
MATEMATIČKI VESNIK
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Abstract. Let V be a valuation ring such that dim(V ) = 0 and the annihilator of each
element in V is finitely generated. In this paper it is proved that if I is a finitely generated
ideal in the polynomial ring V [X], then there is a Gröbner basis for I. Also, an example of a
zero-dimensional non-Noetherian valuation ring RM is presented, together with an example
of finding a Gröbner basis for a certain ideal in a polynomial ring RM [X].

1. Introduction

The Gröbner basis theory appeared in relation to algebraic geometry, which, among
other things, deals with solutions of systems of polynomial equations. It was presented
by Bruno Buchberger in 1965., and since then, it develops and broadens its field of
applications. The first notion that appears when introducing the idea of a Gröbner
basis is the ideal membership problem, that is, how to test whether a given polynomial
belongs to a certain ideal. Along with elementary applications, the Gröbner basis
theory includes numerous advanced applications in commutative algebra and algebraic
geometry. Also, the computational approach is what is highly appreciated in this
theory.

This theory was primarily developed for ideals in rings of polynomials over a field
(see, e.g., [1]), but it is extended to the cases of polynomial rings over Noetherian com-
mutative rings, mostly principal ideal domains and Dedekind domains (e.g., [1], [2]).
Outside the class of Noetherian rings, valuation domains were considered; for example,
in [4], it is proved that a finitely generated ideal in a polynomial ring over a valuation
domain with one indeterminate has a Gröbner basis iff dim(V ) ≤ 1. According to [5],
the same result holds for multivariate polynomial rings over valuation domains, with
lexicographic monomial order.

Here, in Theorem 3.8, it is proved that a finitely generated ideal in V [X], where V
is a a valuation ring, has a minimal strong Gröbner basis, provided that dim(V ) = 0
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and that the annihilator of each element in V is finitely generated. An example
of a zero-dimensional, non-Noetherian valuation ring is also given, in which we also
demonstrated the method for finding a Gröbner basis for an ideal in a polynomial
ring with one indeterminate over the presented ring.

In [3], the authors proved that each finitely generated ideal in a univariate polyno-
mial ring over a valuation zero-dimensional ring has a Gröbner basis, a result which
came to our knowledge during the final preparation of this paper. However, the proofs
of the main results in that paper are quite different from what is presented here. In [3],
the authors start with Lemma 2.3, which is stated very similarly to Lemma 3.5 of
this paper, and then use it repeatedly in the following steps to obtain the main result.
While here, before the proof of Lemma 3.5, we prove several introductory results,
which actually do not assume the ring to be zero-dimensional and which are inde-
pendent of the mentioned lemma. Then we use all these results together to prove
the main result. Besides, all the proofs in this paper contain the methods which al-
low us to find a Gröbner basis. In addition, the example mentioned in the previous
paragraph illustrates and further clarifies all the steps in the proofs.

2. Preliminaries

We suppose that all the rings in this paper are commutative and with identity. The
Jacobson radical and the nilradical of a ring R will be denoted by J(R) and Nil(R),
respectively. The annihilator of a module M is denoted by Ann(M), and the set of
invertible elements in a ring R by U(R). Let us recall the definition of a valuation
ring.

Definition 2.1. A ring V is called a valuation ring if at least one of the following
relations is true: a | b or b | a, for all a, b ∈ V \ {0}.

So, if we have a finite set of elements {a1, . . . , as} of a valuation ring V , there is
i ∈ {1, . . . , s} such that ai divides all the elements of the given set. This fact will be
used throughout the text.

The following proposition is well known and we state it without proof.

Lemma 2.2. Any valuation ring is local.

Here, the maximal ideal in a valuation ring V will be denoted by M .
We now present an example of a valuation ring of dimension zero which is not

Noetherian.

Example 2.3. Let R be the following quotient:

R = Q[X1, X2, X3, . . . ]/⟨X2
1 , X

2
2 −X1, X

2
3 −X2, . . . ⟩.

