МАТЕМАТІČКІ VESNIK МАТЕМАТИЧКИ ВЕСНИК 72, 2 (2020), 106–116 June 2020

research paper оригинални научни рад

HEMI-SLANT ξ^{\perp} -LORENTZIAN SUBMERSIONS FROM $(LCS)_n$ -MANIFOLDS

Tanumoy Pal and Shyamal Kumar Hui

Abstract. The present paper introduce a study of hemi-slant ξ^{\perp} -Lorentzian submersion from $(LCS)_n$ -manifolds with an example. We obtain some results and investigate the geometry of foliations. Necessary and sufficient conditions for such submersion to be totally geodesic have been obtained. Finally, we study such submersions with totally umbilical fibers.

1. Introduction

Lorentzian concircular structure manifolds (briefly, $(LCS)_n$ -manifolds) were introduced in [23]. They are a generalization of LP-Sasakian manifold [20]. This manifold has many applications, see [7, 25]. In [19], it has shown that Lorentzian concircular spacetime coincide with generalized Robertson-Walker space-time. So, these manifolds are interesting for geometry as well as for physics. For detailed study of $(LCS)_n$ -manifolds we refer to [24] and for study of submanifolds of these manifolds we refer to [5, 8, 14–16].

O'Neill [21, 22] and Gray [11] introduced the study of semi-Riemannain submersions between semi-Riemannain manifolds and the study of Lorentzian submersion was introduced by Majid [18] and Falcitelli et al. [10], respectively. Recently, Gündüzalp et al. [13] studied para contact semi-Riemannain submersions, Faghfouri et al. [9] studied anti-invariant semi-Riemannian submersions, Akyol et al. [2] studied semi-invariant semi-Riemannian submersions, Akyol et al. [12] studied semi-invariant from Lorentzian almost paracontact manifolds. On the other hand, Akyol et al. [3] studied semi-slant ξ^{\perp} -Riemannian submersions as a generalization of anti-invariant ξ^{\perp} -Riemannian submersions [17] and semi-invariant ξ^{\perp} -Riemannian submersions [4]. Also, Tastan et al. [26] studied hemi-slant submersions from Kählerian manifolds.

²⁰¹⁰ Mathematics Subject Classification: 53C15, 53C43, 53C50

Keywords and phrases: $(LCS)_n$ -manifold; Lorentzian submersion; hemi-slant ξ^{\perp} -Lorentzian submersion.

Here, we have studied hemi-slant ξ^{\perp} -Lorentzian submersions from $(LCS)_n$ -manifolds and the structure of the paper is as follows. Section 2 studies $(LCS)_n$ -manifolds and semi-Riemannian submersions. In Section 3, we define hemi-slant ξ^{\perp} -Lorentzian submersions, present an example, find the integrability conditions for distributions and investigate the geometry of leaves of different distributions including horizontal and vertical distribution. In Section 4, we find a necessary and sufficient condition for a hemi-slant ξ^{\perp} -Lorentzian submersion to be totally geodesic. In this section we also study hemi-slant ξ^{\perp} -Lorentzian submersions with totally umbilical fibers.

2. Preliminaries

 $(LCS)_n$ -manifold is a Lorentzian manifold \overline{M} of dimension n endowed with the unit timelike concircular vector field ξ , its associated 1-form η and a (1,1) tensor field ϕ such that $\nabla_X \xi = \alpha \phi X$, α being a non-zero scalar function satisfying $\nabla_X \alpha =$ $(X\alpha) = d\alpha(X) = \rho \eta(X)$, where $\rho = -(\xi\alpha)$ is another scalar, and ∇ is the Levi-Civita connection of the Lorentzian metric g. If $\alpha = 1$, then this manifold reduces to the LP-Sasakian manifold [20].

In a $(LCS)_n$ -manifold (n > 2) M, the following relations hold [23, 24]:

$$\eta(\xi) = -1, \quad \phi\xi = 0, \quad \eta(\phi X) = 0, \quad g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y), \quad (1)$$

$$\phi^2 X = X + \eta(X)\xi,\tag{2}$$

$$(\nabla_X \phi)Y = \alpha \{g(X, Y)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X\},\tag{3}$$

A differential map $\pi : M \to N$ between a Lorentzian manifold (M, g_M) and a semi-Riemannian manifold (N, g_N) is called a Lorentzian submersion if π_* is onto and it satisfies

(i) The fibers $\pi^{-1}(q), q \in N$, are semi-Riemannian submanifolds of M.

(ii) π_* preserves scalar product of vectors normal to fibers.

For each $q \in N$, $\pi^{-1}(q)$ is a submanifold of M of dimension $k(=\dim M - \dim N)$. The submanifolds $\pi^{-1}(q)$ are called fibers, and a vector field X on M is called *horizontal* (resp. *vertical*) if it is always *orthogonal* (resp. *tangent*) to fibers. If Xis horizontal and π -related to a vector field X_* on N then X is called *basic*. The projection morphisms on the vertical distribution ker π_* and the horizontal distribution (ker π_*)^{\perp} are denoted by \mathcal{V} and \mathcal{H} , respectively [10]. The O'Neill's tensors [21] on Mare

$$\mathcal{T}_E F = \mathcal{H} \nabla_{\mathcal{V}E} \mathcal{V} F + \mathcal{V} \nabla_{\mathcal{V}E} \mathcal{H} F, \quad \mathcal{A}_E F = \mathcal{V} \nabla_{\mathcal{H}E} \mathcal{H} F + \mathcal{H} \nabla_{\mathcal{H}E} \mathcal{V} F \tag{4}$$

for $E, F \in \chi(M)$, where ∇ is the Levi-Civita connection of (M, g_M) . For $U, V \in \ker \pi_*$ and $X, Y \in (\ker \pi_*)^{\perp}$ on M, we have $\mathcal{T}_U V = \mathcal{T}_V U, \ \mathcal{A}_X Y = -\mathcal{A}_Y X = \frac{1}{2} \mathcal{V}[X, Y]$. Also from (4), we have

$$\nabla_U V = \mathcal{T}_U V + \hat{\nabla}_U V, \qquad \nabla_U X = \mathcal{H} \nabla_U X + \mathcal{T}_U X, \qquad (5)$$

$$\nabla_X U = \mathcal{A}_X U + \mathcal{V} \nabla_X U, \qquad \nabla_X Y = \mathcal{H} \nabla_X Y + \mathcal{A}_X Y, \tag{6}$$

for $X, Y \in (\ker \pi_*)^{\perp}$ and $U, V \in \ker \pi_*$, where $\hat{\nabla}_U V = \mathcal{V} \nabla_U V$ and $\mathcal{H} \nabla_U X = \mathcal{A}_X U$, if

