∞,∞, then

‖G1‖L̃∞t Bε−2
∞,∞
≤ C‖X‖L∞t Cε‖∇ρ‖L∞t L∞ . (20)
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The estimate of G2 is quite similar to G1 and one obtains

‖G2‖L̃∞t Bε−2
∞,∞
≤ C‖X‖L∞t Cε‖∇ρ‖L∞t L∞ . (21)

As to G3 we write for every q ≥ −1

‖∆qG3‖L∞ ≤ C
∑
|j−q|≤4

‖∆q

(
Sj−1∆X∆j∂iρ

)
‖L∞ ≤ C

∑
|j−q|≤4

‖Sj−1∆X‖L∞‖∆j∇ρ‖L∞

≤ C‖∇ρ‖L∞
∑
|j−q|≤4

∑
l≤j−2

22l‖∆lX‖L∞ .

Multiplying both sides by 2q(ε−2), we obtain

2q(ε−2)‖∆qG3‖L∞ ≤ C‖X‖Cε‖∇ρ‖L∞
∑
|j−q|≤4
l≤j−2

2(q−l)(ε−2) ≤ C‖X‖Cε‖∇ρ‖L∞ .

Consequently,

‖G3‖L̃∞t Bε−2
∞,∞
≤ C‖X‖L∞t Cε‖∇ρ‖L∞t L∞ . (22)

The estimate of G4 is quite similar to the preceding ones

‖G4‖L̃∞t Bε−2
∞,∞
≤ C‖X‖L∞t Cε‖∇ρ‖L∞t L∞ . (23)

Putting together (20), (21), (22) and (23), we get

‖G‖L̃∞t Bε−2
∞,∞
≤ C‖X‖L∞t Cε‖∇ρ‖L∞t L∞ . (24)

Now, substituting (19) and (24) in (16), we end up with

‖∂Xt,λρ(t)‖Cε ≤ CeCV (t)
(
‖∂X0,λ

ρ0‖Cε + κ‖∇ρ‖L̃1
tB

2
∞,∞
‖X‖L̃∞t Cε

+ (1 + κt)‖∇ρ‖L∞t L∞‖X‖L∞t Cε
)
. (25)

By invoking Proposition 3.2–(i)–(ii) we obtain

‖∂Xt,λρ(t)‖Cε ≤CeCV (t)
(
‖∂X0,λ

ρ0‖Cε + (1 + κt)‖∇ρ0‖L∞‖X‖L̃∞t Cε
)
.

Hence ‖∂Xt,λρ(t)‖Cε ≤C0e
CV (t)(1 + κt)

(
1 + ‖X‖L̃∞t Cε

)
.

3.3 A priori estimates for the co-normal regularity ∂Xt,λω

In this paragraph we shall focus on the estimate of the conormal regularity ∂Xt,λω in
the Hölder space Cε−1. For this aim, we prove

Proposition 3.4. Let (v, ρ) be any smooth solution of the system (1) on [0, T ], and
take any time dependent family of vector field Xt = (Xt,λ)λ∈Λ transported by the flow
of v. Then we have for all t ∈ [0, T ], λ ∈ Λ
(i) I(Xt,λ) ≥ I(X0,λ)e−V (t), (ii) ‖ divXt,λ‖Cε ≤ ‖divX0,λ‖CεeCV (t) for every
λ ∈ Λ,

(iii) ‖∂Xt,λω(t)‖Cε−1+‖̃Xt,λ‖Cε ≤ C
(
‖∂X0,λ

ω0‖Cε−1+‖̃X0,λ‖Cε+‖∂X0,λ
ρ0‖Cε

)
eCΦ(t),

with Φ(t) := (t+ κt2)‖∇ρ0‖L∞eCV (t) + V (t) + t.