Observe the localization of R with respect to the maximal ideal M = ⟨x1, x2, . . . ⟩,
where xi stands for the class of the element Xi in R. We will prove that RM is a
dimension zero valuation ring that is not Noetherian.
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Each element in R is of the form f(xm) for some polynomial f with rational coeffi-
cients and for some m ∈ N. Namely, for r ∈ R, we have that r = g(x1, . . . , xm). Since

the relations x1 = x2
2 = · · · = x2m−1

m hold in R, it follows that r = g(x2m−1

m , . . . , xm) =
f(xm). Also, each r ∈ RM can be seen as f(xm) = xs

mu, where s is the highest
possible degree of xm which appears in each term and u is invertible, since it does
not belong to M .

Let f1(xm) and f2(xm) be some elements of RM . Because of the given relations,
we can pick the same m. These elements can be seen as f1(xm) = xs

mu and f2(xm) =
xt
mv, where u and v are invertible. So, the comparison of elements f1 and f2 comes

down to comparison of the degrees s and t. Therefore, RM is a valuation ring.

We have that 0 = x2
1 = x4

2 = x8
3 = · · · which implies that each element in RM

is nilpotent or invertible. If we denote by Me the maximal ideal in RM , then it
follows that

Me = J(RM ) = Nil(RM ) =
⋂

P prime

P.

Namely, the first equality holds because RM is local, and the second because of the
fact that each non-invertible is nilpotent. So, we have that Me ⊆ P , for each prime
ideal P in RM , which implies that RM is a zero-dimensional ring.

For the proof that RM is not Noetherian, let us suppose that the chain of ideals
⟨x1⟩ ⊆ ⟨x2⟩ ⊆ . . . is stationary. Then we have ⟨xn−1⟩ = ⟨xn⟩, for some n. So,
xn ∈ ⟨x2

n⟩ and xn = px2
n. It follows that xn(1 − pxn) = 0. The latter factor is

invertible, since pxn ∈ Me. Consequently, xn = 0, which is a contradiction.

3. Gröbner bases

Let us introduce all the notions that will be needed in this paper. If f = a0 + a1X +
· · ·+anX

n ∈ R[X], where an ̸= 0, then the leading term of f is LT(f) = anX
n. Also,

for a non-zero ideal I ◁ R[X], LT (I) = {LT(f) | f ∈ I \ {0}} and LT(I) = ⟨LT (I)⟩.
Let us recall the definitions of (strong) Gröbner bases for an ideal in R[X] (see,

e.g., [1]).

Definition 3.1. Let I be a non-zero ideal in R[X]. A subset G = {g1, . . . , gr} of I
is a Gröbner basis for I if LT(I) = ⟨LT(g1), . . . ,LT(gr)⟩.

Definition 3.2. Let I be a non-zero ideal in R[X]. A subset G = {g1, . . . , gr} of I
is a strong Gröbner basis for I if for any f ∈ I \ {0}, there exists gi ∈ G such that
LT(gi) | LT(f). This basis is minimal if for all i ̸= j: LT(gi) ∤ LT(gj).

Let us denote by Ik the submodule Ik = I ∩ R[X]k of R[X], where R is a ring
and R[X]k a submodule of R[X] generated by 1, X,X2, . . . , Xk. In the following two
lemmas we consider an ideal which contains a monic polynomial of the degree n and
observe the submodules In−1, In−2, . . . , I0.
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Lemma 3.3. Let I be an ideal in the ring R[X], which is generated by the polynomials
f, f1, . . . , fs, where f is a monic polynomial of degree n. Then In−1 is a finitely
generated R-module.

