MATEMATIČKI VESNIK MATEMATИЧКИ ВЕСНИК 73, 1 (2021), 37–42 March 2021

research paper оригинални научни рад

# ON THE ERDŐS-GYÁRFÁS CONJECTURE FOR SOME CAYLEY GRAPHS

#### Mohsen Ghasemi and Rezvan Varmazyar

**Abstract.** In 1995, Paul Erdős and András Gyárfás conjectured that for every graph X of minimum degree at least 3, there exists a non-negative integer m such that X contains a simple cycle of length  $2^m$ . In this paper, we prove that the conjecture holds for Cayley graphs of order  $2p^2$  and 4p.

### 1. Introduction

In this paper all graphs will be simple and finite and all groups will be finite. For a graph X, we let V(X), E(X) and Aut(X) denote the vertex set, the edge set, the full group of automorphisms of X, respectively.

A graph X is said to be *vertex-transitive* if Aut(X) acts transitively on V(X). The *minimum degree* of X is the minimum degree of its vertices. Also, a k-cycle is a cycle of length k.

Several questions on cycles in graphs have been posed by Erdős and his colleagues (see, e.g. [1]). In particular, in 1995 Erdős and Gyárfás [3] asked: If G is a graph with minimum degree at least three, does G have a cycle whose length is a power of 2? This is known as the Erdős-Gyárfás conjecture. In fact, Erdős and Gyárfás [3] said that "we are convinced now that this is false and no doubt there are graphs for every r every vertex of which has degree  $\geq r$  and which contain no cycle of length  $2^k$ , but we never found a counterexample even for r = 3".

Using the computer searches, Markström [6] verified the conjecture for cubic graphs of order at most 29, and found that the smallest cubic planar graph with no 4- or 8-cycles has 24 vertices. Note that this graph contains a 16-cycle. Shauger [8] proved the conjecture for  $K_{1,m}$ -free graphs of minimum degree at least m+1 or maximum degree at least 2m-1. Daniel and Shauger [2] proved the conjecture for planar claw-free graphs. Also, in [5] it is proved that the conjecture holds for 3-connected

<sup>2020</sup> Mathematics Subject Classification: 05C38, 20B25

Keywords and phrases: Erdős-Gyárfś conjecture; Cayley graphs; cycles of graphs.

#### On the Erdős-Gyárfás conjecture

cubic planar graphs (see also [7]). In [4] the authors proved that the conjecture holds for Cayley graphs on some special groups.

In this paper we study the conjecture for some families of Cayley graphs. Let G be a finite group and S a subset of G not containing the identity element 1. The Cayley digraph  $X = \operatorname{Cay}(G, S)$  on G with respect to S is defined to have vertex set V(X) = G and edge set  $E(X) = \{(g, sg) \mid g \in G, s \in S\}$ . If  $S^{-1} = S$ , then  $\operatorname{Cay}(G, S)$  can be viewed as undirected graph, identifying an undirected edge  $\{g, h\}$  with two directed edges (g, h) and (h, g). This graph is called the Cayley graph on G with respect to S. It is well-known that  $\operatorname{Aut}(X)$  contains the right regular representation  $\operatorname{R}(G)$  of G, the acting group of G by right multiplication, and X is connected if and only if  $G = \langle S \rangle$ , that is, S generates G.

Let G be a finite group and let S and T be two subsets of G not containing the identity 1 of G. If there is an  $\alpha \in \operatorname{Aut}(G)$  such that  $S^{\alpha} = T$ , then S and T are said to be equivalent, denoted by  $S \cong T$ . It is easy to see that  $\operatorname{Cay}(G, S) \cong \operatorname{Cay}(G, S^{\alpha})$ . Throughout this paper, we denote by  $\mathbb{Z}_n$  the cyclic group of order n and by  $\mathbb{Z}_n^*$  the multiplicative group of  $\mathbb{Z}_n$  consisting of numbers coprime to n. Also, an element of order 2 is called involution.

