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Abstract. In this paper, we establish an existence theorem for a cubic Urysohn-Stieltjes
integral equation in the Banach space C([0, 1]). The equation under consideration is a general
form of numerous integral equations encountered in the theory of radioactive transfer, in the
kinetic theory of gases and in the theory of neutron transport. Our main tools are the measure
of noncompactness (related to monotonicity) and a fixed point theorem due to Darbo.

1. Introduction

Cubic integral equations arise in several useful applications and appear in modeling
different problems in the real world [1, 2]. The aim of this paper is to investigate the
existence of monotonic solutions of the so-called cubic integral equation of Urysohn-
Stieltjes type, namely

x(t) = f(t) + g(t, x(t)) + x2(t)

∫ 1

0

u(t, s, x(s), x(λs)) dsh(t, s), t ∈ I = [0, 1]. (1)

If dsh(t, s) =
t

t+s , (1) takes the form

x(t) = f(t) + g(t, x(t)) + x2(t)

∫ 1

0

t

t+ s
u(t, s, x(s)) ds, t ∈ I. (2)

Equation (2) is a general form of the famous equation in transport theory, the so-called
Chandrasekhar H-equation [9, 10,15,16].

The classical theory of integral operators and equations can be generalized with
the help of Stieltjes integrals having kernels depending on one or two variables. This
approach was developed in several papers and books (see [3,6–8,11,12,14,17] and the
references therein). Using the measure of noncompactness (related to monotonicity)
defined by J. Banaś and L. Olszowy in [4], and Darbo’s fixed point theorem we
establish the existence of solutions to (1) in C(I) and these solutions are nondecreasing
on the interval I.
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2. Auxiliary facts and results

We denote by (E, ∥ · ∥) a real Banach space and by B(x, r) the closed ball of radius
r and center x. Also, we denote by Br the closed ball B(θ, r), where θ is the zero
element of E. Let ∅ ̸= X ⊂ E and the symbols X and ConvX stand for the closure
and convex closed hull of the set X, respectively. We denote by ME the family of
all nonempty and bounded subsets of E and by NE its subfamily consisting of all
relatively compact subsets of E.

Definition 2.1 ([5]). A mapping µ : ME → R+ is said to be a regular measure of
noncompactness in E if it satisfies the following conditions:
(i) X ∈ NE if and only if µ(X) = 0.

(ii) X ⊂ Y implies µ(X) ≤ µ(Y ).

(iii) µ(X) = µ(X) = µ(ConvX).

(iv) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for 0 ≤ λ ≤ 1.

(v) If Xn is a sequence of nonempty, bounded, closed subsets of E such that Xn+1 ⊂
Xn, n = 1, 2, 3, . . ., and limn→∞ µ(Xn) = 0, then the setX∞ =

⋂∞
n=1Xn is nonempty.

Now, we state the fixed point theorem due to Darbo [13].

Theorem 2.2. Let Ω be a nonempty, bounded, closed and convex subset of the Ba-
nach space E and let H : Ω → Ω be a contraction with respect to the measure of
noncompactness µ. Then H has a fixed point in the set Ω.

In what follows, we will work in the Banach space C(I) which consists of all
real valued functions defined and continuous on I equipped with the norm ∥x∥ =
supt∈I |x(t)|. We now describe the measure of noncompactness in C(I) that we will
use in the next section (see [4]). We fix a nonempty and bounded subset X of
C(I). For x ∈ X and ε ≥ 0, the modulus of continuity of the function x, denoted
by ω(x, ε), is given by ω(x, ε) = sup{|x(t) − x(s)| : s, t ∈ I, |t − s| ≤ ε}. We
put ω(X, ε) = supx∈X ω(x, ε) and ω0(X) = limε→0 ω(X, ε). Next, we let i(x) =
sup{|x(t)− x(s)| − (x(t)− x(s)) : s, t ∈ I, s ≤ t} and i(X) = supx∈X i(x). Note that
i(X) = 0 if and only if all functions belong to X are nondecreasing on I. Now, we
define the function µ on the family MC(I) as follows: µ(X) = ω0(X) + i(X). The
function µ is a measure of noncompactness in the space C(I) [4]. Moreover, the kernel
kerµ consists of all sets X belonging to MC(I) such that all functions from X are
equicontinuous and nondecreasing on the interval I.