Proof. Let us prove that the set of the following elements generates In−1:

ρ(Xtfi, f), 0 ≤ t ≤ n− 1, 1 ≤ i ≤ s,

where ρ(g, h) stands for the remainder in the division of g by h.
Let g ∈ In−1. Since g ∈ I, we have g = hf+h1f1+ · · ·+hsfs, h, h1, . . . , hs ∈ R[X]

and we can suppose that deg(h1), . . . ,deg(hs) < n. If not, we could write: hi =
qif + ti, deg(ti) < n, 1 ≤ i ≤ s. Consequently, we would have g = (h + q1f1 + · · · +
qsfs)f + t1f1 + · · ·+ tsfs. So, let

hi =

ki∑
t=0

α
(i)
t Xt, ki < n, 1 ≤ i ≤ s,

Xtfi = fr
(i)
t + ρ(Xtfi, f), 0 ≤ t ≤ ki, 1 ≤ i ≤ s.

It follows that g = f

(
h+

s∑
i=1

ki∑
t=0

α
(i)
t r

(i)
t

)
+

s∑
i=1

ki∑
t=0

α
(i)
t ρ(Xtfi, f).

So, the polynomial g is of the form fp + q, p ∈ R[X] and q being the R-linear
combination of the polynomials ρ(Xtfi, f), 0 ≤ t ≤ ki, 1 ≤ i ≤ s. Since g ∈ In−1,
then deg(g) < n. From the fact that f is monic, we can conclude that p = 0. Also

from ρ(Xtfi, f) = Xtfi − fr
(i)
t it follows that all the remainders ρ(Xtfi, f) belong to

I, and consequently to In−1. Therefore, these polynomials form the generating set
for the R-module In−1. □

For the next lemma, we depart from the discussion of an arbitrary ring and con-
sider the valuation ring in which the annihilator of every element is finitely generated.

Lemma 3.4. Let V be a valuation ring in which the annihilator of every element is
finitely generated and I be an ideal in V [X] generated by polynomials f, f1, . . . , fs,
where f is a monic polynomial of the degree n. Then In−2, In−3, . . . , I0 are finitely
generated V -modules.

Proof. According to Lemma 3.3, the V -module In−1 is finitely generated. Let πk :
V [X]k → V be the homomorphisms such that πk(p) is the coefficient of the monomial
Xk in the polynomial p. It follows that the image πn−1(In−1) is also a finitely gener-
ated submodule of V , that is, a finitely generated ideal. Since V is a valuation ring,
this image must be a principal ideal πn−1(In−1) = ⟨cn−1⟩. Without loss of generality,
we can suppose that at least one of f1, . . . , fs is not a multiple of f . Then cn−1 ̸= 0.
Let hn−1 ∈ In−1 be the polynomial such that LT(hn−1) = cn−1X

n−1. (This poly-
nomial is actually one of the remainders ρ(Xtfi, f), as in the proof of the previous
lemma.)

Let us prove that In−2 is a finitely generated V -module by explicitly finding its
generating set. Since g ∈ In−2 ⊆ In−1, then obviously g =

∑
rijρ(X

ifj , f), rij ∈ V ,
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1 ≤ j ≤ s, 0 ≤ i ≤ n − 1. Since all the remainders ρ(Xifj , f) are in In−1, we can
reduce them by hn−1. So, ρ(X

ifj , f) = aijhn−1 + fij . Note that it may happen that
aij = 0. We now have that g =

∑
rij(aijhn−1 + fij) = (

∑
rijaij)hn−1 +

∑
rijfij .

Since g ∈ In−2, then
∑

rijaij belongs to Ann(cn−1). This annihilator is finitely
generated, that is, principal, so let Ann(cn−1) = ⟨dn−1⟩. It follows that each element
in In−2 is a V -linear combination of dn−1hn−1 and fij = ρ(ρ(Xifj , f), hn−1), where
1 ≤ j ≤ s, 0 ≤ i ≤ n− 1.

