
MATEMATIČKI VESNIK

MATEMATIQKI VESNIK

73, 1 (2021), 37–42

March 2021

research paper

originalni nauqni rad
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Abstract. In 1995, Paul Erdős and András Gyárfás conjectured that for every graph X
of minimum degree at least 3, there exists a non-negative integer m such that X contains
a simple cycle of length 2m. In this paper, we prove that the conjecture holds for Cayley
graphs of order 2p2 and 4p.

1. Introduction

In this paper all graphs will be simple and finite and all groups will be finite. For a
graph X, we let V (X), E(X) and Aut(X) denote the vertex set, the edge set, the full
group of automorphisms of X, respectively.

A graph X is said to be vertex-transitive if Aut(X) acts transitively on V (X).
The minimum degree of X is the minimum degree of its vertices. Also, a k-cycle is a
cycle of length k.

Several questions on cycles in graphs have been posed by Erdős and his colleagues
(see, e.g. [1]). In particular, in 1995 Erdős and Gyárfás [3] asked: If G is a graph with
minimum degree at least three, does G have a cycle whose length is a power of 2?
This is known as the Erdős-Gyárfás conjecture. In fact, Erdős and Gyárfás [3] said
that “we are convinced now that this is false and no doubt there are graphs for every
r every vertex of which has degree ≥ r and which contain no cycle of length 2k, but
we never found a counterexample even for r = 3”.

Using the computer searches, Markström [6] verified the conjecture for cubic
graphs of order at most 29, and found that the smallest cubic planar graph with no
4- or 8-cycles has 24 vertices. Note that this graph contains a 16-cycle. Shauger [8]
proved the conjecture for K1,m–free graphs of minimum degree at least m+1 or max-
imum degree at least 2m−1. Daniel and Shauger [2] proved the conjecture for planar
claw-free graphs. Also, in [5] it is proved that the conjecture holds for 3-connected
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cubic planar graphs (see also [7]). In [4] the authors proved that the conjecture holds
for Cayley graphs on some special groups.

In this paper we study the conjecture for some families of Cayley graphs. Let G
be a finite group and S a subset of G not containing the identity element 1. The
Cayley digraph X = Cay(G,S) on G with respect to S is defined to have vertex set
V (X) = G and edge set E(X) = {(g, sg) | g ∈ G, s ∈ S}. If S91 = S, then Cay(G,S)
can be viewed as undirected graph, identifying an undirected edge {g, h} with two
directed edges (g, h) and (h, g). This graph is called the Cayley graph on G with
respect to S. It is well-known that Aut(X) contains the right regular representation
R(G) of G, the acting group of G by right multiplication, and X is connected if and
only if G = 〈S〉, that is, S generates G.

Let G be a finite group and let S and T be two subsets of G not containing the
identity 1 of G. If there is an α ∈ Aut(G) such that Sα = T , then S and T are said
to be equivalent, denoted by S ∼= T . It is easy to see that Cay(G,S) ∼= Cay(G,Sα).
Throughout this paper, we denote by Zn the cyclic group of order n and by Z∗

n the
multiplicative group of Zn consisting of numbers coprime to n. Also, an element of
order 2 is called involution.

2. Main results

Suppose that X = Cay(G,S) where |G| = 2p2. If G is an abelian group then by [4,
Theorem 1.3], G has a 4-cycle. Also, ifG is non-abelian and p = 2 thenG is isomorphic
to the dihedral group D8 or quaternion group Q8 and by [4] X contains a simple cycle
whose length is a power of two. Thus we may suppose that p > 2. From the elementary
group theory we know that up to isomorphism there are three non-abelian groups of
order 2p2 defined as:

G = G1(p) = 〈a, b | ap = b2 = 1, bab91 = a91〉;
G = G2(p) = 〈a, b, c | ap = bp = c2 = 1 = [a, b], c91ac = a91, c91bc = b91〉;
G = G3(p) = 〈a, b, c | ap = bp = c2 = 1, [a, b] = [a, c] = 1, c91bc = b91〉.

If G = G1(p) then by [4, Theorem 2.2] X has a cycle of length 4, 8 or 16. Thus
we may suppose that G ∼= G2(p) or G ∼= G3(p).

Theorem 2.1. Every connected Cayley graph X = Cay(G2(p), S) contains a cycle of
length 4 or 16.

