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Abstract. For a simple connected graph G, let D(G), Tr(G), DL(G) and DQ(G) respec-
tively be the distance matrix, the diagonal matrix of the vertex transmissions, the distance
Laplacian matrix and the distance signless Laplacian matrix of a graph G. The convex lin-
ear combination Dα(G) of Tr(G) and D(G) is defined as Dα(G) = αTr(G) + (1 − α)D(G),
0 ≤ α ≤ 1. As D0(G) = D(G), 2D 1

2
(G) = DQ(G), D1(G) = Tr(G), this matrix reduces to

merging the distance spectral, signless distance Laplacian spectral theories. In this paper,
we study the spectral radius of the generalized distance matrix Dα(G) of a graph G. We
obtain bounds for the generalized distance spectral radius of a bipartite graph in terms of
various parameters associated with the structure of the graph and characterize the extremal
graphs. For α = 0, our results improve some previously known bounds.

1. Introduction

We consider only connected, undirected, simple and finite graphs. A graph is denoted
by G = (V (G), E(G)), where V (G) = {v1, v2, . . . , vn} is its vertex set and E(G) is
its edge set. The order of G is the number n = |V (G)| and its size is the number
m = |E(G)|. The set of vertices adjacent to v ∈ V (G), denoted by N(v), refers to
the neighborhood of v. The degree of v, denoted by dG(v) (we simply write dv if it
is clear from the context) means the cardinality of N(v). A graph is regular if all
its vertices are of the same degree. The distance between two vertices u, v ∈ V (G),
denoted by duv, is defined as the length of the shortest path between u and v in G.
The diameter of G is the maximum distance between any two vertices of G. The
distance matrix of G, denoted by D(G), is defined as D(G) = (duv)u,v∈V (G). The
transmission TrG(v) of a vertex v is defined to be the sum of the distances from v
to all other vertices in G, that is, TrG(v) =

∑
u∈V (G) duv. A graph G is said to be

k-transmission regular if TrG(v) = k, for each v ∈ V (G). The transmission of a graph
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328 On generalized distance spectral radius of a bipartite graph

G, denoted by W (G), is the sum of distances between all unordered pairs of vertices in
G. Clearly, W (G) = 1

2

∑
v∈V (G) TrG(v). For any vertex vi ∈ V (G), the transmission

TrG(vi) is called the transmission degree, shortly denoted by Tri and the sequence
{Tr1, T r2, . . . , T rn} is called the transmission degree sequence of the graph G. The
second transmission degree of vi, denoted by Ti is given by Ti =

∑n
j=1 dijTrj . For

other undefined notations and terminology, the readers are referred to [14].

Let Tr(G) = diag(Tr1, T r2, . . . , T rn) be the diagonal matrix of vertex transmis-
sions of G. Aouchiche and Hansen [3, 4] introduced the Laplacian and the sign-
less Laplacian for the distance matrix of a connected graph. The matrix DL(G) =
Tr(G)−D(G) is called the distance Laplacian matrix of G, while the matrix DQ(G) =
Tr(G)+D(G) is called the distance signless Laplacian matrix of G. There is a growing
interest among the researchers in the study of the spectral properties of D(G), DL(G)
and DQ(G) and as such in the literature several papers can be seen regarding their
spectral properties, like spectral radius, second largest eigenvalue, smallest eigenvalue
etc. For some recent works, we refer to [1,2,6–11,13,16,17] and the references therein.