We can repeat this procedure. If In−2={0}, then I0= · · ·=In−3={0}. If In−2 ̸={0},
then πn−2(In−2) is a finitely generated submodule of V , there is cn−2 ∈ V such that
πn−2(In−2)=⟨cn−2⟩. Let hn−2∈In−2 be the polynomial such that LT(hn−2)=cn−2X

n−2.
The generating set for In−3 consists of the remainders in the division of the generators
for In−2 by hn−2 together with dn−2hn−2, where Ann(LC(hn−2))=⟨dn−2⟩. We can
continue in the same manner to prove that all these modules are finitely generated. □

Obviously, we consider as important the existence of a monic polynomial in the
ideal. If I = ⟨f1, . . . , fs⟩ ◁ V [X], then there is a coefficient α ∈ V of some of the
generators which divides all the other coefficients of all the polynomials which gen-
erate I. Let fi = αgi, for i ∈ {1, . . . , s}. Then I = α⟨g1, . . . , gs⟩ and at least one
coefficient among all the coefficients of g1, . . . , gs is invertible. Under the assumption
that the dimension of the valuation ring is zero, in the following lemma we prove that
⟨g1, . . . , gs⟩ contains a monic polynomial.

Lemma 3.5. Let I = ⟨f1, . . . , fs⟩ be an ideal in V [X], where V is a valuation ring of
dimension zero. If at least one coefficient among all the coefficients of the generators
of I is invertible, then there is a monic polynomial f that belongs to I.

Proof. Without loss of generality, we can suppose that f1 has at least one invertible
coefficient, and also, that this invertible coefficient is 1. If LC(f1) = 1, then we
are done. If not, f1 is a sum of a monic polynomial and a polynomial with all the
coefficients in M (non-invertible elements). The latter can be seen as a product of
an element in M and a polynomial with one coefficient equal to 1. So f1(X) =
bp(X) + q(X), b ∈ M , q monic in V [X]. Since V is a local ring of dimension zero,
we have that Nil(V ) = J(V ) = M . It follows that each element in V is nilpotent
or invertible. So, there is m ∈ N such that bm = 0. According to the formula
(y + q)m − ym = (y + q)q1 + (−1)m+1qm, for polynomials y, q, q1 and m ≥ 1, we
have that

I ∋ f1(X)m = (bp(X) + q(X))m = (bp(X) + q(X))m − (bp(X))m

= (bp(X) + q(X))q1(X) + (−1)m+1q(X)m

= f1(X)q1(X) + (−1)m+1q(X)m.

So, the monic polynomial qm belongs to I. □

Remark 3.6. Actually, there is a monic polynomial of the degree deg(q) = k in I. Let
us divide the polynomialXsf1 by qm, where s = (m−1)k−1. Now, the coefficient with
XsXk = Xmk−1 in Xsf1 is equal to 1 and we are dividing by the monic polynomial
qm, which is of the degree mk. Since f1(X) = bp(X) + q(X), b ∈ M , then all the



188 Gröbner bases over valuation rings

coefficients in Xsf1 higher than mk − 1 are also in M . Therefore, the quotient in
this division is also a multiple of some element in M . The leading coefficient of the
remainder is then of the form 1 − µ, with µ ∈ M , and consequently, invertible. So,
we have proved that I contains a monic polynomial r1 of the degree mk− 1. We can
repeat this procedure:

Xsf1 = qmq1 + r1

Xs−1f1 = r1q2 + r2

. . .

X2f1 = rs−2qs−1 + rs−1

Xf1 = rs−1qs + rs

f1 = rsqs+1 + rs+1.

Here we have that ri ∈ I, deg(ri) = mk − i and, although these are not monic, their
leading coefficients are invertible. So, rs+1 is a polynomial in I of the degree k whose
leading coefficient is invertible.

Now, we can return to the question of existence of a Gröbner basis for an ideal I
in V [X]. First, it is clear than any strong Gröbner basis is also a Gröbner basis. Let
us prove that, in the case of valuation rings, these two notions actually coincide.