Proof. It is easy to see that o(aibj) = p where 0 ≤ i, j ≤ p and i, j are not zero
simultaneously, and o(aibjc) = 2, where 0 ≤ i, j ≤ p − 1. Since X is connected it
follows that S contains an involution. Thus we may suppose that aibjc ∈ S. Since
Aut(G2(p)) is transitive on the set of involutions in G2(p) we may suppose that c ∈ S.
Now we consider the following cases.
Case 1. S contains just involutions.

We may suppose that ambnc belongs to S, where 0 ≤ m,n ≤ p−1 and m,n are not
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zero simultaneously. Without loss of generality we may suppose that n 6= 0. Since the
map a 7→ a, b 7→ bn and c 7→ amc is an automorphism of G2(p) one may suppose that
bc ∈ S. Since X is connected graph S must contain another element of order 2, say
akblc, where 0 ≤ k, l ≤ p−1. If l = 0 then akc ∈ S. Since the map a 7→ ak, b 7→ b and
c 7→ c is an automorphism ofG2(p) one may suppose that ac ∈ S. Thus {c, bc, ac} ⊆ S.
Now (ab92, b2c, b91, abc, a91, a2c, a92b, a2b91c, a91b, ac, 1, c, a, a91bc, ab91, a91b2c, ab92) is
a 16-cycle in X. Thus we may suppose that l 6= 0. Again since the map a 7→ a,
b 7→ b91 and c 7→ akc is an automorphism of G2(p) one may suppose that b91c ∈ S.
Also, we know that c ∈ S. Thus {c, bc, b91c} ⊆ S. Now (1, c, b, cb, 1) is a 4-cycle in X.

Case 2. S contains an element of order p.

We may suppose that ambn ∈ S, where 0 ≤ m,n ≤ p − 1. First suppose that
m = 1 and n = 0. Then a ∈ S and so {c, a} ⊆ S. Now (1, c, ac, a91, 1) is a 4-cycle
in X. Now suppose that m 6= 1 and n 6= 0. It is easy to see that the map a 7→ a,
b 7→ ambn and c 7→ c is an automorphism of G2(p). Thus we may suppose that b ∈ S.
Thus {b, c} ⊆ S and so (1, c, bc, b91, 1) is a 4-cycle in X.

Theorem 2.2. Every connected Cayley graph X = Cay(G3(p), S) contains a cycle of
length 4, 8 or 16.

Proof. It is easy to see that o(aibjc) = 2p, where 0 < i ≤ p− 1 and 0 ≤ j ≤ p− 1. We
have o(aibj) = p, where 0 ≤ i, j ≤ p − 1 and i, j are not zero simultaneously. Also,
o(bic) = 2, where 0 ≤ i ≤ p − 1. Since X is connected it follows that S does not
contain just involutions. Thus we may consider the following cases:

Case 1. S contains an involution and element of order p.

We may suppose that aibj ∈ S. If i = 0 or j = 0 than a ∈ S or b ∈ S. Since
S = S91 it follows that {a, a91} ⊆ S or {b, b91} ⊆ S. Also, since Aut(G3(p)) is
transitive on the set of involutions in G3(p), one may assume that c ∈ S. Thus either
{a, a91, c} ⊆ S or {b, c, b91} ⊆ S. For the first case (1, a, ac, c, 1) is a 4-cycle in X and
for the second case (1, c, b91c, b, 1) is a 4-cycle in X. Thus we may suppose that i 6= 0
and j 6= 0. The map a 7→ ai, b 7→ bj and c 7→ c is an automorphism of G3(p) and so
{ab, a91b91, c} ⊆ S. Now (1, c, abc, ab91, a2, ca2, cab, ab, 1) is a 8-cycle in X.

Case 2. S contains an involution and an element of order 2p.