Recently, Cui et al. [5] introduced the generalized distance matrix Dα(G) as a
convex combination of Tr(G) and D(G), defined as Dα(G) = αTr(G) + (1−α)D(G),
for 0 ≤ α ≤ 1. Since D0(G) = D(G), 2D 1

2
(G) = DQ(G), D1(G) = Tr(G) and

Dα(G) − Dβ(G) = (α − β)DL(G), any result regarding the spectral properties of
generalized distance matrix, has its counterpart for each of these particular graph
matrices, and these counterparts follow immediately from a single proof. In fact,
this matrix reduces to merging the distance spectral and distance signless Laplacian
spectral theories. Since the matrix Dα(G) is real symmetric, all its eigenvalues are
real. Therefore, we can arrange them as ∂1 ≥ ∂2 ≥ · · · ≥ ∂n. The largest eigenvalue ∂1
of the matrix Dα(G) is called the generalized distance spectral radius of G (from now
onwards, we will denote ∂1(G) by ∂(G)). As Dα(G) is nonnegative and irreducible,
by the Perron-Frobenius theorem, ∂(G) is the unique eigenvalue and there is a unique
positive unit eigenvector X corresponding to ∂(G), which is called the generalized
distance Perron vector of G.

The spectral radius of a general matrix M is an important area of research and
as such the investigation of the spectral radius of matrices associated to a graph
becomes interesting. When M is restricted to a particular graph matrix, the spectral
radius has attracted much attention of the researchers as is clear from the fact that
various papers can be found in the literature in this direction. For a particular graph
matrix (like adjacency, Laplacian, signless Laplacian, etc), the much studied problem
about the parameter spectral radius is to obtain bounds in terms of various graph
parameters. Another problem worth to mention is to characterize the extremal graphs
for the spectral radius of a graph matrix, in some classes of graphs. For some recent
works we refer to [6, 9, 10,13,16,17] and the references therein.

A column vector X = (x1, x2, . . . , xn)T ∈ Rn can be considered as a function
defined on V (G) which maps vertex vi to xi, that is, X(vi) = xi for i = 1, 2, . . . , n.
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Then,

XTDα(G)X = α

n∑
i=1

Tr(vi)x
2
i + 2(1− α)

∑
1≤i<j≤n

d(vi, vj)xixj ,

and λ is an eigenvalue of Dα(G) corresponding to the eigenvector X if and only if
X 6= 0 and

λxi = αTr(vi)xi + (1− α)

n∑
j=1

d(vi, vj)xj .

These equations are called the (λ, x)-eigenequations of G. For a normalized column
vector X ∈ Rn with at least one non-negative component, by the Rayleigh’s principle,
we have ∂(G) ≥ XTDα(G)X, with equality if and only if X is the generalized distance
Perron vector of G.

In the rest of the paper, we obtain some bounds for the generalized distance
spectral radius of a bipartite graph in terms of various graph parameters associated
to the structure of the graph and characterize the extremal graphs. For α = 0, our
results improve some previously known bounds.

2. Bounds for the generalized distance spectral radius of bipartite graphs

We are going to obtain upper and lower bounds for the generalized spectral radius
∂(G) in terms of transmission degree sequence and second transmission degree se-
quence, the diameter and the order of a bipartite graph G.

A connected graph G is said to be biregular if there exist positive integers a and
b such that every vertex vi ∈ V (G) has either degree a or b, a 6= b. Similarly, a
connected graph G is said to be transmission biregular if there exist positive integers
a and b such that every vertex vi ∈ V (G) has either transmission a or b, a 6= b.

Now, we obtain a lower bound for the generalized distance spectral radius ∂ in
terms of order n, the cardinality of the partite sets, the maximum vertex degree of
partite sets, the minimum transmission degree of the partite sets and the parameter
α of a bipartite graph G.

Theorem 2.1. Let G be a connected bipartite graph of order n with bipartition V (G) =
V1 ∪ V2, such that |V1| = n1, |V2| = n2 and n1 + n2 = n. Let ∆V1

, ∆V2
and

Trmin(V1), T rmin(V2) be respectively the maximum degree and the minimum transmis-
sion degree among the vertices in V1 and V2. Let tik be the number of vertices in Vi,
which are at distance 2 from vk ∈ Vi, i = 1, 2. Then

∂(G) ≥ max
i,j

{αTrmin(V1)+αTrmin(V2)+3(1−α)(n−2)−(1−α)(t1i+t2j)+
√
θ

2

}
, (1)

where θ =
[
αTrmin(V1)+αTrmin(V2)+3(1−α)(n−2)−(1−α)(t1i+t2j)

]2−4
(
αTrmin(V1)

+3(1−α)(n1−1)−(1−α)t1i
)(
αTrmin(V2)+3(1−α)(n2−1)−(1−α)t2j

)
+4(1−α)2(3n2

−2∆V1)(3n1−2∆V2). Equality occurs if and only if G ∼= Kn1,n2 or G is a bipartite
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degree biregular, transmission biregular graph having eccentricity of each vertex equal
to 3.