X is basic. Clearly \mathcal{T} acts on the fiber as the second fundamental form and \mathcal{A} acts on the horizontal distribution. If $\mathcal{T} \equiv 0$, then π is said to be a submersion with totally geodesic fibers and it is said to be a submersion with totally umbilical fibers if

$$\mathcal{T}_E F = g_M(E, F)H,\tag{7}$$

for any $E, F \in \ker \pi_*$. If $H \equiv 0$, then π is said to be minimal [10]. Now, we recall that if (M, g_M) and (N, g_N) bare semi-Riemannian manifolds and $\pi : M \to N$ is a smooth map, then the second fundamental form of π is given by

$$(\nabla \pi_*)(E,F) = \nabla_E^{\pi} \pi_* F - \pi_* (\nabla_E F), \qquad (8)$$

for $E, F \in \Gamma(TM)$, where ∇^{π} is the pull back connection and for convenience we denote by ∇ the Levi-Civita connection of the metrics g_M and g_N . π is said to be harmonic if $trace(\nabla \pi_*) = 0$ and it is called a totally geodesic map if $(\nabla \pi_*)(E, F) = 0$, for $E, F \in \Gamma(TM)$ [6]. Throughout the paper we consider (M, g_M) to be an $(LCS)_n$ -manifold and (N, g_N) a semi-Riemannian manifold.

A Lorentzian submersion $\pi : M \to N$ is said to be anti-invariant [9] if $\phi(\ker \pi_*) \subseteq (\ker \pi_*)^{\perp}$ and is said to be slant (or θ -slant) [13] if the angle $\theta(X)$ between ϕX and $(\ker \pi_* - \{\xi_p\})$ is constant, i.e., it is independent of the choice of the non-zero vector $X \in \ker \pi_* - \{\xi_p\}$ and $p \in M$. θ is known as the slant angle of the slant submersion. Also, π is said to be hemi-slant [26] if ker π_* admits two complementary orthogonal distributions \mathcal{D}^{θ} and \mathcal{D}^{\perp} such that \mathcal{D}^{θ} is slant and \mathcal{D}^{\perp} is anti-invariant, i.e.,

$$\ker \pi_* = \mathcal{D}^\theta \oplus \mathcal{D}^\perp. \tag{9}$$

Hemi-slant submersion is natural generalization of anti-invariant, semi-invariant and slant submersion. If the dimensions of \mathcal{D}^{\perp} and \mathcal{D}^{θ} are n_1 and n_2 , then π is: (i) an anti-invariant submersion, if $n_2 = 0$,

- (ii) an invariant submersion, if $n_1 = 0$, $\theta = 0$,
- (iii) a proper slant submersion with slant angle θ , if $n_1 = 0$ and $\theta \neq 0, \frac{\pi}{2}$,
- (iv) a semi-invariant submersion, if $\theta = 0, n_1 \neq 0$. A hemi-slant submersion is proper if $n_1 \neq 0$ and $\theta \neq 0, \frac{\pi}{2}$.

3. Hemi-slant ξ^{\perp} -Lorentzian submersion

A hemi-slant Lorentzian submersion $\pi : M \to N$ is said to be a hemi-slant ξ^{\perp} -Lorentzian submersion if ξ is orthogonal to ker π_* . Now we will construct an example of a hemi-slant ξ^{\perp} -Lorentzian submersion from an $(LCS)_n$ -manifold onto a semi-Riemannian manifold.

EXAMPLE 3.1. Let $(\mathbb{R}^9, \phi, \xi, \eta, g)$ denote the manifold \mathbb{R}^9 with the (LCS)-structure given by

$$\eta = \frac{1}{3}(-dz + \sum_{i=1}^{n} y^{i} dx^{i}), \ \xi = 3\frac{\partial}{\partial z}, \ g = -\eta \otimes \eta + \frac{1}{9}\sum_{i=1}^{n} dx^{i} \otimes dx^{i} \oplus dy^{i} \otimes dy^{i},$$

$$\begin{split} \phi(\frac{\partial}{\partial x^1}) &= \frac{\partial}{\partial y^1}, \ \phi(\frac{\partial}{\partial x^2}) = \frac{\partial}{\partial y^2}, \ \phi(\frac{\partial}{\partial x^3}) = \frac{\partial}{\partial x^3}, \ \phi(\frac{\partial}{\partial x^4}) = \frac{\partial}{\partial x^4}, \\ \phi(\frac{\partial}{\partial y^1}) &= \frac{\partial}{\partial x^1}, \ \phi(\frac{\partial}{\partial y^2}) = \frac{\partial}{\partial x^2}, \ \phi(\frac{\partial}{\partial y^3}) = -\frac{\partial}{\partial y^3}, \ \phi(\frac{\partial}{\partial y^4}) = -\frac{\partial}{\partial y^4}, \ \phi(\frac{\partial}{\partial z}) = 0 \end{split}$$

where $(x^1, \ldots, x^4, y^1, \ldots, y^4, z)$ are Cartesian coordinates. For $\alpha, \beta \in \mathbb{R}$, let $\pi : \mathbb{R}^9 \to \mathbb{R}^5$ be a submersion defined by

$$(x^{1}, x^{2}, x^{3}, x^{4}, y^{1}, y^{2}, y^{3}, y^{4}, z) \mapsto (\cos \alpha x^{1} + \sin \alpha x^{2}, \cos \beta y^{1} + \sin \beta y^{2}, \frac{x^{3} - y^{3}}{\sqrt{3}}, \frac{x^{4} - y^{4}}{\sqrt{3}}, 3z)$$