Next, we state some auxiliary facts related to functions of bounded variation and
the Stieltjes integral (see [8] and the references therein). Let x be a real valued
function defined on the interval I. The variation of the function x on the interval I,

denoted by
1∨
0
x, is defined by

1∨
0

x = sup
P

{ n∑
i=1

|x(ti)− x(ti−1)| : P = {0 = t0 < t1 <. . .< tn = 1} is a partition of I

}
.
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If
1∨
0
x is finite, then we say that the function x is of bounded variation on I. We have

the following properties:

(i)
1∨
0
x =

1∨
0
(−x) (ii)

1∨
0
(x+ y) ≤

1∨
0
x+

1∨
0
y

(iii)
1∨
0
(x− y) ≤

1∨
0
x+

1∨
0
y (iv)

∣∣∣∣ 1∨
0
x−

1∨
0
y

∣∣∣∣ ≤ 1∨
0
(x− y).

For more properties of functions of bounded variation see [14,17].

Next, let k : I2 → R be a function and let the symbol
b∨

t=a
k(t, s) indicate the

variation of the function t → k(t, s) on the interval [a, b] ⊂ I. Now, let us assume
that x and ϕ : I → R are bounded functions. Then under some extra conditions,

we can define the Stieltjes integral
∫ 1

0
x(t) dϕ(t) of the function x with respect to

the function ϕ. In this case, we say that x is Stieltjes integrable on the interval I
with respect to the function ϕ. If x is continuous and ϕ is of bounded variation on
the interval I, then x is Stieltjes integrable with respect to ϕ on I. Moreover, under
the assumption that x and ϕ are of bounded variation on the interval I, the Stieltjes

integral
∫ 1

0
x(t) dϕ(t) exists if and only if the functions x and ϕ have no common

points of discontinuity.

Further, we recall some properties of the Stieltjes integral which will be used later
(see [14,17]).

Lemma 2.3. If x is Stieltjes integrable on I with respect to a function ϕ of bounded
variation then ∣∣∣∣∫ 1

0

x(t) dϕ(t)

∣∣∣∣ ≤ (
sup

0≤t≤1
|x(t)|

) 1∨
0

ϕ.

Moreover, the following inequality holds∣∣∣∣∫ 1

0

x(t) dϕ(t)

∣∣∣∣ ≤ ∫ 1

0

|x(t)| d
( t∨

0

ϕ

)
.

Corollary 2.4. If x is Stieltjes integrable function with respect to a nondecreasing
function ϕ then ∣∣∣∣∫ 1

0

x(t) dϕ(t)

∣∣∣∣ ≤ (
sup

0≤t≤1
|x(t)|

)
(ϕ(1)− ϕ(0)).

Lemma 2.5. Let x1 and x2 be two Stieltjes integrable functions on I with respect to
a nondecreasing function ϕ and such that x1(t) ≤ x2(t) for t ∈ I. Then∫ 1

0

x1(t) dϕ(t) ≤
∫ 1

0

x2(t) dϕ(t).
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Corollary 2.6. Let x be Stieltjes integrable function on I with respect to a nonde-
creasing function φ and such that x(t) ≥ 0 for all t ∈ I. Then∫ 1

0

x(t) dϕ(t) ≥ 0.

Lemma 2.7. Let ϕ1 and ϕ2 be two nondecreasing functions on I with (ϕ2 − ϕ1) a
nondecreasing function. If x is Stieltjes integrable on I and x(t) ≥ 0 for t ∈ I then∫ 1

0

x(t) dϕ1(t) ≤
∫ 1

0

x(t) dϕ2(t).