Proof. Consider a connected bipartite graph G of order n with bipartition V (G) =
V1 ∪ V2. Suppose that V1 = {1, 2, . . . , n1} and V2 = {n1 + 1, . . . , n1 + n2}. Let
X = (x1, x2, . . . , xn)T be the generalized distance Perron vector of G. Let tik be the
number of vertices in Vi, which are at distance 2 from vk ∈ Vi, i = 1, 2. Without
loss of generality, assume that xi = min{xk : k ∈ V1} and xj = min{xk : k ∈ V2}.
We suppose that 1, 2, . . . , t1i are the vertices in V1 at distance 2 from vi ∈ V1 and
n1 + 1, n1 + 2, . . . , n1 + t2j are the vertices in V2 at distance 2 from vj ∈ V2. From
the i-th equation of Dα(G)X = ∂(G)X, we obtain

∂xi = αTrixi + (1− α)

n∑
k=1,k 6=i

dikxk

= αTrixi + (1− α)

n1∑
k=1,k 6=i

dikxk + (1− α)

n1+n2∑
k=n1+1,k 6=i

dikxk

≥ αTrmin(V1)xi + (1− α)
[
2t1ixi + 3(n1 − 1− t1i)xi + dixj + 3(n2 − di)xj

]
≥ αTrmin(V1)xi + (1− α)

[
2t1ixi + 3(n1 − 1− t1i)xi + (3n2 − 2∆V1

)xj
]
.

This shows that[
∂−αTrmin(V1)−2t1i(1−α)−3(1−α)(n1−1−t1i)

]
xi ≥ (1−α)(3n2−2∆V1)xj . (2)

Similarly, from the j-th equation of Dα(G)X = ∂(G)X, we obtain

∂xj = αTrjxj + (1− α)

n∑
k=1,k 6=j

djkxk

= αTrjxj + (1− α)

n1∑
k=1,k 6=j

djkxk + (1− α)

n1+n2∑
k=n1+1,k 6=j

djkxk

≥ αTrmin(V2)xj + (1− α)
[
2t2jxj + 3(n2 − 1− t2j)xj + djxi + 3(n1 − dj)xi

]
≥ αTrmin(V2)xj + (1− α)

[
2t2jxj + 3(n2 − 1− t2j)xj + (3n1 − 2∆V2)xi

]
.

This shows that[
∂−αTrmin(V2)−2t2j(1−α)−3(1−α)(n2−1−t2j)

]
xj ≥ (1−α)(3n1−2∆V2

)xi. (3)

Multiplying the corresponding sides of the inequalities (2) and (3) and using the fact
that xk > 0 for all k, we obtain

∂2−
(
α(Trmin(V1)+Trmin(V2))+3(1−α)(n−2)−(1−α)(t1i+t2j)

)
∂

+(αTrmin(V1)+3(1−α)(n1−1)−(1−α)t1i)(αTrmin(V2)+3(1−α)(n2−1)−(1−α)t2j)

−(1−α)2(3n2−2∆V1
)(3n1−2∆V2

) ≥ 0.