Then it follows that $\ker \pi_* = \operatorname{span}\{J_1, J_2, J_3, J_4\}$, where $J_1 = \sin \alpha \frac{\partial}{\partial x^1} - \cos \alpha \frac{\partial}{\partial x^2}$, $J_2 = \sin \beta \frac{\partial}{\partial y^1} - \cos \beta \frac{\partial}{\partial y^2}$, $J_3 = \frac{\partial}{\partial x^3} + \frac{\partial}{\partial y^3}$, $J_4 = \frac{\partial}{\partial x^4} + \frac{\partial}{\partial y^4}$ and $(\ker \pi_*)^{\perp} = \operatorname{span}\{L_1, L_2, L_3, L_4, \xi\}$, where $L_1 = \cos \alpha \frac{\partial}{\partial x^1} + \sin \alpha \frac{\partial}{\partial x^2}$, $L_2 = \cos \beta \frac{\partial}{\partial y^1} + \sin \beta \frac{\partial}{\partial y^2}$, $L_3 = \frac{\partial}{\partial x^3} - \frac{\partial}{\partial y^3}$, $L_4 = \frac{\partial}{\partial x^4} - \frac{\partial}{\partial y^4}$. Then, $g(\phi J_1, J_2) = \frac{1}{9} \cos(\alpha - \beta)$, $\phi J_3 = L_3$ and $\phi J_4 = L_4$. Thus $\operatorname{span}\{J_1, J_2\}$ is a slant distribution with slant angle $|\alpha - \beta|$ and $\operatorname{span}\{J_3, J_4\}$ is an anti-invariant distribution.

Also, by direct decomposition, we find that $g_N(\pi_*L_1, \pi_*L_1) = g_M(L_1, L_1)$, $g_N(\pi_*L_2, \pi_*L_2) = g_M(L_2, L_2)$, $g_N(\pi_*L_3, \pi_*L_3) = g_M(L_3, L_3)$, $g_N(\pi_*L_4, \pi_*L_4) = g_M(L_4, L_4)$, $g_N(\xi, \xi) = g_M(\xi, \xi)$, where g_M and g_N are the metrics of \mathbb{R}^9 and \mathbb{R}^5 . Thus π is a hemi-slant ξ^{\perp} -Lorentzian submersion.

For any
$$E \in \ker \pi_*$$
, let $E = \mathcal{P}E + \mathcal{Q}E$, where $\mathcal{P}E \in \mathcal{D}^{\theta}$ and $\mathcal{Q}E \in \mathcal{D}^{\perp}$ and take
 $\phi E = tE + \omega E$, (10)

where $tE \in \ker \pi_*$ and $\omega E \in (\ker \pi_*)^{\perp}$. Also for any $X \in (\ker \pi_*)^{\perp}$, we have

$$\phi X = bX + cX,\tag{11}$$

where $bX \in \ker \pi_*$ and $cX \in (\ker \pi_*)^{\perp}$ and hence $(\ker \pi_*)^{\perp} = \omega \mathcal{D}^{\theta} \oplus \phi \mathcal{D}^{\perp} \oplus \mu$, where μ is a ϕ -invariant distribution of $(\ker \pi_*)^{\perp}$.

The proof of the following theorem is similar to [5, Theorem 3.1].

THEOREM 3.2. Let π be a ξ^{\perp} -Lorentzian submersion from (M, g_M) onto (N, g_N) . Then π is a hemi-slant Lorentzian submersion if and only if there exist a constant $\lambda \in [0, 1]$ and a distribution \mathcal{D} on ker π_* such that $(i) \mathcal{D} = \{V \in \ker \pi_* | t^2 V = \lambda V\},$

(ii) $\phi V = \omega V$, for any $\in \ker \pi_*$ and orthogonal to \mathcal{D} . Furthermore, if θ is the slant angle of π , then $\lambda = \cos^2 \theta$.

For any $U \in \mathcal{D}^{\theta}$, we get

$$t^2 U = \cos^2 \theta U. \tag{12}$$

Consequently, we obtain $g(tU, tV) = \cos^2 \theta g(U, V)$ and $g(\omega U, \omega V) = \sin^2 \theta g(U, V)$ for every $U, V \in \mathcal{D}^{\theta}$.

LEMMA 3.3. Let π be a hemi-slant ξ^{\perp} -Lorentzian submersion from (M, g_M) onto (N, g_N) . Then we have $t^2 + b\omega = I$, $\omega t + c\omega = 0$, $c^2 + \omega b = I + \eta \otimes \xi$, tb + bc = 0.

Proof. Proof of this lemma follows from (10), (11) and (2).

109

 \square

LEMMA 3.4. Let π be a hemi-slant ξ^{\perp} -Lorentzian submersion from (M, g_M) onto (N, g_N) . Then we have

 $(i) \ t\mathcal{D}^{\theta} = \mathcal{D}^{\theta}, \quad (ii) \ t\mathcal{D}^{\perp} = \{0\}, \quad (iii) \ b\omega\mathcal{D}^{\theta} = \mathcal{D}^{\theta}, \quad (iv) \ b\phi\mathcal{D}^{\perp} = \mathcal{D}^{\perp}.$

By using (3), (5), (6), (10) and (11), we can easily obtain the following assertions.

LEMMA 3.5. Let π be a hemi-slant ξ^{\perp} -Lorentzian submersion from (M, g_M) onto (N, g_N) . Then

$$\hat{\nabla}_E tF + \mathcal{T}_E \omega F = b\mathcal{T}_E F + t\hat{\nabla}_E F, \tag{13}$$

$$\mathcal{T}_E tF + \mathcal{H} \nabla_E \omega F = c \mathcal{T}_E F + \omega \hat{\nabla}_E F + \alpha g(E, F) \xi, \qquad (14)$$

$$\mathcal{T}_E bX + \mathcal{H} \nabla_E cX = c \mathcal{H} \nabla_E X + \omega \mathcal{T}_E X,$$

$$\hat{\nabla}_E bX + \mathcal{T}_E cX = b \mathcal{H} \nabla_E X + t \mathcal{T}_E X + \alpha \eta(X) E,$$

$$\mathcal{A}_X bY + \mathcal{H} \nabla_X cY = c \mathcal{H} \nabla_X Y + \omega \mathcal{A}_X Y + \alpha [g(X, Y)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X]$$

$$\omega \nabla_X bY + \mathcal{A}_X cY = b \mathcal{H} \nabla_X Y + t \mathcal{A}_X Y$$

Now, the covariant derivatives of t and ω are defined by $(\nabla_E t)F = \hat{\nabla}_U tF - t\hat{\nabla}_E F$ and $(\nabla_E \omega)F = \mathcal{H}\nabla_E \omega F - \omega \hat{\nabla}_E F$, for $E, F \in \ker \pi_*$. Then from (13) and (14), we get the following.

