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Abstract. The purpose of this paper is to introduce the concept of soft proximity bases
and subbases. We determine the relation between proximity bases (subbases) and soft prox-
imity bases (subbases). Further, we have demonstrated that the set of all soft proximities
forms a complete lattice. Also, we substantiate a few results analogous to the ones that hold
for soft proximity spaces.

1. Introduction

D. Molodstov [19] initiated a different approach for working with uncertainties by
introducing the novel concept of a soft set. The soft set can be used for modelling
problems in computer science, engineering physics, medical science etc. This theory
has several applications in many different fields and play a vital role in decision-making
problems.

Maji et al. [17, 18] worked on this theory and gave the first practical application
in decision-making problems. Chen et al. [3], Kong et al. [14] and then Ma et al. [16]
gave their approaches for reduction of problems in soft sets. Pei and Miao [23] also
contributed in the development of soft set theory. Ali et al. [1] introduced some
new operations on soft sets. Soft topological spaces were introduced by Shabir and
Naz [24]. Further, the research in soft topological space has been done by many
mathematicians.

In 1951, Efremovic [7, 8] gave axioms for proximity and showed that a metric
space and a topological group can be generalized by using proximity in a natural
manner. In [8], closure of a set in terms of proximity to introduce a topology in a
proximity space was defined. Many significant topological problems can be simplified
by using a simple conceptual approach of proximity. For example: compactifications,
the problem of continuous extensions of functions etc. Smirnov [26, 27], Naimpally
and Warrack [20] did the most substantial and extensive work on proximity spaces.
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76 Soft proximity bases and subbases

Bases for Efremovic proximity were studied by Császár et al. [4], Njastad [22], and
Sharma [25]. Initially, the concept of proximity was merged with fuzzy set and later
in subsequent years, with the soft set by many researchers. For the first time, Hazra
et al. [9] brought out the concept of soft proximity. They [10] also defined a differ-
ent concept of proximity similar to the axioms of basic proximity and termed it as
proximity of soft sets. Then, Kandil et al. [11] made a base of the axioms given by
Efremovic to define soft proximity spaces. After that, Kandil et al. [12] made use of
an ideal to define soft I-proximity. Further, Demir et al. [6] gave his contribution to
the study of soft proximity spaces in Kandil et al.’s sense [11].

In this paper, we have utilized proximity base [25] and soft set [19] to introduce
soft proximity base and subbase. Multiple theorems in soft proximity spaces are
remarkably simplified by applying soft proximity bases (proximity subbases). We
also propose an algorithm to generate a soft proximity from soft proximity bases
and subbases. Further, we identify the relation between two different soft proximi-
ties generated and induced through two different ways. Finally, we establish a few
results analogous to the ones that hold for soft proximity spaces. For example, soft
p-continuity and product soft proximity have been characterized in terms of soft prox-
imity bases and subbases.

2. Preliminaries

In this section, we recap some basic results including soft set, soft topology, soft
proximity space, proximity base, proximity subbase etc. Let X be an initial universe,
P(X) be the power set of X and E be a set of parameter for X throughout this paper.

Definition 2.1. [19] A soft set F on the universe X with the set of parameters E
is defined by the set of ordered pairs: F = {(e,F (e)) ∶ e ∈ E, F (e) ∈ P(X)}, where F
is a mapping given by F ∶ E → P(X).

In this paper, the family of all soft sets over X is denoted by S(X,E) [2]. It is
assumed throughout this paper that a soft set means a set together with a common
set of parameter E unless or otherwise stated about the set of parameter.

Definition 2.2 ([1, 17,23]). Let F,G ∈ S(X,E). Then:
(i) The soft set F is called null soft set, denoted by Φ, if F (e) = φ for every e in E.

(ii) If F (e) =X for all e in E, then F is called absolute soft set, denoted by X̃.

(iii) F is a soft subset of G if F (e) ⊆ G(e) for every e ∈ E. It is denoted by F ⊑ G.

(iv) F and G are equal if F ⊑ G and G ⊑ F . It is denoted by F = G.

(v) The complement of F is denoted by F c, where F c ∶ E → P(X) is a mapping
defined by F c(e) =X ∖ F (e) for all e in E. Clearly, (F c)c = F .

(vi) The union of F and G is a soft set H defined by H(e) = F (e) ∪G(e) for all e in
E. H is denoted by F ⊔G.
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(vii) The intersection of F and G is a soft set H defined by H(e) = F (e) ∩G(e) for
all e in E. H is denoted by F ⊓G.

Definition 2.3 ([5, 15, 21]). A soft set P over X is said to be a soft point if there
exists e in E such that P (e) = {x} for some x in X and P (e′) = φ for all e′ in E ∖{e}.
The soft point is denoted by xe.

The set of all soft points over X is denoted by SP (X).

Definition 2.4 ([5,21]). A soft point xe is said to be in a soft set F if x ∈ F (e) and
is denoted by xe∈̃F .

Definition 2.5 ([5]). Two soft points xe11 , xe22 are said to be equal if e1 = e2 and
x1 = x2. Thus, xe11 ≠ xe22 if and only if x1 ≠ x2 or e1 ≠ e2.

