
MATEMATIČKI VESNIK
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Miloš Milovanović

Abstract. The paper is aimed to elaborate the floating point multiresolution, consid-
ering convergence that allows some more fractions than otherwise. It implies a calculation
concerning infinite strings of digits, which is not implementable in the standard representa-
tion, but requires a dyadic one. Such a view is much more convenient for regarding conver-
gence because of specific norm whose logarithm follows the multiresolution scale. Arithmetic
operations are performed in almost the same manner as the standard floating point method.
Conversions from one representation to another are discussed in details. The main advantage
of the method concerns an opportunity of representing constructible angles in the Euclidean
plane, which is significant inter alia for computational geometry. A basic application also
concerns two’s complement representation of negative numbers, which is accurate only if one
implies convergence in regard to the norm. In that respect, it offers a consistent realization
of methods the computer science already provides.

1. Introduction

Floating point is a method for representing rational numbers in the computer science.
It appears in a few variants from the single precision to the double one, implying
usually the 2-based representation. The exponential notation tends to reflect the
multiresolution of real numbers, which is a term that has been intimately related to
the wavelet analysis [6]. It was defined by Stéphane Mallat and Yves Meyer to typify
decomposition of the functional space L2(R) in an ascending sequence of subspaces
having trivial intersection and complete closed union. Concerning the real numbers,
multiresolution applies to the underlying domain of the Lebesgue space.

However, mapping the continuum onto a discrete structure has not been done
without any trouble and there are some famous bugs [7]. The fractions representable
in such a manner are only the ones whose denominators are powers of two, whilst
those like 1

3 ,
1
5 , . . . are reduced to the approximate values having maximal denomina-

tor. The paper is aimed to elaborate the floating point multiresolution, considering
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convergence in a norm. Although the method is still about rational numbers, the
convergence supports representing more fractions than otherwise. It implies a calcu-
lation concerning infinite strings of digits, that is not implementable in the standard
but requires a dyadic representation. The exponential notation in that regard should
not reflect structure of the real numbers, but the dyadic ones that also include the
subset of rationals.

The theory of dyadic numbers is presented in Appendix, elaborating their history
and applications. Some concepts are also mentioned immediately along the text.

2. The floating point of reals

Under the terms floating point, one implies notation ±a×2i, whereby a is the mantissa
and i the integer exponent ranging from emin to emax. The mantissa is presented in

the form a = .a1a2 . . . ad of d binary digits ak =

{
0

1
, each of them having a position

value 2−k. For the uniqueness of representation, the first bit is regarded to be the
unit a1 = 1. The author considers the length d to be a power of two, and it is quite
convenient to assume d = 25. According to that, a is specified up to the resolution
2−32.

The method reflects the multiresolution of real numbers R, that is a sequence of
the approximate subsets Ai satisfying axioms:

Ai ⊃ Ai+1; x ∈ Ai ⇔ 2x ∈ Ai+1; ∩+∞
−∞Ai = {0};

∪+∞
−∞Ai = R, implying closure in regard to the standard norm; (1)

A0 = Z is the basic subset consisted of integers.

Defining a sequence of the detail subsets to be Di = Ai \Ai+1, one gets an alternative
axiomatization of the same structure:

Di are mutually exclusive; x ∈ Di ⇔ 2x ∈ Di+1;

∪+∞
−∞Di = R implying closure in regard to the standard norm; (2)

D0 = Z+
1

2
is the basic subset consisted of semi-integers. (3)

In the floating point, however, (3) should be replaced by the set containing 32-bit
strings from the binary point on. Also, in the axiom (2) there is no need for closure
since the union is finite and therefore the closed set. According to that, the floating
point F satisfies axioms:

Di are mutually exclusive;

x ∈ Di ⇔ 2x ∈ Di+1; ∪emax
emin
Di = F;

D0 = {±.1a2 . . . ad} is the basic subset (4)

consisted of numbers up to the resolution 2−32 between ± 1
2 and ±1.

Although resembling to the real numbers multiresolution, the main distinction
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concerns absence of closure in regard to the norm. In that respect F is reduced to
a discrete lattice consisting of the power-of-two denominators only, which should be
avoided through an implementation of the limit process in the axiom (4):

D0 =
{
±−−−−−−→.1a2 . . . ad

}
is the basic subset (5)

consisted of the 32-bit strings repeating periodically rightwards from the binary
point on.

Implying m = 1a2 . . . ad, it follows .
−→m = m×2−d+ · · ·+m×2−2d+ · · · = m×2−d

1−2−d =
m

2d−1
. The deviation from .m = m

2d
is therefore .−→m − .m = m

2d(2d−1)
≤ 2−d, whereby

the equality is reached for .−→m = .
−−−−→
11 . . . 1 = 1. Hence, one states .−→m ≈ .m assuming

an adequacy up to the resolution 2−d.