### 2. Main results

Suppose that  $X = \operatorname{Cay}(G, S)$  where  $|G| = 2p^2$ . If G is an abelian group then by [4, Theorem 1.3], G has a 4-cycle. Also, if G is non-abelian and p = 2 then G is isomorphic to the dihedral group  $D_8$  or quaternion group  $Q_8$  and by [4] X contains a simple cycle whose length is a power of two. Thus we may suppose that p > 2. From the elementary group theory we know that up to isomorphism there are three non-abelian groups of order  $2p^2$  defined as:

$$G = G_1(p) = \langle a, b \mid a^p = b^2 = 1, bab^{-1} = a^{-1} \rangle;$$
  

$$G = G_2(p) = \langle a, b, c \mid a^p = b^p = c^2 = 1 = [a, b], c^{-1}ac = a^{-1}, c^{-1}bc = b^{-1} \rangle;$$
  

$$G = G_3(p) = \langle a, b, c \mid a^p = b^p = c^2 = 1, [a, b] = [a, c] = 1, c^{-1}bc = b^{-1} \rangle.$$

If  $G = G_1(p)$  then by [4, Theorem 2.2] X has a cycle of length 4, 8 or 16. Thus we may suppose that  $G \cong G_2(p)$  or  $G \cong G_3(p)$ .

THEOREM 2.1. Every connected Cayley graph  $X = \text{Cay}(G_2(p), S)$  contains a cycle of length 4 or 16.

*Proof.* It is easy to see that  $o(a^i b^j) = p$  where  $0 \le i, j \le p$  and i, j are not zero simultaneously, and  $o(a^i b^j c) = 2$ , where  $0 \le i, j \le p - 1$ . Since X is connected it follows that S contains an involution. Thus we may suppose that  $a^i b^j c \in S$ . Since  $\operatorname{Aut}(G_2(p))$  is transitive on the set of involutions in  $G_2(p)$  we may suppose that  $c \in S$ . Now we consider the following cases.

Case 1. S contains just involutions.

We may suppose that  $a^m b^n c$  belongs to S, where  $0 \le m, n \le p-1$  and m, n are not

M. Ghasemi, R. Varmazyar

zero simultaneously. Without loss of generality we may suppose that  $n \neq 0$ . Since the map  $a \mapsto a, b \mapsto b^n$  and  $c \mapsto a^m c$  is an automorphism of  $G_2(p)$  one may suppose that  $bc \in S$ . Since X is connected graph S must contain another element of order 2, say  $a^k b^l c$ , where  $0 \leq k, l \leq p-1$ . If l = 0 then  $a^k c \in S$ . Since the map  $a \mapsto a^k, b \mapsto b$  and  $c \mapsto c$  is an automorphism of  $G_2(p)$  one may suppose that  $ac \in S$ . Thus  $\{c, bc, ac\} \subseteq S$ . Now  $(ab^{-2}, b^2c, b^{-1}, abc, a^{-1}, a^2c, a^{-2}b, a^2b^{-1}c, a^{-1}b, ac, 1, c, a, a^{-1}bc, ab^{-1}, a^{-1}b^2c, ab^{-2})$  is a 16-cycle in X. Thus we may suppose that  $l \neq 0$ . Again since the map  $a \mapsto a, b \mapsto b^{-1}$  and  $c \mapsto a^k c$  is an automorphism of  $G_2(p)$  one may suppose that  $l \neq 0$ . Again since the map  $a \mapsto a$ , bertherefore  $a \mapsto b^{-1}$  and  $c \mapsto a^k c$  is an automorphism of  $G_2(p)$  one may suppose that  $b^{-1}c \in S$ . Also, we know that  $c \in S$ . Thus  $\{c, bc, b^{-1}c\} \subseteq S$ . Now (1, c, b, cb, 1) is a 4-cycle in X.

Case 2. S contains an element of order p.

We may suppose that  $a^m b^n \in S$ , where  $0 \leq m, n \leq p-1$ . First suppose that m = 1 and n = 0. Then  $a \in S$  and so  $\{c, a\} \subseteq S$ . Now  $(1, c, ac, a^{-1}, 1)$  is a 4-cycle in X. Now suppose that  $m \neq 1$  and  $n \neq 0$ . It is easy to see that the map  $a \mapsto a$ ,  $b \mapsto a^m b^n$  and  $c \mapsto c$  is an automorphism of  $G_2(p)$ . Thus we may suppose that  $b \in S$ . Thus  $\{b, c\} \subseteq S$  and so  $(1, c, bc, b^{-1}, 1)$  is a 4-cycle in X.  $\Box$ 

THEOREM 2.2. Every connected Cayley graph  $X = Cay(G_3(p), S)$  contains a cycle of length 4, 8 or 16.