Throughout the paper, we will consider a Stieltjes integral of the form∫ 1

0
x(s) dsk(t, s), where k : I2 → R and the symbol ds denotes that the integration is

taken with respect to s. Finally, we state the following two propositions (see [8]).

Proposition 2.8. Suppose that the function k : I2 → R satisfies the following as-
sumptions:
(i) For all t1, t2 ∈ I with t1 < t2 the function s 7→ (k(t2, s)−k(t1, s)) is nondecreasing
on I.

(ii) Both the function t 7→ k(t, 0) and the function t 7→ k(t, 1) are continuous on I.
Then for every ε > 0 there exists a δ > 0 such that for t1, t2 ∈ I with t1 < t2 and

t2 − t1 ≤ δ, we have
1∨

s=0
(k(t2, s)− k(t1, s)) ≤ ε.

Proposition 2.9. Suppose that the function k : I2 7→ R satisfies the same assump-
tions as in Proposition 2.8. Moreover, assume that for each t ∈ I, the function

s 7→ k(t, s) is of bounded variation on I. Then, the function t→
1∨

s=0
k(t, s) is contin-

uous on I.

Remark 2.10. Let the function s → k(t, s) be nondecreasing on I for each t ∈ I.
Moreover, assume assumptions (i) and (ii) in Proposition 2.8 are satisfied. From the
fact that every nondecreasing function is of bounded variation, the compactness of the

interval I and Proposition 2.9, there exists a constant T > 0 such that
1∨

s=0
k(t, s) ≤ T

for every t ∈ I.

3. Main theorem

In this section, we will study the equation (1) assuming that the following assumptions
are satisfied:
(a1) The function f : I → R is continuous, nondecreasing and nonnegative on I.

(a2) The function g : I×R → R is continuous and g : I×R+ → R+. Moreover, there
exists a nonnegative constant c such that

|g(t, x)− g(t, y)| ≤ c|x− y| ∀t ∈ I, (x, y) ∈ R2. (3)
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Moreover, the superposition operator G generated by the function g (defined by
(Gx)(t) = g(t, x(t)), where x = x(t) is an arbitrary function defined on I) satis-
fies for any nonnegative function x the condition i(Gx) ≤ c i(x), where c is the same
constant appearing in (3).

(a3) The function u : I2×R2 → R is continuous, u : I2×R2
+ → R+ and for arbitrary

fixed s ∈ I and x, y ∈ R+ the function t 7→ u(t, s, x, y) is nondecreasing on I.

(a4) The function u satisfies the following assumptions:

(i) There exists a continuous nondecreasing function ψ : R+ ×R+ → R+ such that
|u(t, s, x, y)| ≤ ψ(|x|, |y|) for each (t, s) ∈ I2 and (x, y) ∈ R.
(ii) For any ν > 0 there exists a continuous nondecreasing function φν : R+ → R+

with φν(0) = 0, such that |u(t2, s, x, y)−u(t1, s, x, y)| ≤ φν(t2− t1), for each s ∈ I,
(x, y) ∈ R2 with max{|x|, |y|} ≤ ν and for all (t1, t2) ∈ I2 with t1 < t2.

(a5) The function h : I2 → R satisfies the following assumptions:

(a) The function s 7→ h(t, s) is nondecreasing on I for each t ∈ I.

(b) For all t1, t2 ∈ I with t1 < t2 the function s 7→ (h(t2, s) − h(t1, s)) is nonde-
creasing on I.

(c) Both the function t 7→ h(t, 0) and the function t 7→ h(t, 1) are continuous on I.

(a6) The inequality ∥f∥ + cr + m + r2ψ(r, r)T ≤ r has a positive solution r0 such

that c + 2r0ψ(r0, r0)T < 1, where m = max
t∈I

g(t, 0) and T = sup{
1∨

s=0
h(t, s) : t ∈ I}

(see Remark 2.10).

