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A NEW CLASS OF FINSLER METRICS

Tahere Rajabi and Nasrin Sadeghzadeh

Abstract. In this paper, we construct a new class of Finsler metrics which are not always
(a, B)-metrics. We obtain the spray coeflicients and Cartan connection of these metrics. We
have also found a necessary and sufficient condition for them to be projective. Finally, under
some suitable conditions, we obtain many new Douglas metrics from the given one.

1. Introduction

(a, B)-metrics form a rich class of Finsler metrics. They are computable and the pat-
terns offer references for more study in Finsler spaces. Then, introducing new Finsler
metrics which are not («, 3)-metrics helps us to evaluate the patterns. There are
some classes of Finsler metrics which are not always («, §)-metrics such as general-
ized (a, B)-metrics [15] or spherically symmetric Finsler metrics [17].

Here we are going to consider the Finsler metrics given by

F=Fg¢(s), (1)

where F' is a Finsler metric, s = %, B = by, ||BllF < by and ¢(s) is a positive C>
function on (—bg,bg). We call them (F,S)-metrics. These metrics are not always
(a, B)-metrics even if F' is an (a, 8)-metric.

Let F = a + v be a Randers metric, where « is a Riemannian metric and v is a
1-form on M. Put

o (F+6)?  (a+~vy+p)? _a(1+s+,§)2
F a—+p 1+s

where s = g and § = 2 # s. Here F' = a¥(s,5) is a Finsler metric but not («, 3)-
metric. Whereas, for any 1-form § on M, F = F + 3 = o + 8 + = is a Randers
metric.
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2 A new class of Finsler metrics

Let F be a projectively flat Finsler metric such as the generalized Berwald’s metric
2
(4 (g, 2)) (VA = [2P)y? + (2, 9)% + (2, 9) + (1 = |2*){a, )

(1= |22/ = [2D)y + (2, y)?
where a € R" is a constant vector. It is locally projectively flat with constant flag
curvature K = 0 [11]. For any closed 1-form f3 such that 3 = 1_f_’l<ﬁ>x>, metric F = F+8
is also a projectively flat Finsler metric and § is closed form (see Theorem 1.1).

One could consider the above metrics as a change of a given Finsler metric. Various
Finsler changes have been extensively studied and they have numerous applications.

In 1971, Matsumoto introduced the transformation of Finsler metric F(x,y) =
F(z,y) + B(z,y), where B(z,y) = bi(x)y® is a 1-form [9]. In 1984, Shibata [12]
introduced the transformation of Finsler metric F(z,y) = f(F,3), where 3(y) =
bi(z)y?, bi(z) are components of a covariant vector in (M™, F) and f is positively
homogenous function of degree 1 in F and . This change of metric is called a
[—change.

In 1980, while studying the conformal transformation of Finsler spaces, H. Izumi [8]
introduced the concept of an h-vector b;. The h-vector b;, as well as the function of
coordinates 2’ itself, are also dependent on y*. The h-vector b; is v-covariant constant
with respect to the Cartan connection and satisfies F' C’ihjbh = ph;;, where p is a non-

F =

)

zero scalar function, Cihj are components of Cartan tensor and h;; are components of
angular metric tensor. We will prove the following theorem.

THEOREM 1.1. An (F, B)-metric F = F¢(s), where s = %, B(z,y) = bi(z,y)y" with
h-vector b;, is projectively flat if and only if

26— 56/ + p6Yhar G + 20510+ ¢/ S = ¢l

where 1i;:= 5 (bij;+bjii), si:= 5 (bity—bjii)» sio= 5597, O= (¢9—s5¢'+p¢)ron—2F¢'s0,
A= ¢—S¢I+p¢/+(b2—82)¢”, hij = gij—glﬂj and m; = b;—s¥;.

One could easily show that the above theorem is satisfied for every (F, 8)-metric
with 8(y) = b;(x)y® just by putting p = 0, with 3 not being necessarily an h-vector.

In this paper, we study the (F,3)-metric with F' being an m-root Finsler metric.
Let (M, F) be a Finsler manifold of dimension n, TM its tangent bundle and (z°, y*)
the coordinates in a local chart on TM. Let F' be a scalar function on T'M defined by
F = %/A, where A is given by A := ai,..q, (T)yry2 . yim with a;,;, symmetric in
all its indices. Then F' is called an m-root Finsler metric.