We may suppose that aibjc ∈ S, where 0 < i ≤ p−1 and 0 ≤ j ≤ p−1. Since
Aut(G3(p)) is transitive on elements of order 2p, we may suppose that ac ∈ S. Also,
since S = S91 it implies that a91c ∈ S. Suppose that bmc is an involution belongs to S.
If m = 0 then c ∈ S. Thus {ac, a91c, c} ⊆ S and (1, c, a, ac, 1) is a 4-cycle in X. Thus
we may suppose that m 6= 0. The map a 7→ a, b 7→ bm and c 7→ c is an automorphism
of G3(p) and so we may suppose that bc ∈ S. Thus {ac, a91c, bc} ⊆ S. First suppose
that p > 3. It is easy to see that (ab, b91c, a91b, a92b91c, a93b, a93c, a92, a92bc, a91b91,
a91b2c, b92, ab2c, ab91, bc, 1, ac, ab) is a 16-cycle in X. Now suppose that p = 3. Now
(b, c, a2, a2bc, b2, b2c, a2b, ab2c, b) is a 8-cycle in X.

Case 3. S contains an element of order p and 2p.
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In this case we may suppose that aibjc ∈ S, where 0 < i ≤ p−1 and 0 ≤ j ≤ p−1.
First suppose that j = 0. Then aic ∈ S. Since S = S91 and the map a 7→ ai, b 7→ b,
c 7→ c is an automorphism of G3(p), it follows that {ac, a91c} ⊆ S. Also, suppose that
ambn where 0 ≤ m,n ≤ p− 1, is an element of order p which belongs to S. If n = 0
then am ∈ S. Now the map a 7→ am, b 7→ b, c 7→ c is an automorphism of G3(p) and
so we may suppose that a ∈ S. Thus {ac, a91c, a} ⊆ S and (1, ac, c, a91c, 1) is a 4-cycle
in X. If n 6= 0 then the map a 7→ a, b 7→ bn, c 7→ c is an automorphism of G3(p)
and so we may suppose that amb ∈ S. Therefore {ac, a91c, amb, a9mb91} ⊆ S. Now it
is easy to see that (a9m+2b91, a1−mbc, a9mb91, 1, amb, am+1b91c, am+2b, a2, a9m+2b91)
is a 8-cycle in X. Now suppose that j 6= 0. Since S = S91 and the map a 7→ ai,
b 7→ bj , c 7→ c is an automorphism of G3(p), it follows that {abc, a91bc} ⊆ S. Also,
suppose that ambn is an element of order p which belongs to S. If n = 0 then
{a, abc, a91bc} ⊆ S and (1, abc, bc, a91bc, 1) is a 4-cycle in X. Also, if n 6= 0 then the
map a 7→ a, b 7→ bn, c 7→ c is an automorphism of G3(p) and so we may suppose that
amb ∈ S. Again since the map a 7→ a, b 7→ b, c 7→ b91c is an automorphism of G3(p) it
follows that {ac, a91c} ⊆ S. Therefore {ac, a91c, amb, a9mb91} ⊆ S. Now it is easy to
see that (a9m+2b91, a1−mbc, a9mb91, 1, amb, am+1b91c, am+2b, a2, a9m+2b91) is a 8-cycle
in X.

Case 4. S contains just elements of order 2p.

We may suppose that aibjc ∈ S, where 0 < i ≤ p−1 and 0 ≤ j ≤ p−1. Since
Aut(G3(p)) is transitive on elements of order 2p we may suppose that {ac, a91c} ⊆ S.
Also, suppose that ambnc ∈ S, where 0 < m ≤ p−1 and 0 ≤ n ≤ p−1. Since X is con-
nected and S contains just elements of order 2p we may suppose that n 6= 0. Now again
since the map a 7→ a, b 7→ bn, c 7→ c is an automorphism of G3(p) we may suppose that
{ac, a91c, ambc, a9mbc} ⊆ S. If m = 1 then (1, abc, a2, ac, 1) is a 4-cycle in X. Thus we
may suppose thatm > 1. Now (amb91c, am91b, a2m91c, a2m, ambc, 1, ac, am+1b, amb91c)
is a 8-cycle in X.

Now we consider the Cayley graphs of order 4p. Suppose that X = Cay(H,S),
where |H| = 4p. If G is an abelian group then by [4, Theorem 1.3], G has a 4-cycle.
Also, if p = 2 then G is isomorphic to the dihedral group D8 or quaternion group
Q8 and by [4], X contains a simple cycle whose length is a power of two. Thus we
may suppose that p > 2. From the elementary group theory we know that up to
isomorphism there are three non-abelian groups of order 4p defined as:

H = H1(p) = 〈a, b | a2p = b2 = 1, bab91 = a91〉;
H = H2(p) = 〈a, b | a2p = 1, b2 = ap, b91ab = a91〉;
H = H3(p) = 〈a, b | ap = b4 = 1, b91ab = ar, r2 ≡ −1(p)〉.