Theorem 3.1. Suppose that assumptions (a1)–(a6) are satisfied. Then the equa-
tion (1) has at least one solution x ∈ C(I) being nondecreasing on I.

Proof. Let the function M : R+ → R+ be defined by

M(ε) = sup

{ 1∨
s=0

(h(t2, s)− h(t1, s)) : t1, t2 ∈ I, t1 < t2, t2 − t1 ≤ ε

}
.

Then, by Proposition 2.8, we have M(ε) → 0 as ε→ 0.
We denote by F the operator associated with the right-hand side of (1), so (1)

becomes x = Fx, where

(Fx)(t) = f(t) + g(t, x(t)) + x2(t)

∫ 1

0

u(t, s, x(s), x(λs)) dsh(t, s), t ∈ I.

Notice that solving (1) is equivalent to finding a fixed point of the operator F defined
on the space C(I).

Now, we will prove that if x ∈ C(I) then Fx ∈ C(I). To prove this, it suffices to

show that if x ∈ C(I) then Ux ∈ C(I), where (Ux)(t) =
∫ 1

0
u(t, s, x(s), x(λs)) dsh(t, s).

We fix ε > 0 and take t1, t2 ∈ I with t1 < t2 and t2 − t1 ≤ ε. Let x ∈ C(I). Then
there exists ν > 0 with max{∥x∥, ∥x∥} ≤ ν. Now, we have

|(Ux)(t2)− (Ux)(t1)|
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=

∣∣∣∣∫ 1

0

u(t2, s, x(s), x(λs)) dsh(t2, s)−
∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s)

∣∣∣∣
≤
∣∣∣∣∫ 1

0

u(t2, s, x(s), x(λs)) dsh(t2, s)−
∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t2, s)

∣∣∣∣
+

∣∣∣∣∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t2, s)−
∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s)

∣∣∣∣
≤
∫ 1

0

|u(t2, s, x(s), x(λs))− u(t1, s, x(s), x(λs))| ds
( s∨

p=0

h(t2, p)

)

+

∫ 1

0

|u(t1, s, x(s), x(λs))| ds
( s∨

p=0

(h(t2, p)− h(t1, p))

)

≤φν(t2 − t1)
1∨

p=0

h(t2, p) + ψ(∥x∥, ∥x∥)
1∨

p=0

(h(t2, p)− h(t1, p))

≤φν(ε)T + ψ(∥x∥, ∥x∥)M(ε).

The above estimate gives us that ω(Ux, ε) ≤ φν(ε)T + ψ(∥x∥, ∥x∥)M(ε). Thus, we
have ω(Ux, ε) → 0 as ε→ 0. Therefore, Ux ∈ C(I), and consequently, Fx ∈ C(I).

Next, we prove that the operator F is continuous on the space C(I). In order to
prove this it suffices (to see the full proof for F see the argument after the definition
of B+

r0) to show that the operator U is continuous on C(I). Fix ε > 0 and take an
arbitrary x ∈ C(I) such that ∥x− y∥ ≤ ε. Then, for fixed t ∈ I, we have

|(Ux)(t)− (Uy)(t)| =
∣∣∣∣∫ 1

0

u(t, s, x(s), x(λs)) dsh(t, s)−
∫ 1

0

u(t, s, y(s), y(λs)) dsh(t, s)

∣∣∣∣
≤
∫ 1

0

|u(t, s, x(s), x(λs))− u(t, s, y(s), y(λs))| ds
( s∨

p=0

h(t, p)

)

≤β(ε)
1∨

p=0

h(t, p) ≤ β(ε)T,

where, β(ε) = sup {|u(t, s, x1, y1)− u(t, s, x2, y2)| : t, s ∈ I, x1, x2, y1, y2 ∈ [−∥x∥ − ε,
∥x∥+ ε], |x1 − x2| ≤ ε, |y1 − y2|}. Notice that β(ε) → 0 as ε → 0, because the
function u(t, s, x, y) is uniformly continuous on the set I2× [−∥x∥−ε, ∥x∥+ε]2. Thus
the last inequality guarantees that the operator U is continuous and consequently the
operator F is continuous.