COROLLARY 3.6. Let π be a hemi-slant ξ^{\perp} -Lorentzian submersion from (M, g_M) onto (N, g_N) . Then t is parallel if and only if $\mathcal{T}_E \omega F = b \mathcal{T}_E F$ and ω is parallel if and only if $\mathcal{T}_E tF = c \mathcal{T}_U F + \alpha g(E, F)\xi$, where $E, F \in \ker \pi_*$.

THEOREM 3.7. Let π be a hemi-slant ξ^{\perp} -Lorentzian submersion from (M, g_M) onto (N, g_N) . Then \mathcal{D}^{θ} is integrable if and only if

$$g_M(\mathcal{H}\nabla_U\omega V - \mathcal{H}\nabla_V\omega U, \phi Z) = g_M(\mathcal{T}_V\omega t U - \mathcal{T}_U\omega t V, Z),$$

for $U, V \in \mathcal{D}^{\theta}$ and $Z \in \mathcal{D}^{\perp}$.

Proof. For $U, V \in \mathcal{D}^{\theta}$ and $Z \in \mathcal{D}^{\perp}$, we have from (1) that

$$g_M(\nabla_U V, Z) = g_M(\nabla_U tV, \phi Z) + g_M(\nabla_U \omega V, \phi Z) = g_M(\nabla_U \phi tV, Z) + g_M(\nabla_U \omega V, \phi Z)$$
$$= g_M(\nabla_U t^2 V, Z) + g_M(\nabla_U \omega tV, Z) + g_M(\nabla_U \omega V, \phi Z).$$

By virtue of (5) and (12), the above equation yields

$$\sin^2 \theta g_M(\nabla_U V, Z) = g_M(\mathcal{T}_U \omega t V, Z) + g_M(\mathcal{H} \nabla_U \omega V, \phi Z).$$
(15)

Thus we obtain

 $\sin^2 \theta g_M([U,V],Z) = g_M(\mathcal{T}_U \omega t V - \mathcal{T}_V \omega t U, Z) + g_M(\mathcal{H} \nabla_U \omega V - \mathcal{H} \nabla_V \omega U, \phi Z). \quad \Box$

COROLLARY 3.8. Let π be a hemi-slant ξ^{\perp} -Lorentzian submersion from (M, g_M) onto (N, g_N) . If $\mathcal{H}\nabla_U\omega V - \mathcal{H}\nabla_V\omega U \in \omega \mathcal{D}^{\theta} \oplus \mu$ and $\mathcal{T}_U\omega tV - \mathcal{T}_V\omega tU \in \mathcal{D}^{\theta}$, for every $U, V \in \mathcal{D}^{\theta}$ and $Z \in \mathcal{D}^{\perp}$, then \mathcal{D}^{θ} is integrable.

THEOREM 3.9. Let π be a hemi-slant ξ^{\perp} -Lorentzian submersion from (M, g_M) onto (N, g_N) . Then \mathcal{D}^{\perp} is integrable if and only if

$$g_M(\mathcal{H}\nabla_Z\phi W - \mathcal{H}\nabla_W\phi Z, \omega U) = g_M(\mathcal{T}_W Z - \mathcal{T}_Z W, \omega t U),$$

for every $Z, W \in \mathcal{D}^{\perp}$ and $U \in \mathcal{D}^{\theta}$.

Proof. For Z, $W \in \mathcal{D}^{\perp}$ and $U \in \mathcal{D}^{\theta}$, we have from (1), (3) and (10) that $g_M(\nabla_Z W, U) = g_M(\nabla_Z W, \phi tU) + g_M(\nabla_Z \phi W, \omega U)$ $= g_M(\nabla_Z W, t^2 U) + g_M(\nabla_Z W, \omega tU) + g_M(\nabla_Z \phi W, \omega U).$

By virtue of (5) and (12), the above equation yields

$$\sin^2 \theta g_M(\nabla_Z W, U) = g_M(\mathcal{H} \nabla_Z \phi W, \omega U) + g_M(\mathcal{T}_Z W, \omega t U).$$
(16)
ve find

$$\sin^2 \theta g_M([Z,W],U) = g_M(\mathcal{H}\nabla_Z \phi W - \mathcal{H}\nabla_W \phi Z, \omega U) + g_M(\mathcal{T}_Z W - \mathcal{T}_W Z, \omega t U). \quad \Box$$

COROLLARY 3.10. Let π be a hemi-slant ξ^{\perp} -Lorentzian submersion from (M, g_M) onto (N, g_N) . If $\mathcal{H} \nabla_Z \phi W - \mathcal{H} \nabla_W \phi Z$ and $\mathcal{T}_Z W - \mathcal{T}_W Z$ both belong to $\phi \mathcal{D}^{\perp} \oplus \mu$, for every $Z, W \in \mathcal{D}^{\perp}$ and $U \in \mathcal{D}^{\theta}$, then \mathcal{D}^{\perp} is integrable.

THEOREM 3.11. Let π be a hemi-slant ξ^{\perp} -Lorentzian submersion from (M, g_M) onto (N, g_N) . Then \mathcal{D}^{θ} describes a totally geodesic foliation if and only if

$$g_M(\mathcal{H}\nabla_U\omega V, \phi Z) + g_M(\mathcal{T}_U\omega tV, Z) = 0$$
(17)

and
$$g_M(\mathcal{H}\nabla_U\omega tV, X) + g_M(\mathcal{H}\nabla_U\omega V, cX) + g_M(\mathcal{A}_U\omega V, bX) = 0,$$
 (18)

for every $U, V \in \mathcal{D}^{\theta}, Z \in \mathcal{D}^{\perp}$ and $X \in (\ker \pi_*)^{\perp}$.

