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Abstract. In this paper, we introduce the notion of orthogonal relation on a soft set
(F,A) and some related concepts. This notion allows us to consider fixed point theorem in
SO-complete instead of complete soft metric spaces introduced by Yazar et.al. (Filomat 30:2
(2016), 269–279). Then, the existence and uniqueness of soft fixed points for a generalized
soft contractive mapping are proved. Also, some examples are given to support that our
main theorem is a real extension of Yazar et.al.

1. Introduction

Soft theory was initiated by the Russian researcher Molodtsov [9] in 1999. Molodtsov
proposed the soft set which provides a completely new approach for modeling vague-
ness and uncertainty. Due to the fact that many mathematical objects such as fuzzy
sets, topological spaces, rough sets (see [7, 9]) can be considered as particular types
of soft sets, it is a very general tool to handle objects which are defined in terms
of loose or general set of characteristics. The study of soft set operations is vital
for mathematicians and computer scientists to develop the theory of soft topologi-
cal spaces. Maji et al. [8] introduced some basic algebraic operations on soft sets.
Das and Samanta [3, 4] introduced a different notion of soft metric space by using a
different concept of soft point and investigated some important properties of these
spaces. In 2016, Yazar et.al [11] by using the concept soft metric spaces defined in [4],
investigated some fixed points for soft contractive mappings on soft metric spaces.
Especially, Eshaghi et.al. [6] introduced the notion of orthogonal set. They gave an
extension of Banach contraction principle in incomplete metric spaces. The main
theorem presented in [6] is given by the following result.

Theorem 1.1. Let (X,⊥, d) be an O-complete metric space (not necessarily complete)
and 0 < λ < 1. Let f : X → X be ⊥-continuous, ⊥-contraction with Lipschitz
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188 Fixed point theorem

constant λ and ⊥-preserving. Then f has a unique fixed point x∗ ∈ X. Also, f is a
Picard operator, that is, limn→∞ fn(x) = x∗ for all x ∈ X.

For more details about orthogonal space, we refer the reader to [1, 2, 6].
The aim of this paper is to initiate the study of soft fixed point theory in the

framework of incomplete soft metric spaces and to prove a soft generalized version of
Banach’s fixed point theorem. Also, we construct an example which shows that the
main theorem of this paper is a real extension of [11, Theorem 4.8].

Let us recall some basic definitions and known results in the soft set theory.
Throughout this paper, X refers to an initial universe, and E is the set of param-

eters for X. Denote by P (X) the family of all subsets of X.

Definition 1.2 ([9]). If F is a set valued mapping on A ⊆ E taking values in P (X),
then a pair (F,A) is called a soft set over X.

Definition 1.3 ([8]). A soft set (F,A) over X is said to be a null soft set over X if
F (e) = ∅ for all e ∈ A.

A soft set (F,A) over X is said to be an absolute soft set, denoted by X̃ if F (e) = X
for all e ∈ A.

Definition 1.4 ([9]). The intersection of two soft sets (F,A) and (G,B) over X is
the soft set (H,C), where C = A ∩ B and for all e ∈ C,H(e) = F (e) ∩G(e). This is
denoted by (F,A)∩̃(G,B) = (H,C).

The union of two soft sets (F,A) and (G,B) over X is the soft set (H,C), where
C = A ∪B and for all e ∈ C

H(e) =


F (e), e ∈ A/B,
G(e), e ∈ B/A,
F (e) ∪G(e), e ∈ A ∩B

This relationship is denoted by (F,A)∪̃(G,B) = (H,C).

Definition 1.5 ([5]). Let R be the set of real numbers and B(R) be the collection
of all non-empty bounded subsets of R and E be taken as a set of parameters. Then
a mapping F : E → B(R) is called a soft real set. If a real soft set is a singleton soft
set, it will be called a soft real number and denoted by r̃, s̃, t̃ etc. 0̃ and 1̃ are the soft
real numbers where 0̃(e) = 0, 1̃(e) = 1 for all e ∈ E, respectively. The set of all soft
real numbers is denoted by R(E).