Definition 2.6 ([13]). Let S(X,E) and S(Y,K) be the families of all soft sets over X
and Y respectively. Let ϕ ∶X→Y and ψ ∶ E→K be two mappings. Then the mapping
ϕψ is called a soft mapping from X to Y , denoted by ϕψ ∶ S(X,E)→S(Y,K).
(i) Let F ∈S(X,E). Then ϕψ(F ) is the soft set over Y defined for all k∈K as follows:

ϕψ(F )(k) =
⎧⎪⎪⎨⎪⎪⎩

⋃e∈ψ−1(k) ϕ(F (e)) ∶ if ψ−1(k) ≠ φ;

φ ∶ otherwise;

ϕψ(F ) is called a soft image of a soft set F .

(ii) Let G ∈ S(Y,K). Then ϕ−1ψ (G) is the soft set over X defined for all e ∈ E as

follows: ϕ−1ψ (G)(e) = ϕ−1(G(ψ(e))). ϕ−1ψ (G) is called a soft inverse image of a soft
set G.

The soft mapping ϕψ is called injective, if ϕ and ψ are injective. The soft mapping
ϕψ is called surjective, if ϕ and ψ are surjective [2, 28].

Theorem 2.7 ([13]). Let Fi ∈ S(X,E) and Gi ∈ S(Y,K) for all i ∈ J where J is an
index set. Then, for a soft mapping ϕψ ∶ S(X,E)→ S(Y,K), the following conditions
are satisfied:
(i) If F1 ⊑ F2, then ϕψ(F1) ⊑ ϕψ(F2). (ii) If G1 ⊑ G2, then ϕ−1ψ (G1) ⊑ ϕ−1ψ (G2).

(iii) ϕψ(⊔i∈J Fi) = ⊔i∈J ϕψ(Fi). (iv) ϕ−1ψ (⊔i∈J Gi) = ⊔i∈J ϕ−1ψ (Gi).

(v) ϕ−1ψ (⊓i∈J Gi) = ⊓i∈J ϕ−1ψ (Gi). (vi) ϕ−1ψ (Ỹ ) = X̃, ϕ−1ψ (Φ) = Φ, ϕψ(Φ) = Φ.

Theorem 2.8 ([2,28]). Let F,Fi ∈ S(X,E) for all i ∈ J , where J is an index set and
let G ∈ S(Y,K). Then, for a soft mapping ϕψ ∶ S(X,E) → S(Y,K), the following
conditions are satisfied:
(i) F ⊑ ϕ−1ψ (ϕψ(F )), the equality holds if ϕψ is injective.

(ii) ϕψ(ϕ−1ψ (G)) ⊑ G, the equality holds if ϕψ is surjective.

Definition 2.9 ( [2]). Let F ∈ S(X,E), G ∈ S(Y,K) and let pX ∶ X × Y → X,
qE ∶ E ×K → E and pY ∶ X × Y → Y , qK ∶ E ×K → K be the projection mappings
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in classical meaning. The soft mapping (pX)qE and (pY )qK are called soft projection
mappings from X×Y to X and from X×Y to Y respectively, where (pX)qE(F×G) = F
and (pY )qK (F ×G) = G respectively.

Definition 2.10 ([24]). Let T be a collection of soft sets over X. Then T is said to
be a soft topology on X if:
ST(i) Φ, X̃ belong to T ;

ST(ii) the union of any number of soft sets in T belongs to T ;

ST(iii) the intersection of any two soft sets in T belongs to T .
Here (X,T ,E) is called a soft topological space. The members of T are called

soft open sets in X. A soft set F over X is soft closed if F c ∈ T .

Definition 2.11 ([24]). Let (X,T ,E) be soft topological space and F ∈ S(X,E).
The soft closure of F is the soft set F = ⊓{G ∶ G is a soft closed set and F ⊑ G}.

Theorem 2.12. [21] Let us consider an operator which associates each soft set F on
X to another soft set F such that the following properties hold:

SO(i) F ⊑ F ; SO(ii) F = F ; SO(iii) F ⊔G = F ⊔G; SO(iv) Φ = Φ.
Then the family T = {F ∈ S(X,E) ∶ F c = F c} forms a soft topology on X and for
every F ∈ S(X,E), the soft set F is the soft closure of F in the soft topological space
(X,T ,E).

This operator is called soft closure operator.

Definition 2.13 ([20]). A binary relation δ on P(X) is called a proximity on X, if
the following axioms are satisfied for all A, B, C in P(X):
P(i) (∅,A) ∉ δ;
P(ii) If A ∩B ≠ ∅, then (A,B) ∈ δ;
P(iii) If (A,B) ∈ δ, then (B,A) ∈ δ;
P(iv) (A,B ∪C) ∈ δ if and only if (A,B) ∈ δ or (A,C) ∈ δ;
P(v) If (A,B) ∉ δ, then there exists a subset C of X such that (A,C) ∉ δ and
(X ∖C,B) ∉ δ.

Definition 2.14 ([25]). A binary relation δ1 is said to be finer than a binary relation
δ2 if (A,B) ∈ δ1, then (A,B) ∈ δ2 for all subsets A, B of X. We write it as δ1 ≥ δ2.