Theorem 1.1 includes all known results about projective changes of Finsler met-
rics [10,13,14]. For instance, we get the following two corollaries which were stated
as theorems in the respected papers.

COROLLARY 1.2 ([2,10]). Let F = YA (m > 3) be an m-th root Finsler metric on
an open subset U C R™, where A is irreducible. Then Randers change F' = F + f3
with B = b;(x)y® is locally projectively flat if and only if it is locally Minkowski.
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COROLLARY 1.3 ([13]). Let F = ¥/A (m > 3) be an m-th root Finsler metric on an

open subset U C R™, where A is irreducible. Then Matsumoto change F = FF—_Qﬁ with

B = b;(x)y* is locally projectively flat if and only if % =0 and b; = constant.
Finally, one could easily conclude that the following also holds.

COROLLARY 1.4. Let F = /A (m > 3) be an m-th root Finsler metric on an open
subset U C R™, where A is irreducible. Then (F,()-metric F' = F(;S(%) with =
bi(z)y? is locally projectively flat if and only if

—m(m — DA(¢ — s¢)y; AgA ™% +mA(p — s¢)(Ag; — Ayi) A

+ Qd)/()\sio — (/bHSomi)A”% + ¢N(¢ — s¢’)r00mi =0,
where X\ = ¢ — s¢' + (b — s2)@" , ro0, si0 and so are represented as (20), Ag;, Agi
and Ay are defined in (46).

A Finsler metric is called Douglas metric if the Douglas tensor D = 0. The
Douglas curvature was introduced by J. Douglas in 1927 [4]. In the same paper it
was proven that Douglas and Weyl tensors are invariant under projective changes.
Roughly speaking, a Douglas metric is a Finsler metric having the same geodesics
as a Riemannian metric. Hence, in this paper we are going to obtain the conditions
under which the change F' = F¢(s) of Douglas space becomes a Douglas space. Then
we will prove the following.

THEOREM 1.5. Let (M, F) be a Douglas space. An (F,J)-metric F = Fqﬁ(%) with
h-vector b; is Douglas if and only if

/ 1 / / /
(i) 2 [(p=s0 +p¢,)r00, 2r9'so) by —vy"),  (3)
P—s¢'+pg 2(¢—s¢'+pd')A
where r;;, sy and so are represented as (20), are homogeneous polynomial in y* of
degree 3.

HY .=

By the above theorem one could obtain many Douglas metrics from a given one.
For example, the following corollary introduces some new Douglas metrics from a
given m-root Finsler metric of Douglas type.

COROLLARY 1.6. (i) Let F' = /A (m > 3) be an m-root Finsler metric of Douglas
type. Then Randers change F = F + B with 3 = b;(z)y" is of Douglas type if and
only if s;; = 0.

(ii) Let F = %/A (m > 3) be an m-root Finsler metric of Douglas type. Then
Matsumoto change F = FF% with B = bi(x)y® is of Douglas type if and only if

B

2. Preliminaries

Let M be a smooth manifold and TM := J,,, T M be the tangent bundle of M,
where T, M is the tangent space at x € M. A Finsler metric on M is a function
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F:TM — [0, +00) with the following properties
(i) Fis C*™ on TM\{0};

(ii) F is positively 1-homogeneous on the fibers of tangent bundle T'M;

(iii) for each € M, the following quadratic form g, on T; M is positive definite,

g,(u,v) :== %azz)t [F2(y + su+ tv)]]s,s=0, u,v € T, M.
Let x € M and F, := F|r,p. To measure the non-Euclidean feature of F,, define
Cy  TMT,M®T,M — R by Cy(u,v,w) := %% [gy+tw(u,v)] lt=0, u,v,w € T, M.

The family C := {Cy} e, is called the Cartan torsion. It is well known that
C =0 if and only if F' is Riemannian.