Proof. Since $\theta \neq 0, \frac{\pi}{2}$, the relation (17) follows from (15). Also, for $U, V \in \mathcal{D}^{\theta}$ and $X \in (\ker \pi_*)^{\perp}$, we have from (1), (3), (10) and (11) that

$$g_M(\nabla_U V, X) = g_M(\nabla_U t^2 V, X) + g_M(\nabla_U \omega t V, X) - g_M((\nabla_U \phi) t V, X) + g_M(\nabla_U \omega V, b X) + g_M(\nabla_U \omega V, c X) + \alpha \eta(X) g_M(\phi U, V)$$

By virtue of (3), (5) and (12), the above relation yields

$$\sin^2 \theta g_M(\nabla_U V, X) = g_M(\mathcal{H}\nabla_U \omega t V, X) + g_M(\mathcal{A}_U \omega V, bX) + g_M(\mathcal{H}\nabla_U \omega V, cX).$$
(19)
which gives (18). The converse part also follows from (15) and (19).

THEOREM 3.12. Let π be a hemi-slant ξ^{\perp} -Lorentzian submersion from (M, g_M) onto (N, g_N) . Then \mathcal{D}^{\perp} describes a totally geodesic foliation if and only if

$$g_M(\mathcal{H}\nabla_Z\phi W,\omega U) + g_M(\mathcal{T}_Z W,\omega tU) = 0$$
⁽²⁰⁾

and
$$g_M(\mathcal{H}\nabla_Z\phi W, cX) = g_M(\hat{\nabla}_Z tbX + \mathcal{T}_Z\omega bX, W),$$
 (21)

for every $U \in \mathcal{D}^{\theta}$, Z, $W \in \mathcal{D}^{\perp}$ and $X \in (\ker \pi_*)^{\perp}$.

Proof. Since $\theta \neq 0, \frac{\pi}{2}$, (20) follows from (16). Also, for $Z, W \in \mathcal{D}^{\theta}$ and $X \in (\ker \pi_*)^{\perp}$, from (3), (10) and (11), we get

$$g_M(\nabla_Z W, X) = g_M(\nabla_Z W, tbX) + g_M(\nabla_Z W, \omega bX) + g_M(\nabla_Z \phi W, cX)$$
$$= -g_M(\nabla_Z tbX, W) - g_M(\nabla_Z \omega bX, W) + g_M(\nabla_Z \phi W, cX)$$

which by virtue of (5), yields

$$g_M(\nabla_Z W, X) = -g_M(\nabla_Z tbX, W) - g_M(\mathcal{T}_Z \omega bX, W) + g_M(\mathcal{H} \nabla_Z \phi W, cX), \quad (22)$$

from which (21) follows. The converse part follows from (16) and (22).

PROPOSITION 3.13. Let π be a hemi-slant ξ^{\perp} -Lorentzian submersion from (M, g_M) onto (N, g_N) . Then ker π_* becomes a direct product of \mathcal{D}^{θ} and \mathcal{D}^{\perp} if and only if (17), (18), (20) and (21) hold simultaneously.

THEOREM 3.14. Let π be a hemi-slant ξ^{\perp} -Lorentzian submersion from (M, g_M) onto (N, g_N) . Then the following assertions are equivalent: (i) ker π_*^{\perp} is integrable

(ii) the following relations hold:

$$g_{M}(\mathcal{H}\nabla_{Y}\phi Z, cX) - g_{M}(\mathcal{H}\nabla_{X}\phi Z, cY) =$$

$$g_{M}(\mathcal{A}_{Y}bX - \mathcal{A}_{X}bY, \phi Z) - \alpha[\eta(X)g_{M}(Y, \phi Z) - \eta(Y)g_{M}(X, \phi Z)]$$

$$d \qquad g_{M}(\mathcal{H}\nabla_{X}Y - \mathcal{H}\nabla_{Y}X, \omega tU) = g_{M}(\mathcal{A}_{Y}bX - \mathcal{A}_{X}bY, \omega U)$$
(23)

and $g_M(\mathcal{H}\nabla_X Y - \mathcal{H}\nabla_Y X, \omega tU) = g_M(\mathcal{A}_Y bX - \mathcal{A}_X bY, \omega U)$ $+ g_M(\mathcal{H}\nabla_Y cX - \mathcal{H}\nabla_X cY, \omega U) - \alpha[\eta(X)g_M(Y, \omega U) - \eta(Y)g_M(X, \omega U)], \quad (24)$

for $X, Y \in (\ker \pi_*)^{\perp}$, $Z \in \mathcal{D}^{\perp}$ and $U \in \mathcal{D}^{\theta}$.

(iii) the following relations hold:

$$g_{N}((\nabla \pi_{*})(Y,bX) - (\nabla \pi_{*})(X,bY), \pi_{*}\phi Z) = g_{M}(\mathcal{H}\nabla_{X}\phi Z, cY)$$

$$-g_{M}(\mathcal{H}\nabla_{Y}\phi Z, cX) - \alpha[\eta(X)g_{M}(Y,\phi Z) - \eta(Y)g_{M}(X,\phi Z)]$$
and

$$g_{N}((\nabla \pi_{*})(Y,bX) - (\nabla \pi_{*})(X,bY), \pi_{*}\omega U) = g_{M}(\mathcal{H}\nabla_{Y}X - \mathcal{H}\nabla_{X}Y, \omega tU)$$

$$+g_{M}(\mathcal{H}\nabla_{Y}cX - \mathcal{H}\nabla_{X}cY, \omega U) - \alpha[\eta(X)g_{M}(Y,\omega U) - \eta(Y)g_{M}(X,\omega U)]$$

for $X, Y \in (\ker \pi_*)^{\perp}$, $Z \in \mathcal{D}^{\perp}$ and $U \in \mathcal{D}^{\theta}$.