Now using our assumptions, for arbitrary x ∈ C(I), we obtain

|(Fx)(t)| =
∣∣∣∣f(t) + g(t, x(t)) + x2(t)

∫ 1

0

u(t, s, x(s), x(λs)) dsh(t, s)

∣∣∣∣
≤|f(t)|+ |g(t, x(t))− g(t, 0)|+ |g(t, 0)|

+ |x2(t)|
∫ 1

0

|u(t, s, x(s), x(λs))| ds
( s∨

p=0

h(t, p)

)
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≤∥f∥+ c∥x∥+m+ ∥x∥2
∫ 1

0

|u(t, s, x(s), x(λs))| ds
( s∨

p=0

h(t, p)

)

≤∥f∥+ c∥x∥+m+ ∥x∥2;ψ(∥x∥, ∥x∥)
( 1∨

p=0

h(t, p)

)
≤∥f∥+ c∥x∥+m+ ∥x∥2ψ(∥x∥, ∥x∥)T.

If ∥x∥ ≤ r0, then by assumption (a6), we get ∥f∥ + cr0 + m + r20ψ(r0, r0)T ≤ r0.
Therefore, F maps the closed ball Br0 into itself.

In the following, we consider the operator F on the set B+
r0 defined by B+

r0 = {x ∈
Br0 : x(t) ≥ 0, for t ∈ I}. Note that the set B+

r0 is a nonempty, closed, bounded and
convex subset of C(I). From assumptions (a1)–(a5), we infer that F maps the set B+

r0
into itself. Note that the operator F is continuous on B+

r0 (we basically established it
before but here we present the full argument). Fix ε > 0 and take arbitrary x, y ∈ B+

r0
with ∥x− y∥ ≤ ε. Then, for t ∈ I, we have

|(Fx)(t)− (Fy)(t)|
≤|g(t, x(t))− g(t, y(t))|

+

∣∣∣∣x2(t)∫ 1

0

u(t, s, x(s), x(λs)) dsh(t, s)− y2(t)

∫ 1

0

u(t, s, y(s), y(λs)) dsh(t, s)

∣∣∣∣
≤c|x(t)− y(t)|

+

∣∣∣∣x2(t)∫ 1

0

u(t, s, x(s), x(λs)) dsh(t, s)− y2(t)

∫ 1

0

u(t, s, x(s), x(λs)) dsh(t, s)

∣∣∣∣
+

∣∣∣∣y2(t)∫ 1

0

u(t, s, x(s), x(λs)) dsh(t, s)− y2(t)

∫ 1

0

u(t, s, y(s), y(λs)) dsh(t, s)

∣∣∣∣
≤c∥x− y∥+ |x2(t)− y2(t)|

∫ 1

0

|u(t, s, x(s), x(λs))| dsh(t, s)

+ |y2(t)|
∫ 1

0

|u(t, s, x(s), x(λs))− u(t, s, y(s), y(λs))| dsh(t, s)

≤c∥x− y∥+ ∥x− y∥(∥x∥+ ∥y∥)ψ(∥x∥, ∥x∥)
1∨

p=0

h(t, p) + ∥y∥2β(ε)
1∨

p=0

h(t, p)

≤cε+ 2r0 εψ(r0, r0)T + r20β(ε)T.

Therefore, ∥Fx − Fy∥ ≤ cε + 2r0 εψ(r0, r0)T + r20β(ε)T and this implies that the
operator F is continuous on the set B+

r0 .