Definition 1.6 ([5]). Let r̃, s̃ be two soft real numbers. Then the following statements
hold:
(i) r̃≤̃ s̃ if r̃(e) ≤ s̃(e) for all e ∈ E; (ii) r̃≥̃s̃ if r̃(e) ≥ s̃(e) for all e ∈ E;

(iii) r̃<̃s̃ if r̃(e) < s̃(e) for all e ∈ E; (iv) r̃>̃s̃ if r̃(e) > s̃(e) for all e ∈ E.
We say that a real soft number r̃ is non-negative whenever r̃ ≥̃ 0̃. The set of all
positive soft real numbers is denoted by R(E)∗.

Definition 1.7 ([4]). A soft set (F,E) over X is said to be a soft point, denoted by
x̃e, if for the element e ∈ E, F (e) = {x} and F (e′) = ∅ for all e′ ∈ E/{e}.
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Two soft points x̃e, ỹe′ are said to be equal if e = e′ and x = y (see [4]). Thus
x̃e 6= ỹe′ if x 6= y or e 6= e′. Also, a soft point x̃e is said to belong to a soft set (F,E)
if e ∈ E and {x} ⊂ F (e). We write x̃e ∈ (F,E).

Every soft set can be expressed as a union of all soft points belonging to it as
(F,E) =

⋃
x̃e∈(F,E){x̃e}. Conversely, any set of soft points can be considered as a soft

set.
The set of all soft points of absolute soft set X̃ is denoted by SP (X̃).

Definition 1.8 ([4]). A mapping d̃ : SP (X̃)× SP (X̃) → R(E)∗ is said to be a soft
metric on the soft set X̃ if d̃ satisfies the following conditions:
(i) d̃(x̃e, ỹe′) = 0̃⇐⇒ x̃e = ỹe′ ; (ii) d̃(x̃e, ỹe′) = d̃(ỹe′ , x̃e);

(iii) d̃(x̃e, ỹe′)≤̃ d̃(x̃e, z̃e′′) + d̃(z̃e′′ , ỹe′) for all z̃e′′ ∈ SP (X̃).
The triple (X̃, d̃, E) is called a soft metric space.

Definition 1.9 ([4]). The sequence {x̃nen} of soft points in (X̃, d̃, E) is called a Cauchy

sequence in X̃ if corresponding to every ε̃>̃0̃ there is n0 ∈ N such that d̃(x̃nen , x̃
m
em)<̃ε̃

for all m,n ≥ n0.

Also, the sequence {x̃nen} is said to be convergent to x̃0e0 in X̃, denoted by x̃nen
d̃→

x̃0e0 , if there is a soft point x̃0e0 such that for every ε̃ >̃ 0̃ there is n0 ∈ N for which

d̃(x̃nen , x̃
0
e0)<̃ ε̃ for all n ≥ n0.

Definition 1.10 ([11]). Let (X̃, d̃, E) and (Ỹ , d̃′, E′) be two soft metric spaces. The
mapping (f, ϕ) : (X̃, d̃, E) → (Ỹ , d̃′, E′) is a soft mapping, where f : X → Y and
ϕ : E → E′ are two mappings.

The soft mapping (f, ϕ) : (X̃, d̃, E)→ (X̃, d̃, E) is said to be soft contractive map-
ping whenever ∃ 0̃ < λ̃ <̃1̃, ∀x̃e, ỹe′ ∈ SP (X̃), d̃

(
(f, ϕ)(x̃e), (f, ϕ)(ỹe′)

)
≤̃λ̃ d̃(x̃e, ỹe′).

2. Orthogonal sets and their relations to soft sets

Let X̃ be an absolute soft set and E be a parameter set and SP (X̃) be the collection
of all soft points of X̃.

We start our work with the following definition.

Definition 2.1. Let ⊥̃ ⊆ SP (X̃)×SP (X̃) be a relation in SP (X̃). If ⊥̃ satisfies the
following condition

∃ xe0 ∈ SP (X̃) : (∀ye ∈ SP (X̃), ye⊥̃ xe0) or (∀ye ∈ SP (X̃), xe0⊥̃ ye),

then X̃ is called an orthogonal soft set (briefly O-soft set). We denote this O-soft set
by (X̃, ⊥̃).