Definition 2.15 ( [25]). Let X be a non-empty set. A proximity base on X is a
binary relation β on P(X) satisfying the following axioms for all A, B, C in P(X):
B(i) (∅,A) ∉ β;

B(ii) If A ∩B ≠ ∅, then (A,B) ∈ β;

B(iii) If (A,B) ∈ β, then (B,A) ∈ β;

B(iv) If (A,B) ∈ β and A ⊆ A∗, B ⊆ B∗, then (A∗,B∗) ∈ β;

B(v) If (A,B) ∉ β, then there exists a subset C of X such that (A,C) ∉ β and
(X ∖C,B) ∉ β.



D. Singh, B. Singh 79

Definition 2.16 ([25]). Let X be a non-empty set. A proximity subbase on X is a
binary relation s on P(X) satisfying the following axioms for all A, B, C in P(X):
S(i) If A ∩B ≠ ∅, then (A,B) ∈ s;
S(ii) If (A,B) ∉ s, then there exists a subset C of X such that (A,C) ∉ s and
(X ∖C,B) ∉ s.

Definition 2.17 ([11]). A binary relation δ on S(X,E) is called a proximity of soft
sets on X if for any F,G,H ∈ S(X,E), the following conditions are satisfied:
SP(i) (Φ, F ) ∉ δ;
SP(ii) If F ⊓G ≠ Φ, then (F,G) ∈ δ;
SP(iii) If (F,G) ∈ δ, then (G,F ) ∈ δ;
SP(iv) (F,G ⊔H) ∈ δ if and only if (F,G) ∈ δ or (F,H) ∈ δ;
SP(v) If (F,G) ∉ δ, then there existsH ∈ S(X,E) such that (F,H) ∉ δ and (X̃ ∖H,G) ∉ δ.
A soft proximity space (X,δ,E) consists of a set X, a set of parameters E and a
proximity relation δ on S(X,E). We say two soft sets F and G are δ-related if
(F,G) ∈ δ, otherwise they are not δ-related.

Definition 2.18 ([6]). Let (X,δ,E) be a soft proximity space. For F,G ∈ S(X,E),
the soft set G is said to be a soft δ-neighbourhood of F if (F, X̃ ∖G) ∉ δ. We write
this in symbols as F ⋐ G.

Definition 2.19 ([6]). Let (X,δ1,E) and (Y, δ2,K) be two soft proximity spaces.
A soft mapping ϕψ ∶ (X,δ1,E) Ð→ (Y, δ2,K) is soft p-continuous if it satisfies:
(F,G) ∈ δ1 implies (ϕψ(F ), ϕψ(G)) ∈ δ2 for all F , G in S(X,E).

3. Bases and subbases for soft proximity

In this section, first we give a definition of soft proximity base which is a generalization
of the notion of proximity base [25] to the soft set.

Definition 3.1. Let X be a non-empty set. A soft proximity base on X is a binary
relation β on S(X,E) that satisfy the following axioms for all F,G,H ∈ S(X,E):
SB(i) (Φ, F ) ∉ β;

SB(ii) If F ⊓G ≠ Φ, then (F,G) ∈ β;

SB(iii) If (F,G) ∈ β, then (G,F ) ∈ β;

SB(iv) If (F,G) ∈ β and F ⊑ F ∗, G ⊑ G∗, then (F ∗,G∗) ∈ β;

SB(v) If (F,G) ∉ β, then there exists a soft set H in S(X,E) such that (F,H) ∉ β
and (X̃ ∖H,G) ∉ β.

Definition 3.2. A soft proximity base β on X is separated if (xe, yf) ∈ β implies
x = y and e = f for all xe, yf ∈ S(X,E).
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Now in the next theorem, we get a relation between proximity base and the soft
proximity base.

Theorem 3.3. Let β be a proximity base on a set X and let F,G ∈ S(X,E). Define
a binary relation as: (F,G) ∉ βi if and only if there exist subsets A,B of X such
that F ⊑ Ã, G ⊑ B̃ and (A,B) ∉ β. Then, βi is a soft proximity base on X which is
induced by proximity base β. (Here, for every A ⊆X, Ã is the soft set over X defined
by Ã(e) = A for all e ∈ E.)

Proof. We show that β is a soft proximity base. For this, it suffices to verify axioms
given in the definition of soft proximity base.
(i) Obviously, (Φ, F ) ∉ βi.
(ii) Let (F,G) ∉ βi. Then there exist subsets A, B of X such that F ⊑ Ã, G ⊑ B̃ and
(A,B) ∉ β. Therefore A ∩B = ∅ as β is a proximity base and thus, Ã ⊓ B̃ = Φ which
implies F ⊓G = Φ.

(iii) Symmetry is obvious.

(iv) Let (F ∗,G∗) ∉ βi and F ⊑ F ∗, G ⊑ G∗. Then there exist subsets A, B of X such
that F ∗ ⊑ Ã, G∗ ⊑ B̃ and (A,B) ∉ β. Thus, we have F ⊑ Ã, G ⊑ B̃ and (A,B) ∉ β.
Hence, (F,G) ∉ βi.
(v) Let (F,G) ∉ βi. Then there exist subsets A, B of X such that F ⊑ Ã, G ⊑ B̃
and (A,B) ∉ β. Since (A,B) ∉ β therefore, there exists a subset C of X such that
(A,C) ∉ β and (X ∖C,B) ∉ β. Thus, there exist a soft set C̃ corresponding to C such
that (F, C̃) ∉ βi and (X̃ ∖ C̃,G) ∉ βi.
Theorem 3.4. Let β0 be a soft proximity base on X. Then the following two state-
ments are equivalent:
(i) There exists a proximity base β on X such that β0=βi.