Lemma 3.7. Let G = {g1, . . . , gr} be a Gröbner basis for an ideal I in V [X], where
V is a valuation ring. Then G is also a strong Gröbner basis for I.

Proof. Let f ∈ I. SinceG is a Gröbner basis there exists polynomials p1(X), . . . , pr(X)

such that LT(f) = p1(X)LT(g1)+ · · ·+pr(X)LT(gr). Let pi(X) = b
(i)
0 + b

(i)
1 X+ · · ·+

b
(i)
si X

si , LT(gi) = aiX
ni and LT(f) = aXn. So

aXn =

r∑
i=1

si∑
j=0

aiX
nib

(i)
j Xj .

We can conclude that for some subset K ⊆ {1, . . . , r}, we have

aXn =
∑
k∈K

akX
nkb

(k)
n−nk

Xn−nk =

(∑
k∈K

akb
(k)
n−nk

)
Xn.

It follows that a =
∑

k∈K akb
(k)
n−nk

. Let k0 ∈ K be such that ak0
| ak for all k ∈ K.

Then we have that ak0
Xnk0 | aXn and we are done. □

Now we prove the main theorem.

Theorem 3.8. Let V be a dimension zero valuation ring in which the annihilator of
every element is finitely generated. If I is a finitely generated ideal in V [X], then
there is a minimal strong Gröbner basis for I.

Proof. Let I = ⟨f1, . . . , fs⟩ and α ∈ V a coefficient of some of the generators which
divides all the other coefficients of all the polynomials which generate I. Let fi = αgi,
for i ∈ {1, . . . , s}. Then I = α⟨g1, . . . , gs⟩. So it suffices to prove that J = ⟨g1, . . . , gs⟩
has a Gröbner basis.
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We can suppose that at least one coefficient among all the coefficients of g1, . . . , gs
is equal to 1, and according to Lemma 3.5, there is a monic polynomial in J . Let f be
a monic polynomial of the lowest degree that belongs to J and suppose deg(f) = n.
Then by Lemma 3.4 Jn−1, . . . , J0 are finitely generated V -modules. As in the proof
of Lemma 3.4, let πk : V [X]k → V be the homomorphisms such that πk(p) is the
coefficient of the monomial Xk in the polynomial p. It follows that the images πk(Jk)
are principal ideals in V . Let πk(Jk) = ⟨ck⟩ and let hk ∈ Jk be such that LT(hk) =
ckX

k. If we denote by S the set of indices i ∈ {1, . . . , n − 1} such that ci ̸= 0 and
cj ∤ ci, for all j < i, then a strong Gröbner basis for J is given by G = {f, hi | i ∈ S},
that is LT(J) = ⟨Xn, ciX

i | i ∈ S⟩. Namely, suppose that p ∈ J \ {0}. If deg(p) ≥ n,
then Xn | LT(p). If deg(p) = k < n, then p ∈ Jk; so, ckX

k | LT(p). Let ciX
i for

i ∈ S be such that ci|ck and i ≤ k. Then ciX
i | LT(p). So, G is a strong Gröbner

basis for J . It is also minimal: LT(hi) ∤ LT(hj) for all i ̸= j, i, j ∈ S and none of the
hi, i ∈ S is monic since f is chosen to be a monic polynomial of the lowest degree
that belongs to J . If we set G′ = {αg | g ∈ G}, we obtain a minimal strong Gröbner
basis G′ for the starting ideal I. □

Example 3.9. Let us use Example 2.3 to illustrate the previous results. Let I be an
ideal in the ring RM [X] generated by

f1(X) = x1X
4 + x1x2x3X

3 +X2 + x2X − x2x3

f2(X) = x2X
2 + (x1 + x3)X + x1

f3(X) = x2X
2 + x1X.