The result follows from the previous conclusions. Suppose that equalities occur in (1).
Then equality occurs in each of the inequalities (2) and (3). Equality in (2) gives
Trk = Trmin(V1), dk = ∆V1 , for all k ∈ V1 and

xk = xi, dik = 2, for k ≤ t1i, dik = 3, for k > t1i for all k ∈ V1
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and xk = xj , if ki ∈ E(G), dik = 3, if ki /∈ E(G) for all vk ∈ V2.
Similarly, equality in (3) gives that Trk = Trmin(V2), dk = ∆V2

, for all k ∈ V2 and

xk = xj , djk = 2, for k ≤ t2j , dik = 3, for k > t2j for all k ∈ V2
and xk = xi, djk = 1, if kj ∈ E(G), djk = 3, if kj /∈ E(G) for all vk ∈ V1.
This shows that every vertex in V1 has degree ∆V1

, transmission degree Trmin(V1)
and eccentricity at most 3 and every vertex in V2 has degree ∆V2

, transmission de-
gree Trmin(V2) and eccentricity at most 3. This further shows that G is a bipartite
degree biregular and transmission biregular graph having eccentricity at most 3. If
eccentricity is at most 2, the connected bipartite graph, which is degree biregular and
transmission biregular is Kn1,n2

. On the other hand, if eccentricity is 3, the connected
bipartite graph G 6= Kn1,n2

, which is both degree biregular and transmission biregular
should have all of its vertices of eccentricity equal to 3.

Conversely, if G ∼= Kn1,n2
, then Trmin(V1) = 2n − 2 − n2, ∆V1

= n2, t1i =
n1 − 1, Trmin(V2) = 2n − 2 − n1, ∆V2 = n1, t2j = n2 − 1 and ∂ = 1

2 ((α+ 2)n− 4+√
(n21 + n22)(α− 2)2 + 2n1n2(α2 − 2)

)
(see [15]). It can be seen that equality holds

in (1). On the other hand, if G is a connected bipartite graph, which is degree
biregular, transmission biregular and has all of its vertices of eccentricity equal to
3, then clearly from inequalities (2) and (3), it follows that equality holds. This
completes the proof. �

Taking α = 0, we obtain the following lower bound for the distance spectral radius
∂D1 of a bipartite graph.

Corollary 2.2. Let G be a connected bipartite graph of order n with bipartition
V (G) = V1 ∪ V2, such that |V1| = n1, |V2| = n2 and n1 + n2 = n. Let ∆V1

, ∆V2
and

Trmin(V1), T rmin(V2) be respectively the maximum degree and the minimum transmis-
sion degree among the vertices in V1 and V2. Let tik be the number of vertices in Vi,
which are at distance 2 from vk ∈ Vi, i = 1, 2. Then

∂D1 (G) ≥ max
i,j

{3(n− 2)− (t1i + t2j) +
√
θ

2

}
,

where θ =
[
3(n−2)−(t1i+t2j)

]2−4
(
3n1−3−t1i

)(
3n2−3−t2j

)
+4(3n2−2∆V1

)(3n1−
2∆V2

). Equality occurs if and only if G ∼= Kn1,n2
or G is a bipartite degree biregular,

transmission biregular graph having eccentricity of each vertex equal to 3.

The following lower bound for the distance spectral radius ∂D1 of a bipartite graph
was obtained in [18]:

∂D1 (G) ≥ n− 2 +
√
n2 − 4n1n2 + (3n2 − 2∆V1

)(3n1 − 2∆V2
), (4)

where n1 = |V1|, n2 = |V2| and ∆V1
,∆V2

are the maximum vertex degree in V1, V2
respectively.

It is easy to see that our lower bound given by Corollary 2.2 is always better than
the lower bound given by (4).

Taking α = 1
2 , we obtain the following lower bound for the distance signless

Laplacian spectral radius ∂Q1 of a bipartite graph.