However, a usual calculation in the floating point is disabled because of the limit
process (5). It is troubled by the infinite string of binary digits tending rightwards,
which makes the notation virtually unusable. Fortunately, there is a manner to avoid
the problem considering the leftward periodization .←−m = m×1+m×2d+ · · · = m

1−2d

that implies convergence in regard to an alternative norm [12]. Thereby the property
←−m. = −.−→m holds, since m

1−2d
= − m

2d−1
.

3. Conversion to the dyadic representation

In terms of the leftward periodicity, the axiom (5) is replaced by

D0 =
{
±
←−−−−−
bd . . . b21.

}
is the basic subset (6)

consisted of the 32-bit strings repeating periodically leftwards from the binary point on.
The first bit is considered to be a unit for the uniqueness of representation ±b × 2j .
The convergence implies an alternative norm on F, termed the dyadic one, whose
1
2 -based logarithm is defined by the valuation ∥x∥(2) = j ⇔ x ∈ Dj (see Appendix 6).
Respecting convergence in the norm, the floating point reflects multiresolution of the
dyadic numbers D, whose approximate subsets Aj satisfy axioms:

Aj ⊃ Aj+1; x ∈ Aj ⇔ 2x ∈ Aj+1;

∩+∞
−∞Aj = {0}; ∪+∞

−∞Aj = D; (7)

A0 = {. . . b2b1.} is the basic subset

consisted of the dyadic integers that are bit sequences extended leftwards from the
binary point on, implying convergence in regard to the dyadic norm.

In the last axiom of (7), the sign ± is omitted since a negative number is rep-

resented by the use of two’s complement, i.e., − . . . b2b1. = . . . b̃2b̃1. + 1 implying
b̃k = 1− bk is one’s complement value of a binary digit. Due to the infinite extension
leftwards, it is easy to prove −x+ x = 0. The basic subset of the floating point (6) is
hence writable in the form

D0 =
{←−−−−−
bd . . . b1.+ b̃1

}
, (8)
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wherein b1 is the bit ± =

{
1

0
defining a sign of the number.

The floating point of a real number is the notation ±a× 2i, wherein the exponent
i is an integer and the mantissa a corresponds to a periodized value .−−−−−→a1 . . . ad up
to the resolution 2−d. Its conversion to the dyadic representation b × 2j , whereat

b =
←−−−−−−
bd . . . b2b1.+ b̃1, takes place in the following steps.

� ±.−−−−−→a1 . . . ad × 2i = ∓←−−−−−a1 . . . ad. × 2i = ∓←−−−−−−−−−−−−−−−−ad−l+1 . . . ada1 . . . ad−l. × 2i+l, whereby
ad−l = 1 and ad−l+1 = · · · = ad = 0, i.e., there are l zeros at the right end of
the sequence.

� −←−−−−−−−−−−−−−−−−ad−l+1 . . . ada1 . . . ad−l. =
←−−−−−−−−−−−−−−−−
ãd−l+1 . . . ãdã1 . . . ãd−l.+ 1.

In accordance to that, the exponent is j = i+ l and the mantissa string is

bd . . . b1 =

{
ad−l+1 . . . ada1 . . . ad−l, for the – sign

ãd−l+1 . . . ãdã1 . . . ãd−l, for the + sign
.

Thereby the first bit b1 of the string stores the information about the sign of a number.
The convenience of the dyadic representation concerns the sign incorporated,

wherewith the addition and subtraction are easily implemented. Multiplication is

done in the same manner as of the integers, since←−m.×←−n . = −m
2d−1

× −n
2d−1

≈ m×n/2d

2d−1
=

−←−p ., wherein p is the integer rounding of m× n/2d. The division is also likewise in
the standard representation, since ←−m.÷←−n . = −m

2d−1
÷ −n

2d−1
= m÷n ≈ a× 2i = b× 2j

implying conversion to the dyadic one.

4. The inverse conversion to reals

The inverse conversion to the floating point of reals is done straightforwardly. The

dyadic representation b× 2j , whereat b =
←−−−−−−
bd . . . b2b1.+ b̃1, is converted to ±a× 2i in

the following manner.

� The sign is determined by the first b1, considering
0

1

}
= ∓.

� The mantissa a = .
−−−−−−→
1a2 . . . ad is consisted of the string

a1a2 . . . ad =

{
bd−l . . . b1bd . . . bd−l+1, b1 = 0

b̃d−l . . . b̃1b̃d . . . b̃d−l+1, b1 = 1

whereby bd−l = b̃1 and bd−l+1 = · · · = bd = b1, i.e., there are l bits equal to b1
at the left end of the sequence.

� The exponent i = j − l.