If we use the given relations, we can see these polynomials as

f1(X) = x4
3X

4 + x7
3X

3 +X2 + x2
3X − x3

3

f2(X) = x2
3X

2 + (x4
3 + x3)X + x4

3

f3(X) = x2
3X

2 + x4
3X.

For the sake of simplicity, let us denote x3 with α. Since f1(X) = α4(X4 + α3X3) +
X2 +α2X −α3 and the fact that (α4)2 = 0, according to Lemma 3.5, the polynomial
q(X)2 = (X2+α2X−α3)2 belongs to I. According to the remark, a monic polynomial
of degree k = 2 belongs to I also. We proceed to find this polynomial. Since s =
k(m − 1) − 1 = 1, we divide Xf1 by q2. After this division, we get that the monic
polynomial r1(X) = X3+α2X2−α3X is in I. The following division of f1 by r1 allows
us to conclude that the polynomial r2(X) = X2 + α2X − α3 is a monic polynomial
in I.

Let h = r2 and since ρ(f1, h) = 0, ρ(f2, h) = αX + α4(1 + α), ρ(f3, h) = α5, we
can subtract the third remainder from the second to get that I = ⟨h, h1, h2⟩, where
h1 = αX + α4 and h2 = α5.

Following the algorithm, we have that

ρ(Xh1, h) = α3(α− 1)X + α4, ρ(Xh2, h) = α5X,

ρ(h1, h) = h1 = αX + α4, ρ(h2, h) = h2 = α5,

which means that π1(I1) is generated by α. Also, h1 is the polynomial such that
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its leading coefficient generates π1(I1). Towards the final step of the calculation, we
determine

ρ(α3(α− 1)X + α4, h1) = α4(1− α3 + α2), ρ(α5X,h1) = 0, ρ(h2, h1) = h2 = α5.

Also, let p(xm) ∈ Ann(α). Then 0 = α · p(xm) = x3 · xk
mu, u ∈ U(RM ), k ≥ 1. It

follows that x2m−3

m xk
m = x2m−3+k

m = 0 = x2m

m , and so k ≥ 2m − 2m−3 = 7 · 2m−3.
Therefore, Ann(α) = ⟨α7⟩. Since α7h1 = 0, it follows that π0(I0) = I0 is generated
by α4.

Finally, we get that LT(I) = ⟨X2, x3X,x4
3⟩ = ⟨X2, x3X,x1⟩, and a minimal strong

Gröbner basis for I is given by the polynomials g1 = X2+x2X−x2x3, g2 = x3X+x1

and g3 = x1.
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Editorial note. After the appearance of this paper online, I. Yengui has kindly
drawn the attention of the author to the fact that the claim of the Theorem 3.8 of
this paper is actually already proved in the paper “On the leading terms ideals of
polynomial ideals over a valuation ring”, J. Algebra 351 (2012), 382-389, by S. Mon-
ceur and I. Yengui. The authors prove that every finitely generated ideal I in V [X]
has a Gröbner basis, where V is a coherent and archimedean valuation ring (Proposi-
tion 17). The proof of that fact is obtained by using the Buchberger’s Algorithm for
Noetherian valuation rings (also presented in that paper), which is justified, since the
noetherian condition in that case can be replaced by the hypothesis of coherency and
the archimedean condition. Proposition 12 of Monceur and Yengui’s paper implies
that valuation ring with zero divisors is archimedean iff its dimension is zero. They
also state the fact that valuation ring is coherent if annihilator of every element of
that ring is principal. We suggest the readers to consult that paper also.
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[5] I. Yengui, The Gröbner ring conjecture in the lexicographic order case, Math. Z. 276(1–2)
(2014), 261–265.

(received 03.06.2020; in revised form 24.12.2020; available online 11.04.2021)

University of Belgrade, Faculty of Mathematics, Studentski trg 16, Belgrade, Serbia

E-mail: roslavcev@matf.bg.ac.rs


	Introduction
	Preliminaries
	Gröbner bases