Given a Finsler manifold (M, F), then a global vector field G is induced by F

on T My, which in a standard coordinate (x%,y*) for TMy is given by G = y* a(zi —
2Gi(x,y)8iw, where G*(z,y) are local functions on T'M, given by G* = ig“{gi]}f +

Ague _ 99k

Oxd ozt

integral curve of the spray G is called a geodesic in M.

The Cartan connection in M is given as CT' = (F;k,

i L ardgn  dgw  Ogjk o 0 w0

ik = 59 \ 5.k - v s = e N o
2 oz Ox dy

}yjyk. G is called the associated spray to (M, F'). The projection of an

N;,C%,.), where

dxk oxJ ozt - N; = ale, N;y] = 2%,

Note that d; and d; denote the derivations with respect to 2 and y respectively.

For the Cartan connection, we define X;lk = % + X}I‘ik — X};I‘;k, X;;k = 8kX; +
X7 O, — X730y, where “|” and ;" denote the horizontal and vertical covariant deriva-
tive of X]l Also, the axioms g;;;, = 0 and g;;;x = 0 hold.

The h-vector b; is v-covariant constant with respect to the Cartan connection and
satisfies FC,L-hjbh = ph,;, where p is a non-zero scalar function, Clhj = gthijm and h;;
are components of angular metric tensor. Thus if b; is an h-vector then (i) b;; = 0,

(ii) FC’l-hjbh = ph;j. Put c" = gijC'Z-hj. Hence we obtain

P = n_ 1Chbh7 (4)
P

Since p # 0 and h;; # 0, the h-vector b; depends not only on positional coordinates but
also on directional arguments. Izumi [8] showed that p is independent of directional
arguments and that if b; is an h-vector then *b; := b; — pl; and b := ||§||p are
independent of y.

3. (F,pB)-metrics

Throughout the paper we shall use the notations ¢; := a.l-F7 lij = éiéjF, liji =
0;0;01F. Let b; be an h-vector in the Finsler space (M, F). Since h;jy’ = 0, we have
0;3 = b;. Contracting with 3/ will be denoted by the subscript 0. For example, we
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write b;jo for by ;4.

Using (5) and the fact that £;; = £;;, = 0 we have the following relations

ij]

8jbi = bZ|J + pN;ZiT + b,F;"j, (6)
Bili = NTlyr + 0,7, (7)
6k£ij = leéijT =+ E,.ngk =+ ﬁiT.ng. (8)

For s = B/F, by (6) and the fact that Oy F = ¢, N] we have

. 1 1 .

where m; := b; — sf;. Using (6) and (7) we get

. 1
Oemi = (p — $)lix — =mils,
F
1 1 (10)
8km7,' = bz‘k + (p — S)‘ngN]:;‘ — FmTN;:& + mTka — Fbmkgl

Differentiating equation (1) with respect to 3%, y7, y* and using the first equations
in (9) and (10) imply that

U =pl; + ¢'my, (11)
B o
/ /

gij :(¢ — S¢ -+ p¢ )EU -+ ?mimj, (12)
B ¢" "
lijk = [¢ — S¢/ + p(ﬁ’]&jk + F(p —5) [mk&j +mli, + miéjk] + ﬁmimjmk

1
- — [mimjﬁk + mimkﬁj + mjmk&] . (13)

FQ

DEFINITION 3.1. A Finsler metric F is called (F,3)-metric if it has the following
form F = F¢(s), s = %, where F is a Finsler metric and 8 = by’ is a 1-form
on an n-dimensional manifold M, ¢(s) is a positive C*° function on (—bg, by) and
1817 < bo- .

(F, B)-metric F is called (F, 8)-metric with h-vector if b; := b;(x, y) be an h-vector

on (M, F).