*Proof.* It is easy to see that  $o(a^i b^j c) = 2p$ , where  $0 < i \le p-1$  and  $0 \le j \le p-1$ . We have  $o(a^i b^j) = p$ , where  $0 \le i, j \le p-1$  and i, j are not zero simultaneously. Also,  $o(b^i c) = 2$ , where  $0 \le i \le p-1$ . Since X is connected it follows that S does not contain just involutions. Thus we may consider the following cases: **Case 1.** S contains an involution and element of order p.

We may suppose that  $a^i b^j \in S$ . If i = 0 or j = 0 than  $a \in S$  or  $b \in S$ . Since  $S = S^{-1}$  it follows that  $\{a, a^{-1}\} \subseteq S$  or  $\{b, b^{-1}\} \subseteq S$ . Also, since  $\operatorname{Aut}(G_3(p))$  is transitive on the set of involutions in  $G_3(p)$ , one may assume that  $c \in S$ . Thus either  $\{a, a^{-1}, c\} \subseteq S$  or  $\{b, c, b^{-1}\} \subseteq S$ . For the first case (1, a, ac, c, 1) is a 4-cycle in X and for the second case  $(1, c, b^{-1}c, b, 1)$  is a 4-cycle in X. Thus we may suppose that  $i \neq 0$  and  $j \neq 0$ . The map  $a \mapsto a^i$ ,  $b \mapsto b^j$  and  $c \mapsto c$  is an automorphism of  $G_3(p)$  and so  $\{ab, a^{-1}b^{-1}, c\} \subseteq S$ . Now  $(1, c, abc, ab^{-1}, a^2, ca^2, cab, ab, 1)$  is a 8-cycle in X.

Case 2. S contains an involution and an element of order 2p.

We may suppose that  $a^i b^j c \in S$ , where  $0 < i \leq p-1$  and  $0 \leq j \leq p-1$ . Since  $\operatorname{Aut}(G_3(p))$  is transitive on elements of order 2p, we may suppose that  $ac \in S$ . Also, since  $S = S^{-1}$  it implies that  $a^{-1}c \in S$ . Suppose that  $b^m c$  is an involution belongs to S. If m = 0 then  $c \in S$ . Thus  $\{ac, a^{-1}c, c\} \subseteq S$  and (1, c, a, ac, 1) is a 4-cycle in X. Thus we may suppose that  $m \neq 0$ . The map  $a \mapsto a, b \mapsto b^m$  and  $c \mapsto c$  is an automorphism of  $G_3(p)$  and so we may suppose that  $bc \in S$ . Thus  $\{ac, a^{-1}c, c\} \subseteq S$ . Thus  $\{ac, a^{-1}c, bc\} \subseteq S$ . First suppose that p > 3. It is easy to see that  $(ab, b^{-1}c, a^{-1}b, a^{-2}b^{-1}c, a^{-3}b, a^{-3}c, a^{-2}, a^{-2}bc, a^{-1}b^{-1}, a^{-1}b^2c, b^{-2}, ab^2c, ab^{-1}, bc, 1, ac, ab)$  is a 16-cycle in X. Now suppose that p = 3. Now  $(b, c, a^2, a^2bc, b^2, b^2c, a^2b, ab^2c, b)$  is a 8-cycle in X.

Case 3. S contains an element of order p and 2p.