(ii) If (F,G) ∉ β0, then there exist subsets A, B of X such that F ⊑ Ã, G ⊑ B̃ and
(Ã, B̃) ∉ β0.

Proof. Obviously, (i)⇒ (ii).
(ii)⇒ (i) Define a binary relation β on P(X) as (A,B) ∈ β if and only if (Ã, B̃) ∈

β0. We claim that β is a proximity base. Clearly, B(i)-B(iv) can be easily verified.
Now for B(v), assume that (A,B) ∉ β which implies (Ã, B̃) ∉ β0. Therefore, there
exist a soft set H in S(X,E) such that (Ã,H) ∉ β0 and (X̃ ∖ H, B̃) ∉ β0. So, by
(2), there are subsets E, F , G, L of X such that Ã ⊑ Ẽ, H ⊑ F̃ , B̃ ⊑ G̃, X̃ ∖H ⊑ L̃
and (Ẽ, F̃ ) ∉ β0, (G̃, L̃) ∉ β0. Now, since H ⊑ F̃ , X̃ ∖ H ⊑ L̃ and (Ẽ, F̃ ) ∉ β0 so
we have X ∖ F ⊆ L. Thus, we have (Ã, F̃ ) ∉ β0 because (Ẽ, F̃ ) ∉ β0 and Ã ⊑ Ẽ.
Hence, (A,F ) ∉ β. Similarly, we can easily show that (X̃ ∖ F̃ , B̃) ∉ β0 which implies
(X ∖ F,B) ∉ β. Now it only remains to show that β0=βi. Firstly, suppose that
(F,G) ∉ β0 then, by hypothesis there exist subsets A, B of X such that F ⊑ Ã, G ⊑ B̃
and (Ã, B̃) ∉ β0. Therefore, there are subsets A, B of X such that F ⊑ Ã, G ⊑ B̃ and
(A,B) ∉ β which shows that (F,G) ∉ βi. Conversely, assume that (F,G) ∉ βi. Then
there exist subsets A, B, of X such that F ⊑ Ã, G ⊑ B̃ and (A,B) ∉ β and hence
(Ã, B̃) ∉ β0 which implies that (F,G) ∉ β0. ◻
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Corollary 3.5. Let β0 be a soft proximity base on X and there exist a proximity
base β such that β0 = βi. Then the relation (A,B) ∈ β holds if and only if (Ã, B̃) ∈ β0
is a proximity base on X.

In the next theorem, we generate a soft proximity from a given soft proximity base
and obtain an algorithm of finding it in the proof.

Theorem 3.6. Let β be a soft proximity base on a set X. For any F , G in S(X,E),
define a binary relation as: (F,G) ∈ δ(β) if and only if given any finite soft covers
{Fi ∶ i ∈ Jm} and {Gj ∶ j ∈ Jn} of F and G, respectively, there exist (i, j) ∈ Jm × Jn
such that (Fi,Gj) ∈ β. Then δ(β) is the coarsest soft proximity finer than the relation
β. Moreover, δ(β) is separated if and only if the soft proximity base β is separated.
(Here Jm is a set of first m natural numbers and δ(β) is a soft proximity generated
by the soft proximity base β.)

Proof. We first show that δ(β) is a soft proximity. Clearly, δ(β) satisfies SP(i)–SP(iii)
trivially. Now, if (F,G) ∈ δ(β), then since any finite soft cover of G⊔H is also a finite
soft cover of G therefore, (F,G⊔H) ∈ δ(β). For necessary part, assume (F,G) ∉ δ(β)
and (F,H) ∉ δ(β). We show that (F,G ⊔H) ∉ δ(β). Since (F,G) ∉ δ(β). Therefore,
there exist a finite soft cover {Fi ∶ i ∈ Jm} and {Gj ∶ j ∈ Jn} of F and G, respectively,
such that (Fi,Gj) ∉ β for all (i, j) ∈ Jm × Jn. Similarly, as (F,H) ∉ δ(β). Therefore,
there exist finite soft cover {Kl ∶ l ∈ Jp} and {Wc ∶ c ∈ Jq} of F and H, respectively,
such that (Kl,Wc) ∉ β for all (l, c) ∈ Jp × Jq. Now put Gn+1 = W1, Gn+2 = W2,⋯,
Gn+q =Wq and S(i,l) = Fi⊓Kl, then {Gj ∶ j ∈ Jn+q} and {S(i,l) ∶ (i, l) ∈ Jm × Jp} are
soft cover of G ⊔H and F , respectively. By the axiom SB(iv) of soft proximity base
β and the above construction, we conclude that (S(i,l),Gj) ∉ β for all (i, l) ∈ Jm × Jp
and j ∈ Jn+q which implies (F,G ⊔ H) ∉ δ(β). Thus, δ(β) satisfies SP (iv) axiom
also. Now let (F,G) ∉ δ(β) therefore, there exist a finite soft cover {Fi ∶ i ∈ Jm} and
{Gj ∶ j ∈ Jn} of F and G, respectively, such that (Fi,Gj) ∉ β for all (i, j) ∈ Jm × Jn.
Since (Fi,Gj) ∉ β for each (i, j) ∈ Jm×Jn and as β is a soft proximity base, therefore,
there exist Hij in S(X,E) for each (i, j) ∈ Jm × Jn such that (Fi,Hij) ∉ β and