LEMMA 3.2. For any Finsler metric F' and 1-form 8 = byt with h-vector b; on
manifold M with ||| r < bo, F' = F¢(s) is a Finsler metric if and only if the positive
C® function ¢ = ¢(s) satisfies
¢(s) = 5¢'(s) + pd'(5) > 0, ¢(s) = s¢/(s) + p¢'(s) + (b* — s*)¢"(s) >0,  (14)
when n > 3 or ¢(s) — s¢'(s) + p¢’(s) + (b* — s%)¢""(s) > 0, when n = 2, where s = %
and b are arbitrary numbers with |s| < b < by and p is given by (4).
Proof. The case n = 2 is similar to n > 3, so we only prove the proposition for n > 3.
It is easy to verify that F is a function with regularity and positive homogeneity. In the
following we will verify strong convexity. Direct computations yield the fundamental
tensor g;; = %BiajF 2 as follows
Gij = N9ij + M0bibj +m1(Liby + £5b;) + na2lil, (15)
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where 1 := ¢(¢ — s¢' + pd'), no == ¢¢" + ¢, m = ¢’ — sM0, M2 1= —s1 — PP’
Using [11, Lemma 1.1.1], we obtain

det(gij) = 6" (0 — 50" + p¢')" (¢ — 5¢' + pd + (b7 — 5%)¢") det(gi;).  (16)
Assume that (14) is satisfied. Using (14) and (16), we get det(g;;) > 0. The rest of
the proof is similar to the proof for («, 8)-metrics from [11]. U

By putting p = 0, one could easily show that Lemma 3.2 is satisfied for (F,3)-
metrics.

COROLLARY 3.3. Let M be an n-dimensional manifold. For any Finsler metric F
and 1-form B = byy® with ||B||r < by, F = F¢(s) is a Finsler metric if and only if
the positive C> function ¢ = ¢(s) satisfies ¢(s) — s¢'(s) > 0, ¢(s) — s¢'(s) + (b —
52)¢"(s) > 0, when n > 3, or ¢(s) — s¢'(s) + (b — s%)¢"(s) > 0, when n = 2, where
s = % and b are arbitrary numbers with |s| < b < by.

The formula for (g) can be obtained from [11, Lemma 1.1.1],

s

(g
1

g7 == |g" — _b'b — % 0+ X' (6 + A 17
97 = 2|o" - Y — T e @ + >}, (a7
where (g) = (g;5) 71, b* = b;b* = g/b;b; and 6 := 7(770 - —) o=\ = f;f;'g,

¢=1, Y2:=1+ (e+ \)s +eXb?. Differentiating (15) with respect to yk the Cartan
tensor Cj;i, is given by
/ /
—h
2F ik 2F
where h;j, = mihji +mjhy + mih;;. By (17) and (18) we can obtain

Czyk = nczjk + mzmjmka (18)

. / _ 1
r =Cipto0 iU = "o mimimy— {[2,07)4—77 (b*—5*)] hjk

2nF 2nF 2nF
5 T ) G

20+ (62 —5%) mymi | { [+ b T St
2o = mmi o [t Ty Y g 19)

For 1-form 8 = b;(x,y)y® where b; is an h-vector, we have

1 1

rij =5 (s +050)s i = 5 (Bl — b)) (20)
where “|” denotes the horizontal covariant derivative with respect to the Cartan
connection of F. Moreover, we define r;g := rijyj, T = birij, ro = 1397, roo =
T Y'Y, Sio = Siy, 85 1= b'syj, s 1= s;y7, sy = g”sjo Then 9ysi; = (pilin —

Pi ]k‘) akSzO - onzzk + Sik, where pPi = 0; i and Po = Pky

4. Spray coefficients of (F, 3)-metrics

In this section we are going to calculate the spray coefficients of (F, 3)-metrics. First
assume that 3 is a 1-form with h-vector.
Differentiating (11) with respect to 27 and using (7) and the second equations
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in (9) and (10) yield
i T T (bll T T T
0,0, = o [e”Nj +errij] +& [b0|j+mrNj } mit+d’ {bi‘ i+ (p=5)0ir N, +mrrij] . (@1)
Next, we deal with lz‘j =0, that is 8jl7i = ZiTZ\_fjr + erfj. Let us define
DYy :=T% —T%, Dj:=Djy*=N;—Nj, D':=Djy/ =2G"-2G". (22)
Then 8;¢; = Uiy (D} + NT) + £,(Dj; + T;).
Putting (11) and (12) in the above equation yields

/!
0;0; = 0, D} +0,D; + [(qs — ¢/ + p¢ )iy + %mimr] NT 4 WT + ¢’mr} . (23)
By comparing (21) and (23), we get the following ¢'b;; = EZ-TDJT- + ZTij — %ﬁmibo‘j.
Thus by (20) we have