In the above definition, we say that xe0 is an orthogonal soft element. Also two
soft elements xe and ye′ are said to be ⊥̃-comparable, if xe⊥̃ye′ or ye′⊥̃xe.

As an illustration, let us consider the following examples:
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Example 2.2. Let X be the set of all blood types O,A,B,AB and E be the set of
types “positive” and “negative”, i.e. X = {A,B,AB,O} and E = {+,−}. Consider
the relation ⊥̃ on SP (X̃) as xe⊥̃ye′ iff “x” of the type “e” can give blood to “y” of
the type “e′”. Thus, if xe0 is a person such that his (her) blood type is “O” of the
type “−” , then we have xe0⊥̃ye for all ye ∈ SP (X̃).

Notice that, in the above example xe0 may be a person with blood type “AB” of
the type “+”. In this case, we have ye⊥̃ xe0 for all ye ∈ SP (X̃).

The above example shows that the orthogonal soft element is not necessarily
unique.

Example 2.3. Suppose X = {1, 2, . . . , 10} and E = {e1, e2, e3}. Define xei⊥̃yej iff

x | y and i ≤ j. If xe is a soft point that x = 1 and e = e1, then xe⊥̃ye′ for all
ye′ ∈ SP (X̃).

Example 2.4. LetX be the set of all σ-algebras on R and E be the set of all nonempty
open subsets of R. For xe and ye′ in SP (X̃) define xe⊥̃ye′ iff x is the generated σ-
algebra by e and y is the generated σ-algebra by e′ and the generated σ-algebra by
e is a subset of the generated σ-algebra by e′. It is easy to show that the generated
σ-algebra by R is an orthogonal element of (X̃, ⊥̃).

Definition 2.5. Let (X̃, ⊥̃) be an O-soft set. A sequence {xnen}n∈N is called a

strongly orthogonal soft sequence (briefly, SO-soft sequence) if (∀n, k;xnen⊥̃ xn+ken+k
)

or (∀n, k;xn+ken+k
⊥̃ xnen).

Definition 2.6. The quarter (X̃, d̃, E, ⊥̃) is said to be an orthogonal soft metric
space whenever (X̃, ⊥̃) is an O-soft set and (X̃, d̃, E) is a soft metric space.

Definition 2.7. Let (X̃, d̃, E, ⊥̃) be an orthogonal soft metric space. X̃ is said to be
strongly orthogonal complete (briefly, SO-complete) if every Cauchy SO-soft sequence
in SP (X̃) is convergent to some soft point in SP (X̃).

Notice that every complete soft metric space is SO-complete. By means of the
next example we show that the converse is not true.

Example 2.8. Let X be a Banach space with norm ‖ · ‖ and f : X → X be a
continuous mapping and Picard operator, that is, there exists x∗ ∈ X for which
limn→∞ fn(y) = x∗ for all y ∈ X. Suppose B is a non closed subset of X such that
x∗ ∈ B and E = Fix(f) = {x ∈ X | f(x) = x}. Since B is not closed, then there
exist x′ ∈ X and {xn} ⊆ B with x′ /∈ B and xn → x′. Since f is a Picard operator
and continuous mapping, then f(x∗) = x∗ and so E 6= ∅.

Define a soft metric d̃ on X̃ as d̃(xe, ye′) = ‖x− y‖+ ‖e− e′‖. Note that (B̃, d̃, E)
is not a complete soft metric space. To see this, consider the soft sequence {xnen} such
that for all n ∈ N, xn := xn and en := x∗. It is easy to see that {xnen} converges to

soft point x′x∗ /∈ SP (B̃). We define a relation ⊥̃ on B̃ as follows

xe⊥̃ ye′ ⇐⇒ x = lim
n→∞

fn(y) and e = f(e′).
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Clearly, if x0e0 is a soft point such that x0 = e0 = x∗, then this soft point is an

orthogonal element of (X̃, ⊥̃).