(X̃ ∖Hij ,Gj) ∉ β. Now put Hj = ⋂i∈JmHij and H = ⋃j∈JnHj . Therefore (Fi,Hj) ∉ β
for any (i, j) ∈ Jm × Jn. Thus, by definition of δ(β), (F,H) ∉ δ(β). Similarly, we get
(X̃ ∖H,G) ∉ δ(β). Hence, δ(β) is a soft proximity on (X,E).

Clearly, δ(β) ≥ β. Now it only remains to show that δ(β) is the coarsest soft
proximity on X such that δ(β) ≥ β. Suppose δ be an arbitrary soft proximity such
that δ ≥ β. Let (F,G) ∈ δ. If {Fi ∶ i ∈ Jm} and {Gj ∶ j ∈ Jn} are any finite soft covers
of F and G, respectively, then there exist (i, j) ∈ Jm ×Jn such that (Fi,Gj) ∈ δ which
implies (Fi,Gj) ∈ β because δ ≥ β. Thus, by definition of δ(β) we have (F,G) ∈ δ(β)
for all (F,G). Hence δ ≥ δ(β). It is obvious that δ(β) is separated if and only if β is
separated. ◻

Next, we obtain a relation between induced soft proximity δi(β) from the prox-
imity δ(β) generated by proximity base β [25] and the soft proximity δ(βi) generated
by induced soft proximity base βi as shown in the following theorem.

Theorem 3.7. Let β be a proximity base on X. Then δi(β) > δ(βi).
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Proof. Since, in view of Theorem 3.6, δ(βi) is the coarsest soft proximity finer than
βi, it suffices to show that δi(β) > βi. Now, let (F,G) ∈ δi(β); then, for any subsets
A, B of X such that F ⊑ Ã, G ⊑ B̃ we have (A,B) ∈ δ(β). As δ(β) > β. Therefore,
we have (A,B) ∈ β which implies (F,G) ∈ βi. ◻

Definition 3.8. Let β be a soft proximity base on X and δ(β) is a soft proximity
generated by β. For F,G ∈ S(X,E), the soft set G is called soft neighbourhood of F
with respect to β if (F, X̃ ∖G) ∉ β. We write this in symbols as F ⋐β G.

The following theorem can be easily proved by using the definition of soft neigh-
bourhood with respect to β.

Theorem 3.9. Let β be a soft proximity base on X and δ(β) be a soft proximity
generated by β. Then the relation ⋐β satisfies the following properties:

(i) Φ ⋐β F . (ii) If F ⋐β G, then (X̃ ∖G) ⋐β (X̃ ∖ F ).

(iii) If F ⋐β G, then F ⊑ G. (iv) If F ⋐β (G ⊓H), then F ⋐β G and F ⋐β H.

(v) If F1 ⊑ F ⋐β G ⊑ G1, then F1 ⋐β G1.

(vi) If F ⋐β G, then there exist an H in S(X,E) such that F ⋐β H ⋐β G.

Theorem 3.10. Suppose ⋐β be a relation on S(X,E) which satisfies all the properties
of the previous Theorem 3.9. Then β is a soft proximity base on X which can be
defined for all F , G in S(X,E) as (F,G) ∉ β if and only if F ⋐β X̃ ∖G.

Proof. For proving β to be a soft proximity base, we just need to verify axioms SB(i)–
SB(v). Clearly SB(i)–SB(iii) hold. Now, for SB(iv) assume that (F ∗,G∗) ∉ β and
F ⊑ F ∗, G ⊑ G∗. Then, F ∗ ⋐β X̃ ∖G∗ and X̃ ∖G∗ ⊑ X̃ ∖G. Therefore, by property (v)

of Theorem 3.9, we have F ⋐β X̃ ∖G which implies (F,G) ∉ β. For the last axiom, let

(F,G) ∉ β. Then F ⋐β X̃ ∖G. Thus, by property (iv) of Theorem 3.9, there exists an

H in S(X,E) such that F ⋐β H ⋐β X̃ ∖G. Hence, (F, X̃ ∖H) ∉ β and (H,G) ∉ β. ◻
We deduce from the binary relation β defined in above theorem that G is a soft

neighbourhood of F with respect to β if and only if F ⋐β G. Further, by using soft set,
we generalize the notion of proximity subbase [25] to soft proximity subbase whose
definition is given below.