332 On generalized distance spectral radius of a bipartite graph

Corollary 2.3. Let G be a connected bipartite graph of order n with bipartition
V (G) = V1 ∪ V2, such that |V1| = n1, |V2| = n2 and n1 + n2 = n. Let ∆V1

, ∆V2
and

Trmin(V1), T rmin(V2) be respectively the maximum degree and the minimum transmis-
sion degree among the vertices in V1 and V2. Let tik be the number of vertices in Vi,
which are at distance 2 from vk ∈ Vi, i = 1, 2. Then

∂Q1 (G) ≥ max
i,j

{Trmin(V1) + Trmin(V2) + 3(n− 2)− (t1i + t2j) +
√
θ

2

}
,

where θ =
[
Trmin(V1) +Trmin(V2) + 3(n− 2)− (t1i+ t2j)

]2− 4
(
Trmin(V1) + 3n1− 3−

t1i
)(
Trmin(V2) + 3n2 − 3− t2j

)
+ 4(3n2 − 2∆V1)(3n1 − 2∆V2). Equality occurs if and

only if G ∼= Kn1,n2
or G is a bipartite degree biregular, transmission biregular graph

having eccentricity of each vertex equal to 3.

Now, we obtain an upper bound for the generalized distance spectral radius ∂ in
terms of order n, the cardinality of the partite sets, the minimum vertex degree of
partite sets, the maximum transmission degree of the partite sets and the parameter
α for a bipartite graph G.

Theorem 2.4. Let G be a connected bipartite graph of order n with bipartition V (G) =
V1 ∪ V2, such that |V1| = n1, |V2| = n2 and n1 + n2 = n. Let δV1 , δV2 and
Trmax(V1), T rmax(V2) be respectively the minimum degree and the maximum trans-
mission degree among the vertices in V1 and V2. Let tik be the number of vertices in
Vi, which are at distance 2 from vk ∈ Vi, i = 1, 2. Then for γ = t1i + t2j

∂(G) ≤ 1

2
min
i,j

{
αTrmax(V1)+αTrmax(V2)+(1−α)(d(n−2)−(d−2)γ)+

√
φ
}
, (5)

where φ =
[
αTrmax(V1)+αTrmax(V2)+d(1−α)(n−2)−(1−α)(d−2)(t1i+t2j)

]2−
4
(
αTrmax(V1)+(1−α)(d(n1−1)−(d−2)t1i)

)(
αTrmax(V2)+(1−α)(d(n2−1)−(d−2)t2j)

)
+4(1−α)2(d(n2−1)−(d−1)δV1)(d(n1−1)−(d−1)δV2), where d is the diameter of G.
Equality occurs if and only if G ∼= Kn1,n2 or G is a connected bipartite graph, which
is degree biregular, transmission biregular and has the property that the eccentricity
of every vertex i ∈ V (G) is equal to diameter d.

Proof. Consider a connected bipartite graphG of order n with bipartition V (G) = V1∪
V2 having diameter d. Suppose that V1 = {1, 2, . . . , n1} and V2 = {n1+1, . . . , n1+n2},
n1 + n2 = n. Let X = (x1, x2, . . . , xn)T be the generalized distance Perron vector
of G. Let tik be the number of vertices in Vi, which are at distance 2 from vk ∈ Vi,
i = 1, 2. Without loss of generality, let us assume that xi = max{xk : k ∈ V1} and
xj = max{xk : k ∈ V2}. Suppose 1, 2, . . . , t1i are the vertices in V1 at distance 2
from vi ∈ V1 and n1 + 1, n1 + 2, . . . , n1 + t2j are the vertices in V2 at distance 2 from
vj ∈ V2. From the i-th equation of Dα(G)X = ∂(G)X, we obtain

∂xi = αTrixi+(1−α)

n1∑
k=1,k 6=i

dikxk+(1−α)

n1+n2∑
k=n1+1,k 6=i

dikxk

≤ αTrmax(V1)xi+(1−α)
[
2t1ixi+d(n1−1−t1i)xi+dixj+d(n2−di)xj

]
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≤ αTrmax(V1)xi+(1−α)
[
2t1ixi+d(n1−1−t1i)xi+(dn2−(d−1)δV1

)xj
]
.