11
2¢'ri; = iy D} + L5, D} + 20, D}; — % [miboy; -+ m;boji], (24)
/!
5l
Contracting (24) and (25) by ¢/ implies that

2¢/Sij = Zi,.D;-A — Zj,-D: - mibo‘j - mjboﬁ} . (25)

/!
2¢'rio = Uiy D" + 20, D] — %T“oomi, (26)
_ QS//
2¢),8i0 = fiT»DT — F’I‘oomi. (27)
Subtracting (27) from (26) yields
¢/(7"7;0 — Sio) = E_TD: (28)

Contracting (28) by y* leads to
qﬁ/’l“oo = ZTDT. (29)

To obtain the spray coefficients of F', first we must prove the following lemma.

LEMMA 4.1. The system of algebraic equations
(i) L A" = B;, (i) (. A" =B,
has a unique solution A" for given B and B; such that B;y* = 0. The solution is
given by
- F o1
Al=—— B+ —
¢ —s¢' + pg’ ¢

where B* = ¢"'B; and m* = ¢"'m,.

(B - §¢’Brbr)€i -

F§"(BbT)
No—sd/ +p) "

Proof. Contracting (12) by b° implies that
Y
gi’,«bz = Fmr, (30)
where \ := ¢ — s¢’ + p¢’ + (b — s2)¢".
Then contracting equation (i) by b and using (30), we get the following

%mTAT = B,b". (31)
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Substituting (11) in equation (ii) yields ¢4, A" + ¢'m, A" = B. Putting (31) in this
equation we get

1 F
1,A" = = (B — —¢'B,b"). 32
Substituting (12) in equation (i) and using the fact that ¢;. = %(Qir - Eifr), we get
F ¢//
i ArziBl 0. A" éz—i A" i
e T A
Contracting this equation by ¢ and using (31) and (32) complete the proof. U

Now, we are able to obtain the spray coefficients of F.

By contracting (27) by b and using the above relations, we get %mTDT =2¢'sp+
%ﬁroo (b%—s?). The equations (27) and (29) constitute a system of algebraic equations
in £,D" and m, D" whose solution from Lemma 4.1 is given by

; F co1 F . Fe'

Di=— ~ B4+ - (B——¢/BbWi——2>C

A A N R TR )

where @l = 2¢_>’56 + ‘%ﬁroomi, B = ¢'rog, B,b" = 2¢'sq + %ﬁ(bQ — 5%)rgp. Since
D' =2G" — 2G*, we get the following theorem.

B,b"m!,

THEOREM 4.2. Let F be an (F, 3)-metric with h-vector b;. Then the spray coefficients
of F' are given by
2P, [0/(6=50"+p0")~500"] (6= +p0/Jron—2F's0]
p—s¢/+pg " (p—s¢'+pg')A
¢ [(¢p—s¢'+pd')roo—2F ¢’ s0]
(p—s¢'+pg')A

4 b, (33)

COROLLARY 4.3. Let F' be an (F,[3)-metric. Then the spray coefficients of F are
given by
2F¢’ g+ [¢(¢ — 5¢) — 56¢"] [(¢ — 5¢")ro0 — 2F¢'s0]
¢ —s¢' " () — 5¢') (¢ — s¢' + (b* — s%)¢")
¢ [(¢ — s¢")ro0 — 2F ¢/ 0] 5
(¢ —s¢') (¢ — s¢' + (b — 5%)¢")

2G" = 2G" + A

+

5. Cartan connection of (F, 5)-metrics

Here the Cartan connection coefficients of (F, 3)-metrics are calculated. Differentiat-
ing (12) with respect to ¥ and using (9) and (10), we get
_ ¢)// - ¢/// -
Oliy =[d—s¢'+pd'| 3kf¢j+F(P*5) [bO\kerrNk]fijJrﬁb/Pk@jJrﬁ [bojs+my Ni. | mim,
¢/l ¢/I 1 1
—ﬁmimj@kF—l—ij [bi|k+(p—s)€iTN,:—FmTN};&—I—mTka—Fbmk&}
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U

1
+¢Fmi [bj|k+(p—8)€7-jN; Fm,Nké +m, I’ Jk b0|k€ ] (35)