In the following, we consider ∅ ̸= X ⊂ B+
r0 . We fix an arbitrary number ε > 0

and choose x ∈ X and t1, t2 ∈ I with t2 ≥ t1 and |t2 − t1| ≤ ε. Then, in view of our
assumptions, we get

|(Fx)(t2)− (Fx)(t1)|
≤|f(t2)− f(t1)|+ |g(t2, x(t2))− g(t1, x(t1))|
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+

∣∣∣∣x2(t2)∫ 1

0

u(t2, s, x(s), x(λs)) dsh(t2, s)− x2(t1)

∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s)

∣∣∣∣
≤ω(f, ε) + |g(t2, x(t2))− g(t1, x(t2))|+ |g(t1, x(t2))− g(t1, x(t1))|

+

∣∣∣∣x2(t2)∫ 1

0

u(t2, s, x(s), x(λs)) dsh(t2, s)− x2(t2)

∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t2, s)

∣∣∣∣
+

∣∣∣∣x2(t2)∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t2, s)− x2(t1)

∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t2, s)

∣∣∣∣
+

∣∣∣∣x2(t1)∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t2, s)− x2(t1)

∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s)

∣∣∣∣
≤ω(f, ε) + γr0(g, ε) + cω(x, ε)

+ |x2(t2)|
∫ 1

0

|u(t2, s, x(s), x(λs))− u(t1, s, x(s), x(λs))| dsh(t2, s)

+ |x(t2)− x(t1)| |x(t2) + x(t1)|
∫ 1

0

|u(t1, s, x(s), x(λs))| dsh(t2, s)

+ |x2(t1)|
∫ 1

0

|u(t1, s, x(s), x(λs))| ds(h(t2, s)− h(t1, s))

≤ω(f, ε) + γr0(g, ε) + cω(x, ε) + ∥x∥2φν(t2 − t1)

1∨
p=0

h(t2, p)

+ 2∥x∥ω(x, ε)ψ(∥x∥, ∥x∥)
1∨

p=0

h(t2, p) + ∥x∥2ψ(∥x∥, ∥x∥)
( 1∨

p=0

(h(t2, p)− h(t1, p))

)
≤ω(f, ε) + γr0(g, ε) + (c+ 2r0ψ(r0, r0)T)ω(x, ε) + r20 (φν(ε)T + ψ(r0, r0)M(ε)) ,

where, γr0(g, ε) = sup {|g(t, x)− g(s, x)| : s, t ∈ I, x ∈ [0, r0], |t− s| ≤ ε}. Since the
function g is uniformly continuous on the set I × [0, r0], then from the last inequality,
we obtain

ω0(FX) ≤ (c+ 2r0ψ(r0, r0)T)ω0(X). (4)

Again fix an arbitrary x ∈ X and t1, t2 ∈ I such that t1 ≤ t2. Then we have

|(Fx)(t2)− (Fx)(t1)| − ((Fx)(t2)− (Fx)(t1))

=

∣∣∣∣f(t2) + g(t2, x(t2)) + x2(t2)

∫ 1

0

u(t2, s, x(s), x(λs)) dsh(t2, s)

−f(t1)− g(t1, x(t1))− x2(t1)

∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s)

∣∣∣∣
−
(
f(t2) + g(t2, x(t2)) + x2(t2)

∫ 1

0

u(t2, s, x(s), x(λs)) dsh(t2, s)

−f(t1)− g(t1, x(t1))− x2(t1)

∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s

)
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≤|f(t2)− f(t1)| − (f(t2)− f(t1))

+ (|g(t2, x(t2))− g(t1, x(t1))| − (g(t2, x(t2))− g(t1, x(t1))))

+

∣∣∣∣x2(t2)∫ 1

0

u(t2, s, x(s), x(λs)) dsh(t2, s)

−x2(t1)
∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s)

∣∣∣∣
+

(
x2(t2)

∫ 1

0

u(t2, s, x(s), x(λs)) dsh(t2, s)

−x2(t1)
∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s)

)
≤i(Gx) + |x2(t2)|

∣∣∣∣∫ 1

0

u(t2, s, x(s), x(λs)) dsh(t2, s)