Proof. For $X, Y \in (\ker \pi_*)^{\perp}$ and $Z \in \mathcal{D}^{\perp}$, we have from (1), (3) and (11) that $g_M(\nabla_X Y, Z) = g_M(\nabla_X bY, \phi Z) - g_M(cY, \nabla_X \phi Z) - \alpha \eta(Y) g_M(X, \phi Z).$ By virtue of (5), the above equation yields

 $g_M(\nabla_X Y, Z) = g_M(\mathcal{A}_X bY, \phi Z) - g_M(\mathcal{H} \nabla_X \phi Z, cY) - \alpha \eta(Y) g_M(X, \phi Z).$ (25) Thus we find

$$g_M([X,Y],Z) = g_M(\mathcal{A}_X bY - \mathcal{A}_Y bX, \phi Z) - g_M(\mathcal{H}\nabla_X \phi Z, cY) + g_M(\mathcal{H}\nabla_Y \phi Z, cX) - \alpha[\eta(Y)g_M(X, \phi Z) - \eta(X)g_M(Y, \phi Z)].$$
(26)

Also, for $X, Y \in (\ker \pi_*)^{\perp}$ and $U \in \mathcal{D}^{\theta}$, we have from (1), (3), (10) and (11) that $g_M(\nabla_X Y, U) = g_M(\nabla_X Y, t^2 U) + g_M(\nabla_X Y, \omega t U) + g_M(\nabla_X b Y, \omega U)$

$$+ g_M(\nabla_X cY, \omega U) - \alpha \eta(Y) g_M(X, \omega U).$$

Using (5) and (12) in the above equation, we obtain

$$\sin^2 \theta g_M(\nabla_X Y, U) = g_M(\mathcal{H}\nabla_X Y, \omega tU) + g_M(\mathcal{A}_X bY, \omega U) + g_M(\mathcal{H}\nabla_X cY, \omega U) - \alpha \eta(Y) g_M(X, \omega U).$$
(27)

Thus we get

$$\sin^{2} \theta g_{M}([X,Y],U) = g_{M}(\mathcal{H}\nabla_{X}Y - \mathcal{H}\nabla_{Y}X,\omega tU) + g_{M}(\mathcal{A}_{X}bY - \mathcal{A}_{Y}bX,\omega U) + g_{M}(\mathcal{H}\nabla_{X}cY - \mathcal{H}\nabla_{Y}cX,\omega U) - \alpha[\eta(Y)g_{M}(X,\omega U) - \eta(X)g_{M}(Y,\omega U)].$$
(28)

From (26) and (28), we get (i) \Leftrightarrow (ii).

Now, from (8), we have

and

$$g_M(\mathcal{A}_X bY, \phi Z) = -g_N((\nabla \pi_*)(X, bY), \pi_* \phi Z)$$
⁽²⁹⁾

$$g_M(\mathcal{A}_Y bX, \phi Z) = -g_N((\nabla \pi_*)(Y, bX), \pi_* \phi Z)$$
(30)

Using (29) and (30) in (23) and (24), respectively, we get (ii) \Leftrightarrow (iii).

THEOREM 3.15. Let π be a hemi-slant ξ^{\perp} -Lorentzian submersion from (M, g_M) onto (N, g_N) . Then the following statements are equivalent: (i) (ker π_*)^{\perp} describes a totally geodesic foliation,

(ii) the following relations hold:

$$g_M(\mathcal{A}_X bY, \phi Z) = g_M(\mathcal{H}\nabla_X \phi Z, cY) + \alpha \eta(Y) g_M(X, \phi Z)$$

and $g_M(\mathcal{A}_X bY, \omega U) = -g_M(\mathcal{H} \nabla_X Y, \omega tU) + g_M(\mathcal{H} \nabla_X cY, \omega U) - \alpha \eta(Y) g_M(X, \omega U),$ for $X, Y \in (\ker \pi_*)^{\perp}, Z \in \mathcal{D}^{\perp}$ and $U \in \mathcal{D}^{\theta}$.

(*iii*) the following relations hold:

 $g_N((\nabla \pi_*)(X, bY), \pi_* \phi Z) = -g_M(\mathcal{H} \nabla_X \phi Z, cY) - \alpha \eta(Y) g_M(X, \phi Z)$ and $g_N((\nabla \pi_*)(X, bY), \pi_* \omega U) = g_M(\mathcal{H} \nabla_X Y, \omega tU) + g_M(\nabla_X cY, \omega U) - \alpha \eta(Y) g_M(X, \phi Z),$ for every X, $Y \in (\ker \pi_*)^{\perp}, Z \in \mathcal{D}^{\perp}$ and $U \in \mathcal{D}^{\theta}$.

Proof. From (25) and (27), it is clear that (i) \Leftrightarrow (ii). Using (29) in (25) and (30) in (27), we obtain (ii) \Leftrightarrow (iii).

THEOREM 3.16. Let π be a hemi-slant ξ^{\perp} -Lorentzian submersion from (M, g_M) onto (N, g_N) . Then the following assertions are equivalent: (i) ker π_* describes a totally geodesic foliation,

(ii) the following relation holds:

$$g_M(\mathcal{T}_E bX, \omega F) - \cos^2 \theta g_M(\mathcal{T}_E \mathcal{P}F, X) = g_M(\mathcal{H}\nabla_E \omega t \mathcal{P}F, X) + g_M(\mathcal{H}\nabla_E \omega F, cX).$$

(iii) the following relation holds:

$$\cos^{2}\theta g_{N}((\nabla \pi_{*})(E,\mathcal{P}F),\pi_{*}X) - g_{N}((\nabla \pi_{*})(E,bX),\pi_{*}\omega F) = g_{M}(\mathcal{H}\nabla_{E}\omega t\mathcal{P}F,X) + g_{M}(\mathcal{H}\nabla_{E}\omega F,cX)$$

for $E, F \in (\ker \pi_*)$, and $X \in (\ker \pi_*)^{\perp}$.