This shows that[
∂−αTrmax(V1)−(1−α)(d(n1−1)−(d−2)t1i)

]
xi ≤ (1−α)(dn2−(d−1)δV1

)xj . (6)

Similarly, from the j-th equation of Dα(G)X = ∂(G)X, we obtain[
∂−αTrmax(V2)−(1−α)(d(n2−1)−(d−2)t2j)

]
xj ≤ (1−α)(dn1−(d−1)δV2

)xi. (7)

Multiplying the corresponding sides of the inequalities (6) and (7) and using the fact
that xk > 0 for all k, we obtain

∂2−
(
α(Trmax(V1)+Trmax(V2))+d(1−α)(n−2)−(1−α)(d−2)(t1i+t2j)

)
∂

+(αTrmax(V1)+(1−α)(d(n1−1)−(d−2)t1i))(αTrmax(V2)+(1−α)(d(n2−1)−(d−2)t2j))

−(1−α)2(dn2−(d−1)δV1
)(dn1−(d−1)δV2

) ≥ 0.

From this the result follows. Suppose equalities occur in (5). Then equality occurs
in each of the inequalities (6) and (7). Equality in (6) gives that Trk = Trmax(V1),
dk = δV1 , for all k ∈ V1 and

xk = xi, dik = 2, for k ≤ t1i dik = d, for k > t1i for all k ∈ V1
and xk = xj , if ki ∈ E(G), dik = d, if ki /∈ E(G) for all vk ∈ V2.
Similarly, equality in (3) gives that Trj = Trmax(V2), dj = δV2 , for all k ∈ V2 and

xk = xj , djk = 2, for k ≤ t2j djk = d, for k > t2j , for all k ∈ V2
and xk = xi, if kj ∈ E(G), djk = d, if kj /∈ E(G) for all vk ∈ V1.
We see that every vertex i in V1 has vertex degree δV1 , transmission degree Trmax(V1)
and distance of every vertex non-adjacent to vertex i is 2 or d from i and every
vertex j in V2 has vertex degree δV2

, transmission degree Trmax(V2) and distance of
every vertex non-adjacent to vertex j is 2 or d from j. Also, we observe that G is
a bipartite degree biregular and transmission biregular graph having the property
that the distance of every non-adjacent vertex from vertex i ∈ V (G) is equal to 2
or diameter d. Since G is a bipartite graph, therefore the only vertices adjacent to
i ∈ V1 are in V2 and vice-versa. If d ≤ 2, the connected bipartite graph, which is
degree biregular, transmission biregular having the property that the distance of every
non-adjacent from a vertex i ∈ V (G) is equal to diameter d is Kn1,n2

. On the other
hand, if diameter d ≥ 3, then equality occurs if the connected bipartite graph G is
degree biregular, transmission biregular and has the property that the eccentricity of
every vertex i ∈ V (G) is equal to diameter d.

Conversely, it is easy to see that equality occurs in (5) if G ∼= Kn1,n2
or G is a

connected bipartite graph, which is degree biregular, transmission biregular and has
the property that the eccentricity of every vertex i ∈ V (G) is equal to diameter d. �

Taking α = 0, we have the following upper bound for the distance spectral radius
∂D1 of a bipartite graph.

Corollary 2.5. Let G be a connected bipartite graph of order n with bipartition
V (G) = V1 ∪ V2 such that |V1| = n1, |V2| = n2 and n1 + n2 = n. Let δV1

, δV2
and

Trmax(V1), T rmax(V2) be respectively the minimum degree and the maximum trans-
mission degree among the vertices in V1 and V2. Let tik be the number of vertices in
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Vi, which are at distance 2 from vk ∈ Vi, i = 1, 2. Then, for γ = t1i + t2j,

∂D1 (G) ≤ 1

2
min
i,j

{
d(n− 2)− (d− 2)γ +

√
φ
}
,

where φ =
[
d(n−2)−(d−2)(t1i+t2j)

]2−4
(
d(n1−1)−(d−2)t1i

)(
d(n2−1)−(d−2)t2j

)
+4(d(n2−1)−(d−1)δV1

)(d(n1−1)−(d−1)δV2
), where d is the diameter of G. Equality

occurs if and only if G ∼= Kn1,n2
or G is a connected bipartite graph, which is degree

biregular, transmission biregular and has the property that the eccentricity of every
vertex i ∈ V (G) is equal to diameter d.