#### On the Erdős-Gyárfás conjecture

In this case we may suppose that  $a^i b^j c \in S$ , where  $0 < i \leq p-1$  and  $0 \leq j \leq p-1$ . First suppose that j = 0. Then  $a^i c \in S$ . Since  $S = S^{-1}$  and the map  $a \mapsto a^i$ ,  $b \mapsto b$ ,  $c \mapsto c$  is an automorphism of  $G_3(p)$ , it follows that  $\{ac, a^{-1}c\} \subseteq S$ . Also, suppose that  $a^m b^n$  where  $0 \leq m, n \leq p-1$ , is an element of order p which belongs to S. If n = 0 then  $a^m \in S$ . Now the map  $a \mapsto a^m$ ,  $b \mapsto b$ ,  $c \mapsto c$  is an automorphism of  $G_3(p)$  and so we may suppose that  $a \in S$ . Thus  $\{ac, a^{-1}c, a\} \subseteq S$  and  $(1, ac, c, a^{-1}c, 1)$  is a 4-cycle in X. If  $n \neq 0$  then the map  $a \mapsto a, b \mapsto b^n$ ,  $c \mapsto c$  is an automorphism of  $G_3(p)$  and so we may suppose that  $a^m b \in S$ . Therefore  $\{ac, a^{-1}c, a^m b, a^{-m}b^{-1}\} \subseteq S$ . Now it is easy to see that  $(a^{-m+2}b^{-1}, a^{1-m}bc, a^{-m}b^{-1}, 1, a^m b, a^{m+1}b^{-1}c, a^{m+2}b, a^2, a^{-m+2}b^{-1})$  is a 8-cycle in X. Now suppose that  $j \neq 0$ . Since  $S = S^{-1}$  and the map  $a \mapsto a^i$ ,  $b \mapsto b^j$ ,  $c \mapsto c$  is an automorphism of  $G_3(p)$  it follows that  $\{abc, a^{-1}bc\} \subseteq S$ . Also, suppose that  $a^m b^n$  is an element of order p which belongs to S. If n = 0 then  $\{a, abc, a^{-1}bc\} \subseteq S$  and  $(1, abc, bc, a^{-1}bc, 1)$  is a 4-cycle in X. Also, if  $n \neq 0$  then the map  $a \mapsto a, b \mapsto b^i$ ,  $c \mapsto c^{-1}c$  is an automorphism of  $G_3(p)$ , it follows that  $\{abc, a^{-1}bc\} \subseteq S$ . Also, suppose that  $a^m b^n$  is an element of order p which belongs to S. If n = 0 then  $\{a, abc, a^{-1}bc\} \subseteq S$  and  $(1, abc, bc, a^{-1}bc, 1)$  is a 4-cycle in X. Also, if  $n \neq 0$  then the map  $a \mapsto a, b \mapsto b^n$ ,  $c \mapsto c$  is an automorphism of  $G_3(p)$  and so we may suppose that  $a^m b^n$  is an element of order p which belongs to S. If n = 0 then  $\{a, abc, a^{-1}bc\} \subseteq S$  and  $(1, abc, bc, a^{-1}bc, 1)$  is a 4-cycle in X. Also, if  $n \neq 0$  then the map  $a \mapsto a, b \mapsto b^n$ ,  $c \mapsto c$  is an automorphism of  $G_3(p)$  and so we may suppose that  $a^m b \in S$ . Again since the map  $a \mapsto a, b \mapsto b, c \mapsto b^{-1}c$  is an automorphism of  $G_3(p)$  it follows that  $\{ac, a^{-1}c\} \subseteq S$ . Th

Case 4. S contains just elements of order 2p.

We may suppose that  $a^i b^j c \in S$ , where  $0 < i \leq p-1$  and  $0 \leq j \leq p-1$ . Since  $\operatorname{Aut}(G_3(p))$  is transitive on elements of order 2p we may suppose that  $\{ac, a^{-1}c\} \subseteq S$ . Also, suppose that  $a^m b^n c \in S$ , where  $0 < m \leq p-1$  and  $0 \leq n \leq p-1$ . Since X is connected and S contains just elements of order 2p we may suppose that  $n \neq 0$ . Now again since the map  $a \mapsto a, b \mapsto b^n, c \mapsto c$  is an automorphism of  $G_3(p)$  we may suppose that  $\{ac, a^{-1}c, a^m bc, a^{-m}bc\} \subseteq S$ . If m = 1 then  $(1, abc, a^2, ac, 1)$  is a 4-cycle in X. Thus we may suppose that m > 1. Now  $(a^m b^{-1}c, a^{m-1}b, a^{2m-1}c, a^{2m}, a^m bc, 1, ac, a^{m+1}b, a^m b^{-1}c)$  is a 8-cycle in X.