Proof. For $E, F \in (\ker \pi_*)$, and $X \in (\ker \pi_*)^{\perp}$, we have from (1), (3), (9)–(11) that $g_M(\nabla_E F, X) = g_M(\nabla_E \phi t \mathcal{P} F, X) + g_M(\nabla_E \omega \mathcal{P} F, bX) + g_M(\nabla_E \omega \mathcal{P} F, cX) + g_M(\nabla_E \phi \mathcal{Q} F, cX) + g_M(\nabla_E \phi \mathcal{Q} F, bX).$

By virtue of (5) and (12), the above relation yields

$$g_M(\nabla_E F, X) = \cos^2 \theta g_M(\mathcal{T}_U \mathcal{P}F, X) + g_M(\mathcal{H}\nabla_E \omega t \mathcal{P}F, X) + g_M(\mathcal{H}\nabla_E \omega \mathcal{P}F, cX) + g_M(\mathcal{H}\nabla_E \phi \mathcal{Q}F, cX) - g_M(\mathcal{T}_E bX, \omega \mathcal{P}F) - g_M(\mathcal{T}_E bX, \phi \mathcal{Q}F).$$

Since $\omega F = \omega \mathcal{P}F \oplus \phi \mathcal{Q}F$, we obtain

 $g_M(\nabla_E F, X) = \cos^2 \theta g_M(\mathcal{T}_E \mathcal{P}F, X) + g_M(\mathcal{H}\nabla_E \omega t \mathcal{P}F, X)$

$$+g_M(\nabla_E \omega F, cX) - g_M(\mathcal{T}_E bX, \omega F).$$
(31)

From (31), we obtain (i) \Leftrightarrow (ii) and using (8) in (31), we get (ii) \Leftrightarrow (iii).

4. Totally geodesicness and totally umbilical fibers

THEOREM 4.1. Let π be a hemi-slant ξ^{\perp} -Lorentzian submersion from (M, g_M) onto (N, g_N) . Then π is a totally geodesic map if and only if

 $g_M(\mathcal{T}_E \mathcal{P} F, X) = -\sec^2 \theta \{ g_M(\mathcal{H} \nabla_E \omega t \mathcal{P} F, X) \}$

$$g_M(\mathcal{A}_X \mathcal{P}E, Y) = -\sec^2 \theta \{ g_M(\mathcal{H}\nabla_X \omega t \mathcal{P}E, Y) + g_M(\mathcal{H}\nabla_X \omega E, cY) + g_M(\mathcal{A}_X \omega E, bY) + \alpha \eta(Y) g_M(\phi X, E) \}$$
(32)

and

$$+g_M(\mathcal{H}\nabla_E\omega F, cX) + g_M(\mathcal{T}_E\omega F, bX)\},$$
(33)

for $E, F \in \ker \pi_*$ and $X, Y \in (\ker \pi_*)^{\perp}$.

Proof. For
$$E \in \ker \pi_*$$
 and $X \in (\ker \pi_*)^{\perp}$, from (8) we have
 $g_N((\nabla \pi_*)(X, E), \pi_*Y) = -g_M(\nabla_X E, Y).$ (34)
Using (1), (3), (10) and (11) in (34), we get

 $g_N((\nabla \pi_*)(X, E), \pi_*Y) = -g_M(\nabla_X t^2 \mathcal{P}E, Y) - g_M(\nabla_X \omega t \mathcal{P}E, Y) - g_M(\nabla_X \omega \mathcal{P}E, bY)$ $- g_M(\nabla_X \omega \mathcal{P}E, cY) - g_M(\nabla_X \phi \mathcal{Q}E, bY)$ $- g_M(\nabla_X \phi \mathcal{Q}E, cY) - \alpha \eta(Y)g_M(\phi X, Y).$ Using (5), (12) and the fact that $\omega E = \omega \mathcal{P}E \oplus \phi \mathcal{Q}E$, we find

$$g_N((\nabla \pi_*)(X, E), \pi_*Y) = -\cos^2 \theta g_M(\mathcal{A}_X \mathcal{P}E, Y) - g_M(\mathcal{H} \nabla_X \omega t \mathcal{P}E, Y)$$
(35)
$$-g_M(\mathcal{A}_X \omega E, bY) - g_M(\mathcal{H} \nabla_X \omega E, cY) - \alpha \eta(Y) g_M(\phi X, Y).$$

Thus (32) follows from (35), and (33) can be obtained in a similar way. \Box

THEOREM 4.2. Let π be a hemi-slant ξ^{\perp} -Lorentzian submersion from (M, g_M) onto (N, g_N) . If ω is parallel with respect to ∇ on ker π_* , then (i) $c\mathcal{T}_Z W = -\alpha g_M(Z, W)\xi \in \mu$, (ii) $c\mathcal{T}_U Z = 0$, i.e., $\phi \mathcal{T}_U Z \in \ker \pi_*$,

(*iii*) $\mathcal{T}_Z U = \sec^2 \theta c \mathcal{T}_Z t U$, (*iv*) $\mathcal{T}_V U = \sec^2 \theta [c \mathcal{T}_V t U + \alpha g_M(t U, V) \xi]$, for $U, V \in \mathcal{D}^{\theta}$ and $Z, W \in \mathcal{D}^{\perp}$.

Proof. If
$$\omega$$
 is parallel, then for $E, F \in \ker \pi_*$, we have from Corollary 3.6 that
 $\mathcal{T}_E tF - c\mathcal{T}_E F = \alpha g_M(E, F)\xi.$
(36)

Now, for $Z, W \in \mathcal{D}^{\perp}$, we have tZ = tW = 0. Thus for $U \in \mathcal{D}^{\theta}$, we get (i) and (ii). Also, from (36), we find $\mathcal{T}_Z tU = c\mathcal{T}_Z U$ and $\mathcal{T}_V tU = c\mathcal{T}_V U + \alpha g_M(U, V)\xi$. Replacing U by tU, we get (iii) and (iv), respectively.

COROLLARY 4.3. Let π be a hemi-slant ξ^{\perp} -Lorentzian submersion from (M, g_M) onto (N, g_N) . If ω is parallel with respect to ∇ on ker π_* , then (i) the fibers of π are not geodesic in \mathcal{D}^{\perp} and \mathcal{D}^{θ} ,

(ii) the fibers of π are mixed geodesic if and only if $c \equiv 0$.