The standard representation ±.1a2 . . . ad × 2i is approximated up to the resolution
2−d.
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It is more appropriate, however, to regard the mantissa in terms of the periodized

bit sequence .
−−−−−−→
1a2 . . . ad = m

2d−1
. The floating point multiresolution F, in that manner

considering the basic subset (5), is the sequence of detail subsets

Di =

{
± m

2−i(2d − 1)

}
(9)

whereby m = 1a2 . . . ad is a 32-bit integer starting by the unit. Since d is assumed to
be 25, it holds 2d− 1 = 22

5 − 1 = (22
4

+1)× (22
4 − 1) = · · · = F4×F3×F2×F1×F0

implying Fk = 22
k

+ 1 are the Fermat numbers.
F0, . . . , F4, which appear in the product, are the only Fermat numbers known

to be prime. A denominator of the reduced fractions from (9) is therefore obtained
multiplying a power of two by the Fermat primes. According to the Gauss theorem [5],
such a fraction exactly fits to constructible angle of the Euclidean geometry in regard
to the full angle labelled by the unit. Although the multiresolution of constructible
angles is far from being exhausted like that, (9) corresponds to the sub-multiresolution
consisted by rationals of the structure. In that respect, the method should take an
appropriate significance concerning the computational geometry (Figure 1).

Figure 1: Regular 17-gon, which is constructible due to the Fermat number F2 = 17. The
labelled angles are exactly represented by the floating point multiresolution (9).

5. Conclusion

The standard floating point is a method for representing fractions, reduced only to
the ones whose denominators are powers of two. However, it is aimed to reflect the
multiresolution of real numbers defined by axioms (1). In that regard, it is convenient
to consider convergence of periodized bit sequence in terms of the binary expansion
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(5). The standard convergence is inapplicable, since it troubles calculation by the
infinite sequence of binary digits tending rightwards. Fortunately, it corresponds
to an alternative convergence of the same sequence in a leftward manner, implying
multiresolution of the dyadic numbers that follows axioms (7).

The conversion and operations in the dyadic representation are easily imple-
mented. The inverse conversion provides an opportunity to represent fractions whose
denominators are not only the powers of two. Such a structure fits to constructible
angles in regard to the full one, which makes the method significant for computational
geometry.

6. Appendix – p-adic numbers (history and applications)

The emergence of p-adic numbers is almost concurrent to the real ones. Both of
them appeared in the XIX century, having a long prehistory that goes back to the
XVII at least. To be the beginner of real numbers is considered René Descartes,
who postulated the number line. The concept is definitely established by Richard
Dedekind, whose cuts of rationals constitute real numbers [2].

On the other hand, rudiments of p-adic numbers are cognizable in Arithemtica
infinitorum by John Wallis [14] and also in papers by Leonard Euler, who were dealing
with regularization of divergent series and calculation of their sums. Some papers
by Ernst Kummer contain an implicit use as well. However, their formulation is
responded to Kurt Hensel who considered expansion of rational functions in terms
of the irreducible element powers [4]. He defined a p-adic number to be the series

x =
∑

k≥j bkp
k that converges in the norm |x|(p) = p−∥x∥(p)

wherein |x|(p) = j is
valuation signifying the less index k for which bk ̸= 0 [10].

According to the Ostrowski theorem [9], any norm defined on the rational number
x is either the standard |x|, or the p-adic one |x|(p) whereat p is a prime. The closure
implying topology induced by the first norm gives rise to reals, and by the second one
to p-adic numbers [13]. Recalling that a norm | · | is the function satisfying axioms:

|x| = 0⇔ x = 0; |x× y| = |x| × |y|; |x+ y| ≤ |x|+ |y|; (10)

one observes that p-adic norm also satisfies |x + y|(p) ≤ max(|x|(p), |y|(p)) termed
the ultra-norm relation, which is a stringent inequality than the last axiom of (10).
Having significant applications in physics and biology [11], the ultra-metricity seems
to be generating property of hierarchical structures [3]. Multiresolution of the floating
point method is certainly one of them.

The dyadic number means a specific case considering the prime p = 2, cor-
responded to the binary code . . . b1b0. . . . bj =

∑
k≥j bk2

k. A basic application in
the computer science concerns two’s complement representation of negative numbers,
which implies one’s complement of the register increased by unit. The method was
suggested by John von Neumann in the proposal for an electronic stored-program
digital computer [8]. Its implementation was the Electronic Delay Storage Automatic
Calculator (EDSAC) realized in 1949 by Maurice Wilkes and his team at the Univer-
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sity of Cambridge Mathematical Laboratory. However, the method of complementing
a d-bit register in order to calculate the opposite value is accurate only if one im-
plies leftward periodization that converges in regard to the dyadic norm. In that
respect, a value of the d-bit register corresponds to ←−m. = m

1−2d
and its opposite is

←−
m̃.+1 = (2d−1)−m

1−2d
+1 = − m

1−2d
= −←−m. whereat m̃ = (2d− 1)−m signifies the one’s

complement value. Considering normalization in regard to the unit, one obtains a
basic set of the floating point multiresolution (8). Dyadic numbers are therefore at
the very core of computation, offering a consistent realization of methods it already
provides [1].
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