Now we consider the Cayley graphs of order 4p. Suppose that X = Cay(H, S), where |H| = 4p. If G is an abelian group then by [4, Theorem 1.3], G has a 4-cycle. Also, if p = 2 then G is isomorphic to the dihedral group  $D_8$  or quaternion group  $Q_8$  and by [4], X contains a simple cycle whose length is a power of two. Thus we may suppose that p > 2. From the elementary group theory we know that up to isomorphism there are three non-abelian groups of order 4p defined as:

$$\begin{split} H &= H_1(p) = \langle a, b \mid a^{2p} = b^2 = 1, bab^{-1} = a^{-1} \rangle; \\ H &= H_2(p) = \langle a, b \mid a^{2p} = 1, b^2 = a^p, b^{-1}ab = a^{-1} \rangle; \\ H &= H_3(p) = \langle a, b \mid a^p = b^4 = 1, b^{-1}ab = a^r, r^2 \equiv -1(p) \rangle. \end{split}$$

If  $H = H_1(p)$  then by [4, Theorem 2.2] X has a cycle of length 4, 8 or 16. Thus we may suppose that  $H \cong H_2(p)$  or  $H \cong H_3(p)$ .

THEOREM 2.3. Every connected Cayley graph  $X = Cay(H_2(p), S)$  contains a 4-cycle.

*Proof.* Clearly  $H = H_2(p) = \{a^i, ba^i \mid 0 \le i \le 2p - 1\}$ . Since H cannot be generated by elements in  $\langle a \rangle$ , one may assume that  $ba^i \in S$ . Furthermore, a and  $ba^i$   $(0 \le i \le 2p - 1)$ .

40

M. Ghasemi, R. Varmazyar

2p-1) have the same relations as a and b. This implies there is an automorphism of H which maps a to a and  $ba^i$  to b. Thus one may assume that  $b, b^{-1} \in S$ . Now we consider the following cases.

Case 1.  $a^m \in S$ , where  $m \neq 0$ .

First suppose that (m, 2p) = 1. Now the map  $a \mapsto a^m$ ,  $b \mapsto b$  is an automorphism of  $H_2(p)$  and so we may suppose that  $\{a, a^{-1}\} \subseteq S$ . Now it is easy to see that  $(1, a^{-1}, ab, b, 1)$  is a 4-cycle in X. Now suppose that  $(m, 2p) \neq 1$ . Since  $H = \langle S \rangle$ , it follows that either  $a^i \in S$  where (i, 2p) = 1 or  $ba^j \in S$  where (j, 2m) = 1. For the former case with the similar arguments as before  $\{a, a^{-1}\} \subseteq S$  and  $(1, a^{-1}, ab, b, 1)$  is a 4-cycle in X. For the latter case the map  $a \mapsto a^j$ ,  $b \mapsto b$  is an automorphism of  $H_2(p)$  and so we may suppose that  $\{b, b^{-1}, ba, a^{-1}b^{-1}\} \subseteq S$ . Now  $(1, b, b^2, a^{-1}b, 1)$  is a 4-cycle in X.

## Case 2. $ba^m \in S$ .

First suppose that (m, 2p) = 1. In this case again the map  $a \mapsto a^m$ ,  $b \mapsto b$ is an automorphism of  $H_2(p)$  and so we may suppose that  $\{ba, a^{-1}b^{-1}\} \subseteq S$ . Now  $(1, b, b^2, a^{-1}b, 1)$  is a 4-cycle in  $H_2(p)$ . Now suppose that  $(m, 2p) \neq 1$ . If m = p then  $\{b, b^{-1}, ba^m, a^{-m}b^{-1}\} \subseteq S$ . Since  $H = \langle S \rangle$  one may suppose that either  $a^i \in S$  where (i, 2p) = 1 or  $ba^j \in S$  where (j, 2p) = 1. For the former case the map  $a \mapsto a^i, b \mapsto b$  is an automorphism of  $H_2(p)$  and so  $\{b, b^{-1}, a, a^{-1}\} \subseteq S$  and  $(1, a^{-1}, ab, b, 1)$  is a 4-cycle in X. Also, for the latter case the map  $a \mapsto a^j, b \mapsto b$  is an automorphism of H and so  $\{b, b^{-1}, ba, a^{-1}b^{-1}\} \subseteq S$ . Now  $(1, b, b^2, a^{-1}b, 1)$  is a 4-cycle in X. Therefore we may suppose that m = 2. Since  $H = \langle S \rangle$  we may suppose that either  $a^i \in S$  where (i, 2p) = 1 or  $ba^j \in S$  where (j, 2p) = 1. Now with the similar arguments as before we get a 4-cycle in X.