−
∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s)

∣∣∣∣
+ |x2(t2)− x2(t1)|

∣∣∣∣∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s)

∣∣∣∣
− x2(t2)

(∫ 1

0

u(t2, s, x(s), x(λs)) dsh(t2, s)

−
∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s)

)
− (x2(t2)− x2(t1))

∫ 1

0

u(t1, s, x(s), x(λs))dsh(t1, s)

≤i(Gx) + x2(t2)

∣∣∣∣∫ 1

0

u(t2, s, x(s), x(λs)) dsh(t2, s)

−
∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s)

∣∣∣∣
+ (|x(t2)− x(t1)| − (x(t2)− x(t1))) (x(t2) + x(t1))

×
∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s)

− x2(t2)

(∫ 1

0

u(t2, s, x(s), x(λs)) dsh(t2, s)−
∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s)

)
≤i(Gx) + 2r0i(x)ψ(∥x∥, ∥x∥)

1∨
p=0

h(t1, p)

+ x2(t2)

[∣∣∣∣∫ 1

0

u(t2, s, x(s), x(λs)) dsh(t2, s)−
∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s)

∣∣∣∣
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−
(∫ 1

0

u(t2, s, x(s), x(λs)) dsh(t2, s)−
∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s)

)]
. (5)

We claim that

∫ 1

0

u(t2, s, x(s), x(λs)) dsh(t2, s)−
∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s) ≥ 0.

Notice that∫ 1

0

u(t2, s, x(s), x(λs)) dsh(t2, s)−
∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s)

=

∫ 1

0

u(t2, s, x(s), x(λs)) dsh(t2, s)−
∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t2, s)

+

∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t2, s)−
∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s), (6)

so

∫ 1

0

u(t2, s, x(s), x(λs)) dsh(t2, s)−
∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t2, s)

=

∫ 1

0

(u(t2, s, x(s), x(λs))− u(t1, s, x(s), x(λs))) dsh(t2, s).

Thus, by assumption (a4) and Corollary 2.6, we get∫ 1

0

u(t2, s, x(s), x(λs)) dsh(t2, s)−
∫ 1

0

u(t1, s, x(s), x(λs)) dsg(t2, s) ≥ 0. (7)

Also

∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t2, s)−
∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s)

=

∫ 1

0

u(t1, s, x(s), x(λs)) ds(h(t2, s)− h(t1, s)).

Recall that h(t1, s), h(t2, s) and (h(t2, s) − h(t1, s)) are nondecreasing functions (as-
sumption (a5)), and u(t1, s, x, y) ≥ 0 (assumption (a4)). Thus, by Lemma 2.7, we
infer that∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t2, s)−
∫ 1

0

u(t1, s, x(s), x(λs)) dsh(t1, s) ≥ 0. (8)

Now from (6), (7) and (8) our claim is proved. Therefore, from (5), we obtain
i(Fx) ≤ i(Gx)+2r0i(x)ψ(r0, r0)T or i(Fx) ≤ (c+2r0ψ(r0, r0)T)i(x) and consequently

i(FX) ≤ (c+ 2r0ψ(r0, r0)T)i(X). (9)

Finally, (4) and (9) imply that ω0(FX)+i(FX) ≤ (c+2r0ψ(r0, r0)T)(ω0(X)+i(X)) or
µ(FX) ≤ (c+2r0ψ(r0, r0)T)µ(X). Now, from the fact that (c+2r0ψ(r0, r0)T) < 1, we
can apply Theorem 2.2. Therefore, the quation (1) has at least one solution x ∈ C(I)
being nondecreasing I. □

Now we give an example of a function h : I2 → R which satisfies assumption (a5).
Let the function h be defined by

h(t, s) =

{
0, for t = 0, s ∈ I,

t ln
(
t+s
t

)
, for 0 < t ≤ 1, s ∈ I.
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The function s7→h(t, s) is nondecreasing for each t ∈ I since d
ds

[
t ln

(
t+s
t

)]
= 1

t+s ≥ 0,

t, s ∈ I. Therefore
1∨

s=0
h(t, s) ≤ ln 2.