Proof. (i) Let us bound I(Xt,λ) from below by applying the time derivative to
∂X0,λ

Ψ(t, x) and invoking the factXt,λ(Ψ(t, x)) = ∂X0,λ
Ψ(t, x) and ∂tΨ(t, x) = v(t, ψ(t, x))
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with Ψ(0, x) = x. We deduce that ∂t∂X0,λ
Ψ(t, x) = ∇v(t,Ψ(t, x)) · ∂X0,λ

Ψ(t, x),
∂X0,λ

Ψ(0, x) = X0,λ. The time reversibility of this equation combined with Gron-

wall’s inequality tells us |X0,λ(x)| ≤ eV (t)
∣∣∂X0,λ

Ψ(t, x)
∣∣, for all (λ, x) ∈ Λ × R2. In

view of Definition 2.11 (ii) we get the desired estimate.

(ii) Applying “div” operator to (10), an easy computation combined with div v =
0 shows us that divXt,λ satisfies (∂t + v · ∇)divXt,λ = 0. Proposition 2.8 yields
‖ divXt,λ‖Cε ≤ CeCV (t)‖ divX0,λ‖Cε .

(iii) To bound ∂Xt,λω in Cε−1, we first recall from Proposition 2.14 that (∂t + v ·
∇)∂Xt,λω = ∂Xt,λ∂1ρ. In accordance with Proposition 2.8, we readily get∥∥∂Xt,λω(t)

∥∥
Cε−1 ≤ CeCV (t)

(∥∥∂X0,λ
ω0
∥∥
Cε−1 +

∫ t

0

e−CV (τ)‖∂Xτ,λ∂1ρ(τ)‖Cε−1dτ
)
.

(26)

Let us estimate ‖∂Xτ,λ∂1ρ(τ)‖Cε−1 . The identity ∂Xτ,λ∂1ρ = ∂1(∂Xτ,λρ) − ∂∂1Xτ,λρ
combined with the following estimate proved in [16, Corollary 1] ‖∂jX · ∇f‖Cε−1 ≤
C‖∇f‖L∞ ‖̃X‖Cε yields to ‖∂Xt,λ∂1ρ(t)‖Cε−1 ≤ ‖∂Xt,λρ(t)‖Cε + ‖∇ρ(t)‖L∞ ‖̃Xt,λ‖Cε .
Plugging the last estimate into (26), we get

‖∂Xt,λω(t)‖Cε−1 ≤ CeCV (t)

(
‖∂X0,λ

ω0‖Cε−1 +

∫ t

0

e−CV (τ)‖∂Xτ,λρ(τ)‖Cεdτ

+

∫ t

0

e−CV (τ)‖∇ρ(τ)‖L∞ ‖̃Xτ,λ‖Cεdτ
)
.

(27)

For the term ‖∂Xt,λρ(t)‖Cε , we may apply (25) and (13) and therefore (27) becomes

e−CV (t)‖∂Xt,λω(t)‖Cε−1 .‖∂X0,λ
ω0‖Cε−1 + ‖∂X0,λ

ρ0‖Cεt

+

∫ t

0

e−CV (τ)(1 + κτ)
(
‖∇ρ0‖L∞ + ‖∇ρ‖L∞τ L∞

)
‖̃Xλ‖L∞τ Cεdτ.

(28)

To estimate ‖̃Xλ‖L∞t Cε , we apply again Proposition 2.8 to (10),

‖Xt,λ‖Cε ≤ CeCV (t)
(
‖X0,λ‖Cε +

∫ t

0

e−CV (τ)‖∂Xτ,λv(τ)‖Cεdτ
)
.

As to ‖∂Xt,λv(t)‖Cε we use the following estimate proved in [1, 7],

‖∂Xt,λv(t)‖Cε . ‖∇v(t)‖L∞ ‖̃Xt,λ‖Cε + ‖∂Xt,λω(t)‖Cε−1 .

That we get

‖Xt,λ‖Cε ≤ CeCV (t)

(
‖X0,λ‖Cε +

∫ t

0

e−CV (τ)
(
‖∇v(τ)‖L∞ ‖̃Xτ,λ‖Cε + ‖∂Xτ,λω(τ)‖Cε−1

)
dτ

)
.