Definition 3.11. Let X be a non-empty set. A soft proximity subbase on X is a
binary relation s on S(X,E) satisfying the following two axioms for all F,G,H ∈
S(X,E):
SS(i) If F ⊓G ≠ Φ, then (F,G) ∈ s;
SS(ii) If (F,G) ∉ s, then there exists an H ∈ S(X,E) such that (F,H) ∉ s and
(X̃ ∖H,G) ∉ s.
Definition 3.12. A soft proximity subbase s on X is called separated if it satisfies
the following axiom:
If xe1 , ye2 are two distinct soft elements of (X,E) and ({xe1},{ye2}) ∈ s, then there
exist two soft subsets P and Q such that xe1 ∈̃P , ye2 ∈̃Q and either (P,Q) ∉ s or
(Q,P ) ∉ s.
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When a proximity base is given, there always exists a soft proximity base. The
similar result hold for proximity subbase and soft proximity subbase.

Theorem 3.13. Let s be a proximity subbase on a set X. Let F,G ∈ S(X,E) define
a binary relation as: (F,G) ∉ si if and only if there exist subsets A,B of X such that
F ⊑ Ã, G ⊑ B̃ and (A,B) ∉ s. Then si is a soft proximity subbase on X which is
induced by proximity subbase s. (Here, for every A ⊆ X, Ã is the soft set over X
defined by Ã(e) = A for all e ∈ E.)

Theorem 3.14. If s is a soft proximity subbase on X, then there exists the coarsest
soft proximity δ(s) on X finer than the relation s. Moreover, δ(s) is separated if and
only if s is separated. (In fact, β(s) is the coarsest soft proximity base finer than s
and generated by s.)

Proof. For any F , G in S(X,E), define a binary relation β(s) on S(X,E) as follows:
(F,G) ∈ β(s) if and only if F ≠ Φ, G ≠ Φ and for any soft sets F ∗, G∗ such that
F ⊑ F ∗, G ⊑ G∗, both (F ∗,G∗) and (G∗, F ∗) are elements of s.

Clearly, by definition, β(s) satisfies SB(i)–SB(iii). Now suppose that (F,G) ∈ β(s)
and F ⊑ F ∗∗, G ⊑ G∗∗. We show that (F ∗∗,G∗∗) ∈ β(s). Since (F,G) ∈ β(s) therefore,
F ≠ Φ, G ≠ Φ which implies F ∗∗ ≠ Φ, G∗∗ ≠ Φ. Let F ∗, G∗ be two soft sets such
that F ∗∗ ⊑ F ∗, G∗∗ ⊑ G∗, then as (F,G) ∈ β(s) so by hypothesis both (F ∗,G∗) and
(G∗, F ∗) are elements of s. Thus (F ∗∗,G∗∗) ∈ β(s). Hence SB(iv) hold for β(s). To
prove that β(s) satisfies SB(v), assume that (F,G) ∉ β(s), then the following two
cases occur:
Case 1. If F = Φ and G ≠ Φ, then take H = X̃ we have (F,H) = (Φ, X̃) ∉ β(s) and
(X̃∖H,G) = (Φ,G) ∉ β(s). Thus SB(v) is satisfied. Similarly, when G = Φ and F ≠ Φ,
then H = Φ clinches the matter.

Case 2. Suppose F ≠ Φ, G ≠ Φ, then since (F,G) ∉ β(s) therefore, there exist F ∗,
G∗ such that F ⊑ F ∗, G ⊑ G∗ and either (F ∗,G∗) ∉ s or (G∗, F ∗) ∉ s. If (F ∗,G∗) ∉ s
then, by SS(ii), there exists H in S(X,E) such that (F ∗,H) ∉ s and (X̃ ∖H,G∗) ∉ s
thus, (F,H) ∉ β(s). Similarly, (X̃ ∖H,G) ∉ β(s). If (G∗, F ∗) ∉ s then, by similar
argument, there exists H in S(X,E) such that (G,H) ∉ β(s) and (X̃ ∖H,F ) ∉ β(s).
Hence, β(s) is soft proximity base on X. Obviously, β(s) ≥ s. Using definition of
β(s), it can be easily shown that β(s) is the coarsest soft proximity base finer than
s. Now let δ be any soft proximity such that δ ≥ s then δ ≥ β(s) and since δ(s) is
the coarsest soft proximity finer than β(s). So, we have δ ≥ δ(s) that is, δ(s) is the
coarsest soft proximity finer than s. It can be easily shown that s is separated if and
only if β(s) is separated and we know that δ(s) is separated if and only if β(s) is
separated. Hence the theorem is proved. ◻

Theorem 3.15. Let {δa ∶ a ∈ I} be a non-empty collection of soft proximities on X.
Then there exists a coarsest soft proximity δ on X such that δ > δa for all a ∈ I. (The
coarsest soft proximity δ is denoted by sup{δa ∶ a ∈ I}.)

Proof. Let β = ⋂{δa ∶ a ∈ I}; then β is a soft proximity base. Hence δ(β) is the
required coarsest soft proximity such that δ(β) > δa for all a ∈ I. ◻
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Corollary 3.16. Let {δa ∶ a ∈ I} be a non-empty collection of soft proximities on
X. Then T [sup{δa ∶ a ∈ I}] = sup{T (δa) ∶ a ∈ I}.