Taking α = 1
2 , we obtain the following upper bound for the distance Laplacian

spectral radius ∂Q1 of a bipartite graph.

Corollary 2.6. Let G be a connected bipartite graph of order n with bipartition
V (G) = V1 ∪ V2, such that |V1| = n1, |V2| = n2 and n1 + n2 = n. Let δV1 , δV2 and
Trmax(V1), T rmax(V2) be respectively the minimum degree and the maximum trans-
mission degree among the vertices in V1 and V2. Let tik be the number of vertices in
Vi, which are at distance 2 from vk ∈ Vi, i = 1, 2. Then for γ = t1i + t2j

∂Q1 (G) ≤ 1

2
min
i,j

{
Trmax(V1) + Trmax(V2) + d(n− 2)− (d− 2)γ +

√
φ
}
,

where φ =
[
Trmax(V1) + Trmax(V2) + d(n− 2)− (d− 2)(t1i + t2j)

]2 − 4
(
Trmax(V1)+

(1− d(n1 − 1)− (d− 2)t1i
)(
Trmax(V2) + d(n2 − 1)− (d− 2)t2j

)
+ 4(d(n2 − 1)− (d−

1)δV1
)(d(n1 − 1) − (d − 1)δV2

), where d is the diameter of G. Equality occurs if and
only if G ∼= Kn1,n2 or G is a connected bipartite graph, which is degree biregular,
transmission biregular and has the property that the eccentricity of every vertex i ∈
V (G) is equal to diameter d.

Lemma 2.7 ([12]). Let B and C be square nonnegative matrices having spectral radius
ρ(B) and ρ(C). If B is irreducible, B ≥ C and B 6= C, then ρ(B) ≥ ρ(C).

Using Lemma 2.7, we have the following observation.

Lemma 2.8. Let G be a connected graph of order n and let u and v be two non-
adjacent vertices of G. Let G′ = G+ uv be the graph obtained from G by adding edge
between u and v. Then ∂(G) ≥ ∂(G′).

For 0 ≤ α ≤ 1, from Lemma 2.8, it is clear that among all the bipartite graphs, the
complete bipartite graph Ka,n−a, n − a ≤ a, has the minimum generalized distance
spectral radius and tree T has the maximum generalized distance spectral radius. It
is shown in [15] that the generalized spectral radius of Ka,n−a is

∂(Ka,n−a) =
(α+ 2)n− 4 +

√
n2α2 − (n2 + 2a2 − 2an)4α+ 4(n2 − 3an+ 3a2)

2
.

Consider the function f(a) = n2α2−(n2+2a2−2an)4α+4(n2−3an+3a2), a ∈ [1, n2 ]
and 1

2 ≤ α ≤ 1. We have f ′(a) = (2n − 4a)4α + 4(6a − 3n) giving f ′(a) < 0, for
all a ∈ [1, n2 ]. This implies that f(a) is a decreasing function of a, for all a ∈ [1, n2 ],
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which in turn implies that ∂(Ka,n−a) is a decreasing function of a for all a ∈ [1, n2 ].
Therefore, it follows that ∂(K2,n−2) ≥ ∂(K3,n−3) ≥ · · · ≥ ∂(Kbn2 c,d

n
2 e). Thus, we

have the following observation.

Theorem 2.9. Among all the connected bipartite graphs the complete bipartite graph
Kbn2 c,d

n
2 e has the minimum generalized distance spectral radius.

We note that a tree T has the maximum generalized distance spectral radius. For
α = 0, it is known that among the trees the maximum generalized distance spectral
radius is attained by a path Pn. Therefore, it will be of interest to determine the tree
for 0 < α ≤ 1, which has the maximum generalized distance spectral radius. So, we
have the following problem.

Problem. For 0 < α ≤ 1, among all trees, characterize the tree which has the
maximum generalized distance spectral radius.
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