Since ‖̃Xt,λ‖Cε = ‖Xt,λ‖Cε + ‖ divXt,λ‖Cε , then the last estimate combined with (ii)



298 Vortex patch

provides

e−CV (t)‖̃Xt,λ‖Cε . ‖̃X0,λ‖Cε +

∫ t

0

e−CV (τ)
(
‖∇v(τ)‖L∞ ‖̃Xτ,λ‖Cε + ‖∂Xτ,λω(τ)‖Cε−1

)
dτ.

(29)

Adding (28) and (29) and setting Π(t) := e−CV (t)
(
‖∂Xt,λω(t)‖Cε−1 + ‖̃Xt,λ‖Cε

)
, we

find

Π(t) . Π(0) + ‖∂X0,λ
ρ0‖Cεt+

∫ t

0

(
(1 + κτ)(‖∇ρ0‖L∞ + ‖∇ρ‖L∞τ L∞) + ‖∇v(τ)‖L∞ + 1

)
Π(τ)dτ.

Using Gronwall’s inequality we obtain

Π(t) .
(
Π(0) + ‖∂X0,λ

ρ0‖Cε
)
e(1+κt)t‖∇ρ0‖L∞+(1+κt)t‖∇ρ‖L∞t L∞+CV (t)+Ct.

Finally, from Proposition 3.2 (i) we deduce that

Π(t) .
(
Π(0) + ‖∂X0,λ

ρ0‖Cε
)
e(1+κt)t‖∇ρ0‖L∞eCV (t)+CV (t)+Ct.

3.4 Regularity persistence

This part is concerned with the regularity persistence of the prescribed initial regu-
larity. The basic ingredient is to get an estimate for the Lipschitz norm of the velocity
for short time. The main result is the following.

Proposition 3.5. Under the assumptions of Theorem 3.1, the solution (v, ρ) of (1)
can be defined on an interval [0, T ] such that T is related to the size of the initial
data with the persistence result: for all t ∈ [0, T ], ‖ω(t)‖L2∩L∞ + ‖ω(t)‖Cε(Xt) +

‖∇v(t)‖L∞ + ‖̃Xt,λ‖Cε ≤ C0, with C0 a constant depending on the initial data.

Proof. The basic ingredient of the proof is to get an a priori estimate for the Lipschitz
norm of the velocity over a time interval [0, T ] that can be quantified with respect to
the initial data. By virtue of Proposition 3.2 (iii) and Proposition 3.4 (iii) we deduce
that

‖∂Xt,λω(t)‖Cε−1 + ‖ω(t)‖L∞ ‖̃Xt,λ‖Cε ≤ C0e
CΦ(t),

with the estimate

0 ≤ Φ(t) ≤ C0(1 + t2)eCV (t). (30)

Therefore combining this estimate with the definition 2.13 and Proposition 3.4 (i)
yields

‖ω(t)‖Cε(Xt) ≤ C0e
CΦ(t). (31)

Thus plugging this estimate into the logarithmic estimate (11) and using Proposi-
tion 3.2 we find

‖∇v(t)‖L∞ ≤ C
(
‖ω0‖L2 + t‖∇ρ0‖L2eCV (t)

)
+ C‖ω(t)‖L∞ log

(
e+
‖ω(t)‖Cε(Xt)
‖ω(t)‖L∞

)
.

(32)

As the function ]0,+∞[3 x 7→ x log(e+ a/x) is strictly increasing and ]0,+∞[3 x 7→
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log(e+ a/x) is strictly decreasing, we obtain

‖ω(t)‖L∞ log

(
e+
‖ω(t)‖Cε(Xt)
‖ω(t)‖L∞

)
≤ C0(1 + t)eCV (t) log

(
e+
‖ω(t)‖Cε(Xt)

C0

)
.

Notice that we have used the following estimate which follows from Proposition 3.2 (iii)
‖ω(t)‖L∞ ≤ C0(1 + t)eCV (t). Consequently (32) becomes

‖∇v(t)‖L∞ ≤ C0(1 + t)eCV (t) + C0(1 + t)eCV (t) log

(
e+
‖ω(t)‖Cε(Xt)

C0

)
.