THEOREM 2.4. Every connected Cayley graph  $X = Cay(H_3(p), S)$  contains a 4-cycle.

*Proof.* Clearly  $H = H_3(p) = \{a^i, ba^i, b^2a^i, b^3a^i \mid 0 \le i \le p-1\}$ . Furthermore  $o(ba^i) = o(b^3a^i) = 4$  and  $o(b^2a^i) = 2$ . Now we consider the following cases. **Case 1.**  $a^i \in S$ , where  $i \ne 0$ .

In this case the map  $a \mapsto a^i$ ,  $b \mapsto b$  is an automorphism of  $H_3(p)$  and so we may suppose that  $\{a, a^{-1}\} \subseteq S$ . Since  $G = \langle S \rangle$ , it follows that either  $ba^i \in S$  or  $b^3 a^i \in S$ . In both cases the map  $a \mapsto a$ ,  $b \mapsto b^t a^i$  ( $t \in \{1,3\}$ ) is an automorphism of  $H_3(p)$ . Thus  $\{b, b^{-1}\} \subseteq S$  and  $(1, b, b^2, b^3, 1)$  is a 4-cycle in X.

### Case 2. $a^i \notin S$ .

Since  $G = \langle S \rangle$ , one may assume that either  $ba^i \in S$  or  $b^3a^i \in S$ . Also, the map  $a \mapsto a, b \mapsto b^t a^i$   $(t \in \{1,3\})$  is an automorphism of  $H_3(p)$ . Thus  $\{b, b^{-1}\} \subseteq S$  and  $(1, b, b^2, b^3, 1)$  is a 4-cycle in X.

ACKNOWLEDGEMENT. The authors are indebted to the referee for comments that have improved this paper.

## On the Erdős-Gyárfás conjecture

References

- J.A. Bondy, Extremal problems of Paul Erdős on circuits in graphs, in: Paul Erdős and his Mathematics, II, Bolyai Soc. Math. Stud., 11, Janos Bolyai Math. Soc., Budapest (2002), 135–156.
- [2] D. Daniel, S.E. Shauger, A result on the Erdős-Gyarfas conjecture in planer graphs, In: Proceedings of the Thirty-Second Southeastern International Conference on Combinatorics, Graph Theory and Computing (Baton Rouge, LA, 2001), 153, 129–139.
- [3] P. Erdős, Some old and new problems in various branches of combinatorics, Discrete Math., 165/166 (1997), 227–231.
- [4] M.H Ghaffari, Z. Mostaghim, Erdős-Gyarfas conjecture for some families of Cayley graphs, Aequat. Math., 92 (2017), 1–6.
- [5] C.C. Heckman, R. Krakovski, Erdős-Gyarfas conjecture for cubic planar graphs, Electron. J. Comb., 20(2) (2013), 7–43.
- [6] K. Markström, Extremal graphs for some problems on cycles in graphs, In: Proceedings of the Thirty-Fifth Southeastern International Conference on Combinatorics, Graph Theory and Computing, 171 (2004), 179–192.
- [7] P.S. Nowbandegani, H. Esfandiari, M.H. Shirdareh Haghighi, B. Khodakhast, Note on the Erdős-Gyarfas conjecture in claw-free graphs, Discuss. Math. Graph Theory., 34 (2014), 635– 640.
- [8] S.E. Shauger, Results on the Erdős-Gyarfas conjecture in K<sub>1,m</sub>-free graphs, In: Proceedings of the Twenty-Ninth Southeastern International Conference on Combinatorics, Graph Theory and Computing(Boca Raton, FL, 1998), 134 (1998), 61–65.

(received 18.05.2019; in revised form 21.12.2019; available online 15.06.2020)

Department of Mathematics, Urmia University, Urmia 57135, Iran

*E-mail*: m.ghasemi@urmia.ac.ir

Department of Mathematics, Khoy Branch, Islamic Azad University, Khoy 58168-44799, Iran *E-mail:* varmazyar@iaukhoy.ac.ir

42