If H = H1(p) then by [4, Theorem 2.2] X has a cycle of length 4, 8 or 16. Thus we
may suppose that H ∼= H2(p) or H ∼= H3(p).

Theorem 2.3. Every connected Cayley graph X = Cay(H2(p), S) contains a 4-cycle.

Proof. Clearly H = H2(p) = {ai, bai | 0 ≤ i ≤ 2p− 1}. Since H cannot be generated
by elements in 〈a〉, one may assume that bai ∈ S. Furthermore, a and bai (0 ≤ i ≤
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2p− 1) have the same relations as a and b. This implies there is an automorphism of
H which maps a to a and bai to b. Thus one may assume that b, b91 ∈ S. Now we
consider the following cases.
Case 1. am ∈ S, where m 6= 0.

First suppose that (m, 2p) = 1. Now the map a 7→ am, b 7→ b is an automorphism
of H2(p) and so we may suppose that {a, a91} ⊆ S. Now it is easy to see that
(1, a91, ab, b, 1) is a 4-cycle in X. Now suppose that (m, 2p) 6= 1. Since H = 〈S〉, it
follows that either ai ∈ S where (i, 2p) = 1 or baj ∈ S where (j, 2m) = 1. For the
former case with the similar arguments as before {a, a91} ⊆ S and (1, a91, ab, b, 1) is
a 4-cycle in X. For the latter case the map a 7→ aj , b 7→ b is an automorphism of
H2(p) and so we may suppose that {b, b91, ba, a91b91} ⊆ S. Now (1, b, b2, a91b, 1) is a
4-cycle in X.

Case 2. bam ∈ S.

First suppose that (m, 2p) = 1. In this case again the map a 7→ am, b 7→ b
is an automorphism of H2(p) and so we may suppose that {ba, a91b91} ⊆ S. Now
(1, b, b2, a91b, 1) is a 4-cycle in H2(p). Now suppose that (m, 2p) 6= 1. If m = p then
{b, b91, bam, a9mb91} ⊆ S. Since H = 〈S〉 one may suppose that either ai ∈ S where
(i, 2p) = 1 or baj ∈ S where (j, 2p) = 1. For the former case the map a 7→ ai, b 7→ b is
an automorphism of H2(p) and so {b, b91, a, a91} ⊆ S and (1, a91, ab, b, 1) is a 4-cycle
in X. Also, for the latter case the map a 7→ aj , b 7→ b is an automorphism of H
and so {b, b91, ba, a91b91} ⊆ S. Now (1, b, b2, a91b, 1) is a 4-cycle in X. Therefore we
may suppose that m = 2. Since H = 〈S〉 we may suppose that either ai ∈ S where
(i, 2p) = 1 or baj ∈ S where (j, 2p) = 1. Now with the similar arguments as before
we get a 4-cycle in X.

Theorem 2.4. Every connected Cayley graph X = Cay(H3(p), S) contains a 4-cycle.

Proof. Clearly H = H3(p) = {ai, bai, b2ai, b3ai | 0 ≤ i ≤ p − 1}. Furthermore
o(bai) = o(b3ai) = 4 and o(b2ai) = 2. Now we consider the following cases.
Case 1. ai ∈ S, where i 6= 0.

In this case the map a 7→ ai, b 7→ b is an automorphism of H3(p) and so we may
suppose that {a, a91} ⊆ S. Since G = 〈S〉, it follows that either bai ∈ S or b3ai ∈ S.
In both cases the map a 7→ a, b 7→ btai (t ∈ {1, 3}) is an automorphism of H3(p).
Thus {b, b91} ⊆ S and (1, b, b2, b3, 1) is a 4-cycle in X.

Case 2. ai /∈ S.

Since G = 〈S〉, one may assume that either bai ∈ S or b3ai ∈ S. Also, the map
a 7→ a, b 7→ btai (t ∈ {1, 3}) is an automorphism of H3(p). Thus {b, b91} ⊆ S and
(1, b, b2, b3, 1) is a 4-cycle in X.
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