Proof. Since sup{δa ∶ a ∈ I} > δa for each a in I. Therefore T (δa) ⊆ T [sup{δa ∶ a ∈ I}]
for each a in I. Thus, sup{T (δa) ∶ a ∈ I} ⊆ T [sup{δa ∶ a ∈ I}] and the other inclusion
holds by the fact that the finest soft proximity δ compatible with sup{T (δa) ∶ a ∈ I}
is finer than δa for each a in I. Therefore, we have δ ≥ sup{δa ∶ a ∈ I}. Hence the
other inclusion sup{T (δa) ∶ a ∈ I} ⊇ T [sup{δa ∶ a ∈ I}] holds. ◻

Theorem 3.17. Let {δa ∶ a ∈ I} be a non-empty collection of soft proximities on X.
Then there exists a finest soft proximity δ on X such that δ is coarser than δa for
each a in I. (The finest soft proximity δ is denoted by inf{δa ∶ a ∈ I}.)

Proof. Let A be the collection of soft proximities defined as: A = {δp ∶ δa ≥ δp for each
a ∈ I}. Obviously, the collection A is non-empty as the indiscrete soft proximity on
X is a member of it. Let δ = sup{δp ∶ δp ∈ A}. Here we show that δa ≥ δ for each a in
I. Suppose a ∈ I is arbitrary and (F,G) ∈ δa. If {Fi ∶ i ∈ Jm} and {Gj ∶ j ∈ Jn} are
finite soft covers of F and G respectively, then there exist (i, j) ∈ Jm × Jn such that
(Fi,Gj) ∈ δa. Thus, for the same pair (i, j), (Fi,Gj) ∈ δp for each δp ∈ A. Therefore
(Fi,Gj) ∈ β where β = ⋂{δp ∶ δp ∈ A} and as β is a soft proximity base for δ. We have
(F,G) ∈ δ. Hence δa ≥ δ. As a was arbitrary, it is true for each a ∈ I. Clearly δ is
finer than each member of A. So δ is the finest soft proximity on X and it is coarser
than each member of the collection {δa ∶ a ∈ I}. ◻

Theorem 3.18. The collection of all soft proximities on a non-empty set X forms a
complete lattice under the ordering ≥.

Now, in the next theorem and corollary, we give a necessary and sufficient condi-
tion for being a soft p-continuous map in terms of soft proximity subbase and base,
respectively.

Theorem 3.19. Let (X,δ1,E) and (Y, δ2,K) be two soft proximity spaces and let s
be a soft proximity subbase for the soft proximity δ2. A soft map ϕψ ∶ (X,δ1,E) Ð→
(Y, δ2,K) is soft p-continuous if and only if (F,G) ∉ s implies (ϕ−1ψ (F ), ϕ−1ψ (G)) ∉ δ1
for all F, G in S(Y,K).

Proof. Let ϕψ be soft p-continuous map and (F,G) ∉ s, then (F,G) ∉ δ2 implies
(ϕ−1ψ (F ), ϕ−1ψ (G)) ∉ δ1 for all F, G in S(Y,K) because ϕψ is soft p-continuous.

Conversely, assume that (F,G) ∉ s implies (ϕ−1ψ (F ), ϕ−1ψ G) ∉ δ1 for all F, G in
S(Y,K). Suppose β(s) be the soft proximity base on Y generated by soft proximity
subbase s. Let (F,G) ∉ δ2. Now, we show that (ϕ−1ψ (F ), ϕ−1ψ (G)) ∉ δ1. If F = Φ or
G = Φ or (F,G) ∉ s then we are done. And if there are two soft sets, F ∗ and G∗ such
that F ⊑ F ∗, G ⊑ G∗ and either (F ∗,G∗) ∉ s or (G∗, F ∗) ∉ s then also we are done.
Hence, we have proved that if (F,G) ∉ β(s), then (ϕ−1ψ (F ), ϕ−1ψ (G)) ∉ δ1. Now suppose
(F,G) ∈ β(s) − δ2. Then there exist finite soft covers {Fi ∶ i ∈ Jm} and {Gj ∶ j ∈ Jn}
of F and G respectively, such that (Fi,Gj) ∉ β(s) for all (i, j) ∈ Jm×Jn and therefore
(⊔m1 ϕ−1ψ (Fi),⊔n1 ϕ−1ψ (Gj)) ∉ δ1 for all (i, j) ∈ Jm × Jn. Hence, (ϕ−1ψ (F ), ϕ−1ψ (G)) ∉ δ1,
which completes the proof. ◻
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Corollary 3.20. Let (X,δ1,E) and (Y, δ2,K) be two soft proximity spaces and let
β be a soft proximity base for the soft proximity δ2. A soft map ϕψ ∶ (X,δ1,E) Ð→
(Y, δ2,K) is soft p-continuous if and only if (F,G) ∉ β implies (ϕ−1ψ (F ), ϕ−1ψ (G)) ∉ δ1
for all F, G in S(Y,K).

4. Induced soft proximities

Applications of soft proximity bases and subbases are numerous, reason being, quite
a few theorems in soft proximity space can effortlessly be substantiated by employing
soft proximity base and subbase.