With the help of ka = 0, that is 9/, i = EW,N,C + &JI‘ e &-TI‘;,W and by (22) we
have 5‘k£ZJ = &]r(D’“ + NJ) + KT](DZTk +I7)+ EW(D;k + 17 ). Putting the values of
Uiy, Er] and EW from (12) and (13) in the above equation ylelds

u

ak£7,j _EZ]TD]C—’—ET’]D +EWDT {[¢_s¢l+p¢l] gijr"‘%
¢/// ¢/l

F2 mszmT F2 [

405 (650400 eyt Loy, LT3 (05600 it Somum, ). (36)

By comparing (35) and (36) and using (8) and the fact that 0, F' = ¢, N] we get the
following

(p—S) [mr&j +mj€ir —l—miij}

mimj&%—mimr@j%—mjm,«&] }N;;

U 1

Cijr Dy, + £p; Diy + £ DYy =¢ prliy + %(p — 8)boklij + % [mjbﬂk + mibj\k}
d)// 1
— ﬁbO\k [mlﬁj + mJ-K ] F2 b0|kamJ (37)

Contracting (37) by y* yields
/! /!

ZijTDT + gTjD: + ZirD; Z(ﬁ/pofij + ﬂ(p — S)Tooﬁij + [mjbim + mibj|0}

F F
11 "
— 3700 [mil; +m;t;] + Foz 0 - (38)

Substituting (25) in equation (38) implies that
0 DY = Qi (39)

where

1 _ 1 (b// 11
Qij = — §€ierr +¢'sij + §P0¢/fz‘j + f(mﬂjo +m;sio) + ﬁ(ﬂ — 8)rools;
1 11
_ 2F2 Too(migj + mj€ ) o2 =55 700 M.

From (27), we see Q;;4° = 0. On the other hand, the equation (28) may be written as

0D} = Qj, (40)

where Q; = ¢'(rj0 — sjo). The equations (40) and (39) constitute the system of
algebraic equations whose solution from Lemma 4.1 is given by

. F 1 F , Fo'
Di—e___ (O Yo oy PP
@5 (Q =30 ST od)

here Q% = g*"Q,;. Then by (22) we have

J b —sd' + qu’ J 5( erbrWi,
F F .
Q= ¢/ Qud" )t~

. . . 1 F(z)”
Ni—Niei___ ~ (i _ e
* @t No—s0/ 499

J J d—sd'+pd’ J E( erbrmi' (41)
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Finally, applying Christoffel process with respect to indices 4, j, k in equation (37) we
obtain

;D = My, (42)
where
1
M = — Vka + €3 D} — lrin DY | + 545/ [olij + pilie — pilis]
/! /!
+ Nl [mrin + misji + mesji] + ﬁ(p — 5)[boelis + bojilix — boj;lix]
111
2F2 [b0|kmlmj + b0|zmkmj bo‘jmimk]
/!
Y] [b0|k(m K + mﬂ ) + bo‘ (mjﬁk + mkﬂ ) — b0|j(mi€k + mkﬂz)]
Moreover, by (38) we get M;ixy’ = 0. Besides, the equation (24) may be written as

0,Dl, = My, (43)

where My, := ¢'ry, — %ZiTD,: 1£ e D} + [m,bo‘k + mpbo); } Applying Lemma 4.1
to equations (42) and (43) imphes that

T A

where M}, = 9" Qrjx. Then by (22) we get

1

¢

F¢II

F / T\ gt
R R T

M, jxb"m’,

F(ZS//

" i i F 7\ gt
[y =T+ M+ (Mjk—XQs’Mrjkb Vo —

_
o=39/+p0/

THEOREM 5.1. Let CT = (Fék, NZ ;k) be the Cartan connection for the Finsler space

(M, F) where F is an (F, B3)- metmc with h-vector b;. Then the Cartan connection is
completely determined by the equations (19), (41) and (44).