Applying (30) and (31) we get

‖∇v(t)‖L∞ ≤ C0(1 + t)eCV (t) + C0(1 + t)eCV (t)
(
1 + Φ(t)

)
≤ C0(1 + t2)eC

∫ t
0
‖∇v(τ)‖L∞dτ .

From this we deduce the existence of T > 0 depending on the initial data through C0

such that

∀t ∈ [0, T ], ‖∇v(t)‖L∞ ≤ 2C0, (33)

which implies in turn that all the involved norms are bounded over the time interval
[0, T ]. The proof of Theorem 3.1 follows easily from Proposition 3.5. Indeed, up
to now we have established the suitable a priori estimates required for the regularity
persistence which are enough to construct a unique solution for short time. This latter
part concerning the construction of the solutions is classical and is well-detailed in
various references such as [7, 16]. �

3.5 Proof of Theorem 1.1

The proof of Theorem 1.1 follows from Theorem 3.1. To see this, it suffices to build an
initial admissible family X0 = (X0,λ)0≤λ≤1 such that 1Ω0

∈ Cε(X0) and to check the
regularity persistence of the boundary. This is very classical and was done first in [7],
and for the convenience of the reader we shall reproduce here the basic ingredients.
Since the initial boundary ∂Ω0 is a Jordan curve in the class C1+ε, then according to
the definition 2.16, there exists a local chart (f0, V0), with V0 being a neighborhood
of ∂Ω0 such that {

f0 ∈ C1+ε(R2), ∇f0(x) 6= 0 on V0

∂Ω0 = f−1
0 ({0}) ∩ V0.

On the other hand, take χ ∈ D(R2), with 0 ≤ χ ≤ 1, suppχ ⊂ V0 and χ(x) =
1 for all x ∈ W0, where W0 is a small neighborhood of ∂Ω0 strictly contained
in V0. Next, define the family X0 = (X0,λ)λ∈{0,1} by X0,0(x) = ∇⊥f0(x) and

X0,1(x) = (1− χ(x))

(
1
0

)
. We observe that X0 = (X0,λ)λ∈{0,1} is non-degenerate,

and each member X0,λ with its divergence belong to Cε(R2), then according to
the Definition 2.11, we conclude that X0 is an admissible family. Moreover, from
the identity ∇ω0(x) = −~n(x)dσ∂Ω0

with ~n being the outward unit normal vec-
tor to the boundary and dσ∂Ω0

is the arc-length measure on ∂Ω0, we check easily
that ∀λ ∈ {0, 1}, X0,λ(x) · ∇ω0(x) = 0. In addition, since ρ0 ∈ C1+ε(R2) then
ρ0 ∈ C1+ε(X0). Consequently, in view of the Theorem 3.1, the system (1) is locally
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well-posed, with the persistence regularity detailed in Proposition 3.5. i.e., there

exists a unique local solution (vκ, ρκ) ∈
(
L∞
(
[0, T ]; Lip(R2)

))2
for (1).

Now, it remains to check the regularity of the transported boundary ∂Ωt. We
parametrize the boundary ∂Ω0 by defining the periodic curve γ0 ∈ C1+ε([0, 2π];R2)
as the solution of the following ordinary differential equation{

∂σγ
0(σ) = X0,0(γ0(σ))

γ0(0) = x0, x0 ∈ ∂Ω0.

To define the evolution parametrization of ∂Ωt, we simply set for t ≥ 0, γ(t, σ) ,
Ψ(t, γ0(σ)). Clearly, the curve γ(t, ·) is the transport of γ0 by the flow Ψt and
by the criterion of differentiation with respect to σ, we readily get ∂σγ(t, σ) =(
∂X0,0Ψ

)
(t, γ0(σ)). Since ∂X0,0Ψ(t) ≡ Xt,0 ◦ Ψ(t), with Xt,0 is the push-forward

of X0,0 by the flow Ψ(t), then in view of the classical estimate ‖Xt,0 ◦ Ψ(t)‖Cε ≤
‖Xt,0‖Cε‖∇Ψ(t)‖εL∞ ≤ ‖Xt,0‖CεeCV (t) ≤ C0, where we have used the fact ‖∇Ψ(t)‖L∞ ≤
eCV (t) and the estimates of Proposition 3.5. Therefore ∂X0,0

Ψ(t) ∈ L∞([0, T ]; Cε) and
[0, T ] 3 t 7→ γt belongs to L∞([0, T ];C1+ε([0, 2π];R2)). This concludes the regularity
persistence of the boundary ∂Ωt and so the proof of Theorem 1.1 is finished.