Now, we show that (B̃, d̃, E, ⊥̃) is SO-complete. Take a Cauchy SO-soft sequence
{xnen} in B̃. Definition of orthogonality implies that for all n, k ∈ N, xn = x∗ and

en = en+k. This show that {xnen} converges to a soft point x∗x∗ ∈ B̃.

Definition 2.9. Consider the orthogonal soft metric space (X̃, d̃, E, ⊥̃). A soft map-
ping (f, ϕ) : (X̃, d̃, E) → (X̃, d̃, E) is called strongly orthogonal soft continuous
((briefly SO-soft continuous) at soft point x̃e in SP (X̃), if for each SO-soft sequence

{x̃nen} in SP (X̃), if x̃nen
d̃→ x̃e, then (f, ϕ)(x̃nen)

d̃→ (f, ϕ)(x̃e). Also, (f, ϕ) is SO-soft

continuous on X̃ if (f, ϕ) is SO-soft continuous at each x̃e ∈ SP (X̃).

It is easy to see that every soft continuous mapping is SO-soft continuous. The
following example shows that the converse is not true.

Example 2.10. Let X = R and E = N with the Euclidean metric. Take a soft
metric d̃(x̃e, ỹe′) = |x− y|+ 1

2 |e− e
′| on X̃ and define two mappings f : X → X and

ϕ : E → E as f(x) =

{
1
x , x ∈ Qc

0, x ∈ Q
and ϕ(e) = e2 for all x ∈ X and e ∈ E.

Notice that (f, ϕ) is not continuous. Because if xn =
√
2
n and en = 1 for each

n ∈ N, then x̃nen
d̃→ 0̃1 while (f, ϕ)(x̃nen)

d̃

6→ (f, ϕ)(0̃1).

Now we consider the following relation on SP (X̃)

x̃e ⊥̃ ỹe′ ⇐⇒ xy = 0 and ee′ ≤ max{e, e′}.
We can see that (f, ϕ) is SO-soft continuous. If {x̃nen} is an SO-soft sequence in

SP (X̃) which converges to x̃e ∈ SP (X̃). Applying definition ⊥̃ we obtain that for n

large enough, xn = 0 and en = 1. This implies that (f, ϕ)(x̃nen) = f(x̃)nϕ(en)
d̃→ 0̃1 =

(f, ϕ)(x̃e)

Definition 2.11. Consider orthogonal soft metric space (X̃, d̃, E, ⊥̃). A soft mapping
(f, ϕ) : X̃ → X̃ is called ⊥̃-preserving, if (f, ϕ)(x̃e) ⊥̃ (f, ϕ)(ỹe′) whenever x̃e ⊥̃ ỹe′

and x̃e, ỹe′ ∈ SP (X̃).

Example 2.12. Let X = {x : [0, 1] → R : x is continuous} with supremum norm
‖x‖ = sup{x(t) : t ∈ [0, 1]} and E = [0, 1]. Consider the relation ⊥̃ as follows:

x̃e, ỹe′ ∈ SP (X̃), x̃e⊥̃ỹe′ ⇐⇒ x(e)y(e′) = min{x(t)y(t) : t ∈ [0, 1]}.
Obviously (X̃, ⊥̃) is an O-soft set. Define f : X → X and ϕ : E → E as f(x) = 2x
and ϕ(e) = e for all x ∈ X and e ∈ E. We see that (f, ϕ)(x̃e)⊥̃(f, ϕ)(ỹe′) whenever
x̃e⊥̃ỹe′ . This show that (f, ϕ) is a ⊥̃-preserving mapping.
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3. The main theorem

In this section, we prove our main theorem. First, we need the following definition
that is the soft version of definition by Wardowski [10].