6. Proof of Theorem 1.1

Proof. Suppose that F and F be projectively related i.e. G' — G' = Py’, where G°
and G are the geodesic spray coefficients of F' and F, respectively and P = P(x, y_)
is a scalar function on the slit tangent bundle TMy. By (22) we have D* = 2Py".
Putting it in (33) we get
2F¢' [¢/(¢ — 5¢" + pg') — 560" [(¢ — 5¢' + pd')roo — 2F ¢'s0]
Gt 56— 59/ + p& )\
n ¢" (¢ — s¢' + pd')roo — 2F¢'s0|
(¢ — s¢' + pd')A

2Py = A

b (45)
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Contracting (45) by y; := gi;4’ and using the facts that s{y; = 0 and l'y; = F, we
&' [(6—5¢"+p¢)roo—2F ¢’ 5o

obtain P = SFAG . Now let F' be projectively flat; then one has
2G" = 2G" + D' = 2Py’. Using the same calculations as above, by (33) one gets
) Fo " — ¢ + pd’ —_9F¢
hiy G + fb s+ ¢ (¢ — s Pfiﬁ )7"00/ ¢'so] my = 0.
¢ — s¢' + po 2(¢ — s¢' + pd')A
Conversely, putting (2) in (33) yields that
_ . Fo' " — s¢" + pd)rogo — 2F¢'s ,
G =Gt ( 225 sro+ ¢"[(¢ — s¢ P‘Iﬁ) 00/ @' so] mr>g”
¢ —s¢' + pg 2(¢ — s¢' + pg')A
n &' [(¢— s¢' + p¢)roo — 2F ¢’ s0] /i
20\
; i V(= s+ pd)rog — 2F ¢ s0]
(Y _ h'r" T4 Y] gl
G 39" G? + 0N
V(0= 59 4+ pd o0 — 2F P s0]N i o
=(0;GY i %
(@G + ) )e Py
This completes the proof. O

6.1 Proof of Corollary 1.2

Note that for m-root Finsler metrics we have [16]:
0A 9?A 0A
87y7;7 ij = Wa i = @a
and 2G = A" (Ag, — A,r). Also, it is not hard to get 4; = mA'~ %y, and AT =
(mAl_%yT)‘i =mAl=% (5: + (m — 2)&-”). Then after some calculations we have

4= Ao = Ay, Ag = Apyy’,  (46)

2hi; G = mA~ (AOZ- — Ay — (m— 1)A0A*%ei). (47)
Putting the above equations in (2) yields that
—m(m — 1) Aoy A 4+ m(Agi — Ayt ) A7 4+ 25;0A7 = 0.
By the following lemma, the above equation yields A,: = 0 and s;; = 0 for m # 5.

For m = 5 we get the same conclusion just by separating rational and irrational parts
of equation.

LEMMA 6.1. Let F = X/A (m > 2, m # 5), be an m-th root Finsler metric on an
open subset U C R™. Suppose that the equation VA= + QA% +OAw =0 holds,
where ¥,  and © are homogeneous polynomials in y. Then ¥ =0 =0 = 0.

Corollaries 1.3 and 1.4 are proven in a similar manner.
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7. (F,B)-metrics of Douglas type

In [4], Douglas introduced the local functions Dj w on T'My defined by

_— o3 ( ; 1 aoG™ i)

TR 9yd ok oyl n+1 oym v)
It is easy to verify that D := D} ,dz’ 2 ® dz* @ da! is a well-defined tensor on
TMy. D is called the Douglas tensor. The Finsler space (M, F) is called a Douglas
space if and only if G'y’ —G7y* is a homogeneous polynomial of degree three in y [1].

7.1 Proof of Theorem 1.5
By (33) we get Gyl — GJyt = Gyl — GIy' + HY | where

ng, ¢N [((;5 - 5¢/ =+ p¢/)T00 - 2F¢/50] (biyj - bjyi)
¢ —s¢' + pg/ 2(¢ — s¢' + p¢') A '
With the help of the above definition, if F' and F' are Douglas metrics then H* must
be a homogeneous polynomial of degree three in 3.

HY =

(shy” — shy') +

By this theorem one could obtain many new Douglas metrics from a given one.

7.2 Proof of Corollary 1.6

(i) Putting F = {/A and ¢(s) = 145 in (3) yields 2H" — (shyi —shy') /A = 0. Then
by separating rational and irrational parts of the above equation one gets shy’ = sy
and thus s;; = 0.