4. Inviscid limit for velocities and densities

This section cares essentially with the proof of Theorem 1.3.

4.1 Proof of Theorem 1.3

(i) Set U = vκ−v, Θ = ρκ−ρ and P = πκ−π. Then, a straightforward computation
provides that (U,Θ, P ) satisfies

∂tU + vκ · ∇U +∇P = Θe2 − U · ∇v (t, x) ∈ R+ × R2,

∂tΘ + vκ · ∇Θ− κ∆Θ = −U · ∇ρ+ κ∆ρ (t, x) ∈ R+ × R2,

div U = 0,

U|t=0 = U0 = 0, Θ|t=0 = Θ0 = 0.

(34)

• First case: p = 2. Dotting U -equation (resp. Θ-equation) by U (resp. Θ). After
some integration by parts since convective terms integrate to zero, and due to the
fact the div vκ = div v = 0, we have

1

2

d

dt
‖U(t)‖2L2 ≤ ‖Θ(t)‖L2‖U(t)‖L2 + ‖U(t)‖2L2‖∇v(t)‖L∞

≤ 1

2

(
‖Θ(t)‖2L2 + ‖U(t)‖2L2

)
+ ‖U(t)‖2L2‖∇v(t)‖L∞

≤ C
(
‖∇v(t)‖L∞ + 1

)(
‖Θ(t)‖2L2 + ‖U(t)‖2L2

)
(35)

and
1

2

d

dt
‖Θ(t)‖2L2 + κ‖∇Θ(t)‖2L2 ≤ κ‖∇ρ(t)‖L2‖∇Θ(t)‖L2 + ‖U(t)‖L2‖∇ρ(t)‖L∞‖Θ(t)‖L2
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≤ κ

2
‖∇ρ(t)‖2L2 +

κ

2
‖∇Θ(t)‖2L2 +

1

2
‖∇ρ(t)‖L∞

(
‖U(t)‖2L2 + ‖Θ(t)‖2L2

)
.

Here, we have used two times Young’s inequality. Carrying over the term κ
2 ‖∇Θ(t)‖2L2 ,

to the left-hand side, we have

1

2

d

dt
‖Θ(t)‖2L2 ≤

κ

2
‖∇ρ(t)‖2L2 +

1

2
‖∇ρ(t)‖L∞

(
‖U(t)‖2L2 + ‖Θ(t)‖2L2

)
. (36)

Collecting (35) and (36), and defining Σ(t) = ‖U(t)‖2L2 + ‖Θ(t)‖2L2 , it follows that

d

dt
Σ(t) ≤ κ‖∇ρ(t)‖2L2 + Σ(t)

(
‖∇v(t)‖L∞ + ‖∇ρ(t)‖L∞ + 1

)
.

Gronwall’s inequality then implies Σ(t) ≤ eV (t)+‖∇ρ‖
L1
tL
∞+t(

Σ(0) + κ‖∇ρ‖2
L1
tL

2

)
.

For the two terms ‖∇ρ‖L1
tL
∞ and ‖∇ρ‖2

L1
tL

2 , we employ the Proposition 3.2 (i)

(which remains true for κ = 0) for p = ∞ and p = 2. Then, in view of Σ(0) = 0

we have Σ(t) ≤ κeC(V (t)+‖∇ρ0‖L∞ (eCV (t)+1)t)‖∇ρ0‖2L2t. Even though, all the involved
norms are bounded over [0, T ], we infer that

sup
t∈[0,T ]

(
‖vκ(t)− v(t)‖L2 + ‖ρκ(t)− ρ(t)‖L2

)
≤ C0κ

1/2. (37)