Definition 3.1. Let Ω be the set of all functions F : R(E)∗ → R(E) satisfying the
following conditions:
(F1) F is strictly increasing, i.e. for all α̃, β̃ ∈ R(E)∗, with α̃<̃β̃, F (α̃)<̃F (β̃);

(F2) For each soft real sequence {ãn}n∈N of R(E)∗, limn→∞ ãn = 0̃ if and only if
limn→∞ F (ãn) = −∞̃ (that is, for every e ∈ E, limn→∞ F (ãn)(e) = −∞);

(F3) There exists a soft real point 0̃<̃ k̃ <̃1̃ such that limα→0+ α
kF (α̃) = 0̃.

Definition 3.2. Let (X̃, d̃, E, ⊥̃) be an orthogonal soft metric space and F ∈ Ω. A
mapping (f, ϕ) : X̃ → X̃ is said to be ⊥̃F -contraction if there exists τ̃ >̃0̃ such that
for all x̃e, ỹe′ ∈ SP (X̃) with x̃e⊥̃ ỹe′ we have

d̃((f, ϕ)(x̃e), (f, ϕ)(ỹe′))>̃0̃ =⇒ τ̃ + F (d̃((f, ϕ)(x̃e), (f, ϕ)(ỹe′))≤̃ F (d̃(x̃e, ỹe′)).

Theorem 3.3. Let (X̃, d̃, E, ⊥̃) be an SO-complete orthogonal soft metric space (not
necessarily complete) and F ∈ Ω. Assume that (f, ϕ) : X̃ → X̃ is an SO-continuous,
⊥̃F -contraction and ⊥̃-preserving soft mapping. Then there exists a unique soft point
x̃∗e ∈ SP (X̃) for which (f, ϕ)(x̃∗e) = x̃∗e. Also, the soft mapping (f, ϕ) is a Picard
operator, that is, limn→∞ d̃((f, ϕ)n(ỹe′), x̃

∗
e) = 0̃ for all ỹe′ ∈ SP (X̃).

Proof. It follows from definition of orthogonality that there exists an orthogonal soft

element x̃e0 such that
[
∀ỹe′ ∈ SP (X̃), x̃e0⊥̃ỹe′

]
or
[
∀ỹe′ ∈ SP (X̃), ỹe′⊥̃x̃e0

]
.

Construct the soft sequence {x̃nen} as follows:

x̃1e1 := (f, ϕ)(x̃e0), x̃2e2 := (f, ϕ)(x̃1e1) = (f, ϕ)2(x̃e0), . . . ,

x̃n+1
en+1

:= (f, ϕ)(x̃nen) = (f, ϕ)n+1(x̃e0)

for all n ∈ N. Since f is ⊥̃-preserving, we see that

[ ∀n, k ∈ N, x̃kek = (f, ϕ)k(x̃e0)⊥̃(f, ϕ)k(x̃nen) = x̃n+ken+k
]

or [ ∀n, k ∈ N, x̃n+ken+k
= (f, ϕ)k(x̃nen)⊥̃(f, ϕ)k(x̃e0) = x̃kek ].

This shows that the sequence {x̃nen} is an SO-soft sequence. Put ζ̃n := d̃(x̃nen , x̃
n+1
en+1

),

n = 0, 1, 2, . . . . If for some n0 ∈ N, x̃n0+1
en0+1

= x̃n0
en0

, then by the construction of

{x̃nen}, the proof is finished. Now, let for each n ∈ N, x̃n+1
en+1

6= x̃nen . Since (f, ϕ) is an

⊥̃F -contraction, then we have for all n ∈ N,

F (ζ̃n)≤̃F ( ˜ζn−1)− τ̃≤̃F (ζ̃n−2)− 2̃τ̃≤̃ · · · ≤̃F (ζ̃0)− nτ̃ . (1)

From the above relation, we obtain limn→∞ F (ζ̃n) = −∞̃ which, together with (F2),
gives

lim
n→∞

ζ̃n = 0. (2)
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It follows from (F3) that there exists 0̃<̃ k̃ <̃1̃ such that

lim
n→∞

ζ̃knF (ζ̃n) = 0̃. (3)

Applying (1), for each n ∈ N we have

ζ̃knF (ζ̃n)− ζ̃knF (ζ̃0)≤̃ ζ̃kn(F (ζ̃0)− nτ̃)− ζ̃knF (ζ̃0) = −ζ̃knnτ̃ .
In the above, letting n → ∞ by using (2) and (3) we have limn→∞ nζ̃kn = 0. This
shows that there exists n1 ∈ N such that nζ̃kn<̃1̃ for all n > n1.