(ii) Here F = %/A and ¢(s) = =—; then one has ¢/(s) = ﬁ, d"(s) = 725

1—s> 1—s)3"
@(s) — s¢'(s) = (}:i)ﬂ, A= H(—fﬁi";)—;%s Putting them in (3) yields
(1 —2s)(1 4 20> — 3s)H — (1 +2b> — 3s) VA(shy’ — shy')

- ((1 — 25)r00 — 250 \/Z)) (biy? —by') = 0.

Multiplying above equation by A yields
682H™ + B[2roo(by? — by') — (4b% + 5)H] Am
+ [(1+20*)HY + 3B(shy’ — shy') — roo(D'y’ — bjyi)]A%
+ [2s0(b'y’ —Vy") — (14 20%) (s’ — sgy')] A = 0.
Similar to Lemma 6.1 (m > 3), one could easily get H;; = 0, ro0 = 0 and s;; = 0,
which yields b;; = 0.
REFERENCES

[1] S. Bacso, M. Matsumoto, On the Finsler spaces of Douglas type. A generalization of the notion
of Berwald space, Publ. Math. Debrecen, 51 (1997), 385-406.

[2] G. Chen, L. Liu, On Randers changes of m-th root Finsler metrics L = A without irre-
ducibility of A, Ann. Pol. Math., 119 (2017), 239-253.



(3]

(4]

T. Rajabi, N. Sadeghzadeh 13

S. S. Chern, Z. Shen, Riemann-Finsler Geometry, World Scientific Publishing Co. Pte. Ltd.,
Hackensack, NJ, 2005.

J.Douglas, The general geometry of paths, Ann. Math., 29 (1927-1928), 143-168.

M.K. Gupta, A.K. Gupta, h-exponential change of Finsler metric, arXiv: 1603.0543v1
[math.DG].

M.K. Gupta, P.N. Pandey, Finsler space subjected to a Kropina change with an h-vector, Facta
Univ., Ser. Math. Inf., 30(4) (2015) 513-525.

M. Hashiguchi, On conformal transformations of Finsler metrics, J. Math. Kyoto Univ., 16(1)
(1976), 25-50.

H. Izumi, Conformal transformations of Finsler spaces, Tensor, N. S., 31 (1977), 33-41.

M. Matsumoto, On transformations of locally Minkowskian space, Tensor, N. S., 22 (1971),
103-111.

M. Shahbazi Nia, A. Tayebi, E. Peyghan, On Randers changes of m-th root metrics, Int.
Electron. J. Geom., 8(1) (2015) 14-20.

Z. Shen, G. C. Yildirim, On a class of projectively flat metrics with constant flag curvature,
Canadian J. Math., 60(2) (2008), 443-456.

C. Shibata, On invariant tensors of 3-changes of Finsler metrics, J. Math. Kyoto Univ., 24(1)
(1984), 163-188.

A. Tayebi, M. Shahbazi Nia, Matsumoto Change of m-th root Finsler metrics, Publ. Inst.
Math., Nouv. Sér., 101(115) (2017), 183--190.

A. Tayebi, T. Tabatabaeifar, E. Peyghan, On Kropina Change for m-th root Finsler metrics,
Ukr. Math. J., 66(1) (2014), 160-164.

C. Yu, H. Zhu, On a new class of Finsler metrics, Differ. Geom. Appl., 29 (2011), 244--254.
Y. Yu, Y. You, On FEinstein m-th root metrics, Diff. Geom. Appl., 28 (2010), 290—294.

L. Zhou, Spherically symmetric Finsler metrics in R™, Publ. Math. Debrecen, 4870 (2012),
1-11.

(received 12.02.2019; in revised form 11.09.2019; available online 19.06.2020)

Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran

E-mail: t.rajabi.j@gmail.com

Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran

E-mail: nsadeghzadeh@qom.ac.ir



	Introduction
	Preliminaries
	 (F,)-metrics
	Spray coefficients of (F,)-metrics
	Cartan connection of (F,)-metrics
	Proof of Theorem ??
	Proof of Corollary ??

	(F,)-metrics of Douglas type
	Proof of Theorem ??
	Proof of Corollary ??