• Second case: 2 < p ≤ ∞. Using in general case the following classical complex

interpolation ‖f‖Lp ≤ C‖f‖2/pL2 ‖f‖1−2/p
L∞ , then, in view of (37) we deduce that

‖vκ(t)−v(t)‖Lp+‖ρκ(t)−ρ(t)‖Lp ≤ C0κ
1
p
(
‖vκ(t)−v(t)‖1−2/p

L∞ +‖ρκ(t)−ρ(t)‖1−2/p
L∞

)
.
(38)

To get the bound for the two last quantities, we employ in general case the so-

called Gagliardo-Nirenberg inequality ‖f‖L∞ . ‖f‖1/2L2 ‖∇f‖1/2L∞ . Thus we get in view
of (33), (37) and Proposition 3.2 (i) that

‖vκ(t)− v(t)‖L∞ ≤ ‖vκ(t)− v(t)‖1/2L2 ‖∇vκ(t)−∇v(t)‖1/2L∞

≤ ‖vκ(t)− v(t)‖1/2L2

(
‖∇vκ(t)‖L∞ + ‖∇v(t)‖L∞

)1/2 ≤ C0κ
1/4.

Similarly ‖ρκ(t)− ρ(t)‖L∞ ≤ ‖ρκ(t)− ρ(t)‖1/2L2 ‖∇ρκ(t)−∇ρ(t)‖1/2L∞

≤ ‖ρκ(t)− ρ(t)‖1/2L2

(
‖∇ρκ(t)‖L∞ + ‖∇ρ(t)‖L∞

)1/2
≤ C0κ

1/4‖∇ρ0‖1/2L∞e
C(Vκ(t)+V (t)) ≤ C0κ

1/4.

Plugging the last two estimates in (38), then with the notation C0 = C(‖∇ρ0‖L2∩L∞ , T ),
we could obtain for p ∈ [2,∞]

sup
t∈[0,T ]

(
‖vκ(t)− v(t)‖Lp + ‖ρκ(t)− ρ(t)‖Lp

)
≤ C0κ

1/4+1/2p (39)

which finishes the proof of (i)

(ii) Recall that Ψκ(t, x) = x+
∫ t

0
vκ(τ,Ψκ(τ, x))dτ, Ψ(t, x) = x+

∫ t
0
v(τ,Ψ(τ, x))dτ .

We intend to prove that (Ψκ)κ converges uniformly towards Ψ locally in time when
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κ goes to 0. To do this, we have for every κ > 0

|Ψκ(t, x)−Ψ(t, x)| ≤
∫ t

0

∣∣vκ(τ,Ψκ(τ, x)
)
− v
(
τ,Ψκ(τ, x)

)∣∣dτ︸ ︷︷ ︸
(I)

+

∫ t

0

∣∣v(τ,Ψκ(τ, x)
)
− v
(
τ,Ψ(τ, x)

)∣∣dτ︸ ︷︷ ︸
(II)

(40)

The term (I) comes immediately from (39), that is for t ∈ [0, T ] (I) ≤ C0κ
1/4.

Concerning (II), using the following general estimate∣∣f ◦Ψκ − f ◦Ψ
∣∣ =

∣∣f ◦Ψκ − f ◦Ψ
∣∣

|Ψκ −Ψ|
|Ψκ −Ψ| ≤ ‖∇f‖L∞‖Ψκ −Ψ‖L∞ .

Thus we have (II) ≤
∫ t

0
‖∇v(τ)‖L∞‖Ψκ(τ)−Ψ(τ)‖L∞dτ .

Adding (I) and (II) and inserting them in (40), we shall get for x ∈ R2

|Ψκ(t, x)−Ψ(t, x)| . C0κ
1/4 +

∫ t

0

‖∇v(τ)‖L∞‖Ψκ(τ)−Ψ(τ)‖L∞dτ.

Gronwall’s inequality implies for every t ∈ [0, T ] ‖Ψκ(t) − Ψ(t)‖L∞ . C0κ
1/4, which

achieves the proof of (ii), so of Theorem 1.3.
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