Thus, we have for all n > n1

ζ̃n≤̃
1̃

n
1
k

. (4)

Now in order to show that the SO-soft sequence {x̃nen}n∈N is Cauchy, considerm,n ∈ N
such that m > n ≥ n1. From the definition of the soft metric and from (4) we get

d̃(x̃nen , x̃
m
em)≤̃ d̃(x̃nen , x̃

n+1
en+1

) + d̃(x̃n+1
en+1

, x̃n+2
en+2

) + · · ·+ d̃(x̃m−1em−1
, x̃mem)

= ζ̃n + ζ̃n+1 + · · ·+ ζ̃m−1<̃

∞∑
i=n

ζ̃i≤̃
∞∑
i=n

1̃

i
1
k

.

the convergence of the series
∑∞
i=1

1̃
i1/k

implies that {x̃nen}n∈N is a Cauchy SO-soft
sequence.

Since X̃ is SO-complete, then there exists a soft point x̃∗e ∈ SP (X̃) for which

x̃nen
d̃→ x̃∗e. The SO-continuity of (f, ϕ) implies that (f, ϕ)(x̃∗e) = x̃∗e. Therefore, x̃∗e is

a soft fixed point of (f, ϕ).
To prove the uniqueness of the soft fixed point, let ỹe′ be a soft fixed point of

(f, ϕ). Then we have (f, ϕ)n(ỹe′) = ỹe′ for all n ∈ N. By our choice of x̃e0 in the
first part of the proof, we obtain that [x̃e0⊥̃ỹe′ ] or [ỹe′⊥̃x̃e0 ]. Applying ⊥̃-preserving
of (f, ϕ), we see that [(f, ϕ)n(x̃e0)⊥̃(f, ϕ)n(ỹe′)] or [(f, ϕ)n(ỹe′)⊥̃(f, ϕ)n(x̃e0)], for all
n ∈ N. On the other hand, since (f, ϕ) is a ⊥̃F -contraction, then for all n ∈ N,

F (d̃((f, ϕ)n(x̃e0), (f, ϕ)n(ỹe′))) ≤ F (d̃((f, ϕ)n−1(x̃e0), (f, ϕ)n−1(ỹe′)))− τ̃
≤̃ · · · ≤̃F (d̃(x̃e0 , ỹe′))− nτ̃ .

Letting n→∞, condition (F2) implies that x̃nen
d̃→ ỹe′ . This shows that x̃∗e = ỹe′ .

Finally, in order to show that (f, ϕ) is a Picard operator, take an arbitrary
soft point ỹe′ in SP (X̃). Similarly, [x̃e0⊥̃ỹe′ ] or [ỹe′⊥̃ x̃e0 ]. Now, since (f, ϕ) is
⊥̃-preserving, then [(f, ϕ)n(x̃e0)⊥̃(f, ϕ)n(ỹe′)] or [(f, ϕ)n(ỹe′)⊥̃(f, ϕ)n(x̃e0)], for all
n ∈ N. Hence, for all n ∈ N, we get

F (d̃((f, ϕ)n(x̃e0), (f, ϕ)n(ỹe′)))≤̃F (d̃(x̃e0 , ỹe′))− nτ̃ .

Letting n→∞, by triangle inequality we obtain (f, ϕ)n(ỹe′)
d̃→ x̃∗e. �

Theorem 3.3 is an extension of [11, Theorem 4.8].

Corollary 3.4 ([11]). Let (X̃, d̃, E) be a soft complete metric space. Let (f, ϕ) :
(X̃, d̃, E) → (X̃, d̃, E) be a soft contractive mapping, that is, let there be a soft
real number 0̃<̃ λ̃ <̃1̃ such that for any two soft points x̃e, ỹe′ ∈ SP (X̃) we have
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d̃((f, ϕ)(x̃e0), (f, ϕ)(ỹe′)) ≤̃ λ̃ d̃(x̃e0 , ỹe′). Then (f, ϕ) has a unique soft fixed point in
SP (X̃).