THEOREM 4.4. Let π be a hemi-slant ξ^{\perp} -Lorentzian submersion with totally umbilical fibers from (M, g_M) onto (N, g_N) . Then one of the following holds: (i) Fibers of π are minimal. (ii) dim $\mathcal{D}^{\perp} = 1$. (iii) $H \in \Gamma(\omega \mathcal{D}^{\theta} \oplus \mu)$.

Proof. For $W, Z \in \mathcal{D}^{\perp}$, we have from (3) that

$$\nabla_W \phi Z - \phi(\nabla_W Z) = \alpha g_M(W, Z) \xi.$$
(37)

Using (5) in (37), then taking inner product with W, we obtain

 g_M

$$(\phi Z, \mathcal{T}_W W) = g_M(\mathcal{T}_W Z, \phi W). \tag{38}$$

Using (7) in (38), we find

$$g_M(H,\phi Z) = \frac{g_M(W,Z)}{g_M(W,W)} g_M(H,\phi W).$$
(39)

Interchanging W and Z in (39), we get

$$g_M(H,\phi W) = \frac{g_M(W,Z)}{g_M(Z,Z)} g_M(H,\phi Z).$$
 (40)

Substituting (39) in (40), we obtain

$$\left(1 - \frac{g_M(Z, W)^2}{g_M(W, W)g_M(Z, Z)}\right)g_M(H, \phi W) = 0,$$

everem follows.

from which the theorem follows.

ACKNOWLEDGEMENT. The authors are thankful to the referee and the secretary of Matematicki Vesnik for their valuable suggestions towards to the improvement of the paper.

References

- [1] D. Allison, Lorentzian Clairaut submersions, Geometriae Dedicata, 63 (1996), 309-319.
- [2] M. A. Akyol, Y. Gündüzalp, Semi-invariant semi-Riemannian submersions, Commun. Fac. Sci. Univ. Ank. Series A1, 67 (1) (2018), 80–92.
- [3] M. A. Akyol, R. Sari, On semi-slant ξ[⊥]-Riemannain submersions, Mediterr. J. Math., 14:234 (2017).
- [4] M. A. Akyol, R. Sari, E. Aksoy, Semi-invariant ξ[⊥] Riemannain submersion from almost contact metric manifolds, Int. J. Geometric Methods Modern Physics, 14 (5) (2017), 1750074 (17 pages).
- [5] M. Ateceken, S. K. Hui, Slant and pseudo-slant submanifolds of LCS-manifolds, Czechoslovak Math. J., 63 (2013), 177–190.
- [6] B. Baird, J. C. Wood, Harmonic morphisims between Riemannian manifolds, Oxford Science Publ., 2003.
- K. K. Baishya, S. Eyasmin, Generalized weakly Ricci-symmetric (CS)₄-spacetimes, J. Geom. & Physics, 132 (2018), 415–422.
- [8] S. Dirik, M. Atceken, Ü. Yildirim, On the geometry of a contact pseudo-slant submanifold in a (LCS)_n-manifold, Inter. J. Appl. Math. Stat., 57 (2) (2018), 96–109.
- [9] M. Faghfouri, S. Mashmouli, On anti-invariant semi-Riemannian submersion from Lorentzian (para) Sasakian manifold, arXiv: 1702.02409v2 [math. DG].

- [10] M. Falcitelli, S. Ianus, A. M. Pastore, *Riemannian submersions and related topics*, World Scientific Publ. Co., 2004.
- [11] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, Indiana Univ. Math. J., 16 (1967), 715–737.
- [12] Y. Gündüzalp, Slant submersions from almost paracontact manifolds, Gulf J. Math., 3 (2015), 18–28.
- [13] Y. Gündüzalp, B. Sahin, Paracontact semi-Riemannian submersions, Turkish J. Math., 37 (2013), 114–128.
- [14] S. K. Hui, M. Atceken, S. Nandy, Contact CR-warped product submanifolds of (LCS)_nmanifolds, Acta Math. Univ. Comenianae, 86 (2017), 101–109.
- [15] S. K. Hui, L. N. Mishra, T. Pal, Vandana, Some classes of invariant submanifolds of (LCS)_nmanifolds, Italian J. Pure Appl. Math., 39 (2018), 359–372.
- [16] S. K. Hui, L. I. Piscoran, T. Pal, Invariant submanifolds of (LCS)n-manifolds with respect to quarter symmetric metric connection, Acta Math. Univ. Comenianae, 87 (2018), 205–221.
- [17] J. W. Lee, Anti-invariant ξ[⊥]-Riemannian submersions from almost contact manifolds, Hacet. J. Math. Stat., 42 (2013), 231–244.
- [18] M. A. Majid, Submersions from anti-de Sitter space with totally geodesic fibers, J. Diff. Geom., 16 (1981), 323–331.
- [19] C. A. Mantica, L. G. Molinari, A note on concircular structure space-times, arXiv: 1804.02272 [math. DG].
- [20] K. Matsumoto, On Lorentzian almost paracontact manifolds, Bull. Yamagata Univ. Nat. Sci., 12 (1989), 151–156.
- [21] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J., 13 (1966), 459–469.
- [22] B. O'Neill, Semi Riemannian geometry with applications to relativity, Academic Press, New York, 1983.
- [23] A. A. Shaikh, On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J., 43 (2003), 305–314.
- [24] A. A. Shaikh, Some results on $(LCS)_n$ -manifolds, J. Korean Math. Soc., 46 (2009), 449–461.
- [25] A. A. Shaikh, K. K. Baishya, On concircular structure spacetimes, J. Math. Stat., 1 (2005), 129–132.
- [26] H. M. Tastan, B. Sahin, S. Yanan, *Hemi-slant submersions*, Mediterr. J. Math., 13(4) (2016), 2171–2184.

(received 30.08.2018; in revised form 08.02.2019; available online 16.10.2019)

Department of Mathematics, The University of Burdwan, Golapbag, Burdwan – 713104, West Bengal, India

E-mail: tanumoypalmath@gmail.com

Department of Mathematics, The University of Burdwan, Golapbag, Burdwan – 713104, West Bengal, India

E-mail: skhui@math.buruniv.ac.in