Theorem 4.1. Let X be a non-empty set. Let F be a non-empty family of soft maps
such that each member ϕψ of F is a map from (X,E) into a soft proximity space
(Yϕψ , δϕψ ,Kϕψ). Then there exists a coarsest soft proximity on X such that each
member of F is soft p-continuous.

Proof. Firstly, for any F , G in S(X,E), define a binary relation β on S(X,E) as
follows: (F,G) ∈ β if and only if (ϕψ(F ), ϕψ(G)) ∈ δϕψ for each member ϕψ of F .

We prove β is a soft proximity base on X. Clearly, axioms SB(i)–SB(iv) can be
easily verified. Now for SB(v) assume that (F,G) ∉ β, then there exist a member
ϕψ of F such that (ϕψ(F ), ϕψ(G)) ∉ δϕψ . Therefore by SP (v), there exist Hϕψ such

that (ϕψ(F ),Hϕψ) ∉ δϕψ and (Ỹϕψ ∖Hϕψ , ϕψ(G)) ∉ δϕψ . Let H = ϕ−1ψ (Hϕψ). Thus, it

can be easily verified that (F,H) ∉ β and (X̃ ∖H,G) ∉ β. Hence β is a soft proximity
base. Therefore δ(β) is the coarsest soft proximity on X finer than β. Obviously
each ϕψ is soft p-continuous by the definition of β. Hence δ(β) is the required soft
proximity. ◻

The above theorem can also be generalized just by changing the soft proximity
δϕψ to soft proximity base βϕψ of it for any ϕψ of F . In fact, we can say more than
this in the following theorem.

Theorem 4.2. Let X be a non-empty set and let F be a non-empty family of soft
maps such that each member ϕψ of F is a map from (X,E) onto a soft proximity

space (Yϕψ , δϕψ ,Kϕψ). For each ϕψ ∈ F , let S̃ϕψ be a soft proximity subbase for δϕψ .

Then there exists a soft proximity subbase S̃ such that the coarsest soft proximity δ(S)
on X is the soft proximity which makes each ϕψ a soft p-continuous map.

Proof. For any F , G in S(X,E), define a binary relation S̃ as follows: (F,G) ∈ S̃
if and only if (ϕψ(F ), ϕψ(G)) ∈ S̃ϕψ for each ϕψ in F . Then S̃ is the required soft
proximity subbase. ◻

In the next theorem, which is a direct consequence of Theorem 4.1, we give a
soft proximity base for the product soft proximity and conclude that product soft
proximity can be characterized in terms of soft proximity base.
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Theorem 4.3. Let {(Xa, δa,Ea) ∶ a ∈ I} be a non-empty family of soft proximity
spaces, and let X =∏a∈I Xa and E =∏a∈I Ea be sets. For each a ∈ I, let (pXa)qEa be
a soft mapping. Let F , G in S(X,E), then define a binary relation β on S(X,E) as
follows: (F,G) ∈ β if and only if ((pXa)qEa (F ), (pXa)qEa (G)) ∈ δa for every a in I.
Then β is a soft proximity base on X for the product soft proximity.

Theorem 4.4. Let {(Xa, δa,Ea) ∶ a ∈ I} be a non-empty family of soft proximity
spaces and let (X,δ,E) be the product soft proximity space. A map ϕψ on (Y, δ∗,K) to
the product (X,δ,E) is soft p-continuous if and only if the composition (pXa)qEa ○ ϕψ
is soft p-continuous for each a in I.

Proof. Necessary part follows from the result that the composition of two soft p-
continuous maps is soft p-continuous. For the sufficient part, let (pXa)qEa ○ϕψ is soft
p-continuous for each a in I. Put (pXa)qEa ○ ϕψ = Γa. Now, we show that ϕψ is soft
p-continuous. Suppose β be the soft proximity base on X defined by (F,G) ∈ β if
and only if ((pXa)qEa (F ), (pXa)qEa (G)) ∈ δa for every a in I. Let (F,G) ∉ β, then
there exist some a in I such that ((pXa)qEa (F ), (pXa)qEa (G)) ∉ δa. Thus by soft
p-continuity of Γa, we have (Γ−1a (pXa)qEa (F ),Γ−1a (pXa)qEa (G)) ∉ δ. Since Γ−1a = ϕ−1ψ ○
(pXa)−1qEa and F ⊑ (pXa)−1qEa ((pXa)qEa (F )), G ⊑ (pXa)−1qEa ((pXa)qEa (G)). Therefore

we have (ϕ−1ψ (F ), ϕ−1ψ (G)) ∈ δ. Hence by Corollary 3.20, we conclude that ϕψ is soft
p-continuous. ◻

5. Conclusion

Proximity is a exquisite structure than topology and provides a lucid and conceptual
approach to many substantial topological problems. So many authors studied it for
the progress in topology and also worked on proximity in fuzzy and soft contexts as
well. In the current work, we introduce soft proximity bases and subbases, and identify
the relation between proximity base and soft proximity base. Multiple theorems in soft
proximity spaces have remarkably been simplified by applying soft proximity bases
(proximity subbases). For example, soft p-continuity and product soft proximity are
characterized in terms of soft proximity bases (subbases). We anticipate that the
findings in this paper will benefit researcher to augment and stimulate the further
study with regard to soft proximity spaces.
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