Proof. Define the relation ⊥̃ on X̃ as follows:

x̃e⊥̃ ỹe′ ⇐⇒ d̃((f, ϕ)(x̃e0), (f, ϕ)(ỹe′))≤̃ d̃(x̃e0 , ỹe′).

Since (f, ϕ) is a soft contractive mapping, thus every two soft points of SP (X̃) are ⊥̃-
comparable. This shows that (X̃, ⊥̃) is an O- soft set. The completeness of X̃ implies
the SO-completeness of X̃, also the continuity of (f, ϕ) implies the SO-continuity of
(f, ϕ). It follows from definition of ⊥̃ that (f, ϕ) is ⊥̃-preserving.

Now, define F : R(E)∗ → R(E) by F (α̃) = l̃n(α) for all α̃ ∈ R(E)∗ and put
τ̃ = −l̃n(λ), then the soft mapping (f, ϕ) is an ⊥̃F -contraction. The existence and
uniqueness of soft fixed point is implied by Theorem 3.3. �

Now, we show that our theorem is a real extension of the main theorem of [11].

Example 3.5. LetX = [0, 10) and E = [1,∞) with Euclidean metric. Let d̃(x̃e, ỹe′) =
|x− y|+ |e− e′| be a soft metric on X̃. Consider the orthogonal ⊥̃ as follows:

x̃e⊥̃ỹe′ ⇐⇒ xy ≤ min{x, y} and ee′ ∈ {e, e′}.
It is easy to see that x̃e0 where x = 0 and e0 = 1 is an orthogonal soft element for X̃.
We define two mappings f : X → X and ϕ : E → E as

f(x) =

{
x
2 , x ≤ 1,
10+x

2 , x > 1
and ϕ(e) =

1 + e

2

for all x ∈ X and e ∈ E.

We have the following cases.

Case 1) (X̃, d̃, E, ⊥̃) is SO-complete.

In fact, if {x̃nen} is a Cauchy SO-soft sequence in SP (X̃), then for every large
enough n ∈ N, xn ≤ 1 and en = 1. Since [0, 1] with Euclidean metric is a complete
metric space, then there exists a subsequence of {x̃nen} that converges to soft point
x̃e for which x ≤ 1 and e = 1. Since every Cauchy sequence which has a convergent
subsequence is convergent, so the SO-sequence {x̃nen} is convergent to soft point x̃e in

X̃. Notice that X̃ is not a complete soft metric space.

Case 2) (f, ϕ) is SO-soft continuous.

Take an SO-sequence {x̃nen} that converges to soft point x̃e. By Case 1, for every
enough large n ∈ N, xn ≤ 1 and en = 1. Also, x ≤ 1 and e = 1. Thus, by definition

of f and ϕ we have (f, ϕ)(x̃nen)
d̃→ (f, ϕ)(x̃e). This implies that (f, ϕ) is SO-soft

continuous while it is not soft continuous.

Case 3) (f, ϕ) is ⊥̃-preserving.

Let x̃e⊥̃ ỹe′ , The definition of ⊥̃ shows that x ≤ 1 and y ≤ 1 and e = 1 or
e′ = 1. Hence, f(x) ≤ 1 and f(y) ≤ 1 and ϕ(e) = 1 or ϕ(e′) = 1. This implies that
(f, ϕ)(x̃e)⊥̃(f, ϕ)(ỹe′).
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Case 4) (f, ϕ) is a ⊥̃F -contraction.

For each two ⊥̃-comparable soft points x̃e, ỹe′ , we can see that

d̃((f, ϕ)(x̃e), (f, ϕ)(ỹe′))≤̃
1̃

2
d̃(x̃e, ỹe′).

By the above cases, we conclude the existence and uniqueness of soft fixed point by
Theorem 3.3.
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