To show that the function h satisfies assumptions part (b) and (c) of (a5) we fix
t1, t2 ∈ I with t1 ≤ t2. Then, we have

h(t2, s)− h(t1, s) =

t2 ln
(

t2+s
t2

)
, for t1 = 0,

t2 ln
(

t2+s
t2

)
− t1 ln

(
t1+s
t1

)
, for t1 > 0.

It is easy to check that the function s 7→ (h(t2, s) − h(t1, s)) is nondecreasing on I
and the functions h(t, 0) and h(t, 1) are continuous on I.

Now, we give an example to illustrate Theorem 3.1.

Example 3.2. Consider the following cubic Uryshon-Stieltjes integral equation

x(t) =

√
t

5
+

t

t2 + 9
x(t) +

tx2(t)

10

∫ 1

0

(t+ s+ x(s) + x(λs)) ds, t ∈ I = [0, 1]. (10)

Note that (10) can be written in the form of a cubic integral equation of Uryshon-
Stieltjes type, namely

x(t) =

√
t

5
+

t

t2 + 9
x(t) +

x2(t)

10

∫ 1

0

(t+ s+ x(s) + x(λs)) dsh(t, s), (11)

where h(t, s) = ts. Note that (11) is a particular case of (1) with f(t) =
√
t

5 , g(t, x) =
t

t2+1x, u(t, s, x, y) =
1
10 (t+ s+ x+ y) and h(t, s) = t s.

The function f satisfies assumption (a1) with ∥f∥ = 1
5 . The function g(t, x)

satisfies assumption (a2) with c = 0.1, since

|g(t, x)− g(t, y)| =
∣∣∣∣ tx

t2 + 9
− ty

t2 + 9

∣∣∣∣ ≤ 1

10
|x− y| ∀t ∈ I, (x, y) ∈ R2.

Moreover, for an arbitrary nonnegative function x ∈ C(I) and t1, t2 ∈ I with t1 ≤ t2,
we have

i(Gx) = |(Gx)(t2)− (Gx)(t1)| − ((Gx)(t2)− (Gx)(t1))

= |g(t2, x(t2))− g(t1, x(t1))| − (g(t2, x(t2))− g(t1, x(t1)))

=

∣∣∣∣ t2
t22 + 9

x(t2)−
t1

t21 + 9
x(t1)

∣∣∣∣− (
t2

t22 + 9
x(t2)−

t1
t21 + 9

x(t1)

)
≤ t2
t22 + 9

|x(t2)− x(t1)|+
∣∣∣∣ t2
t22 + 9

− t1
t21 + 9

∣∣∣∣x(t1)
− t2
t22 + 9

(x(t2)− x(t1))−
(

t2
t22 + 9

− t1
t21 + 9

)
x(t1)

=
t2

t22 + 9
[|x(t2)− x(t1)| − (x(t2)− x(t1))] ≤

1

10
i(x).

Next, assumptions (a3) and (a4) are satisfied with u(t, s, x, y) = 1
10 (t + s + x + y),

ψ(x, y) = 1
5 + 1

10 (x+ y) and φν(t) =
t
10 .

Note that the function h satisfies assumption (a5). The inequality appearing in
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assumption (a6) takes the form 0.2 + 0.1r + 0.2r2(1 + r) ≤ r, where,

T = sup{
1∨

s=0

h(t, s) : t ∈ I} = sup{(h(t, 1)− h(t, 0)) : t ∈ I} = sup{t : t ∈ I} = 1,

and r0 = 1 is its a positive solution. Also, c+2r0ψ(r0, r0)T = 0.1+2×0.2 < 1. There-
fore, Theorem 3.1 guarantees that the equation (10) has a nondecreasing solution.
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