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Abstract. The question of determining under which conditions the Schwarzian deriva-
tive of an algebroid function turns out to be a uniform meromorphic function in the plane
is considered. In order to do this the behaviour of the Schwarzian derivative of an algebroid
function w(z) around a ramification point is analyzed. It is concluded that in case of a uni-
form Schwarzian derivative Sw(z), this meromorphic function presents a pole of order two at
the projection of the ramification point, with a rational coefficient γ−2, where 0 < γ−2 < 1.
A class of analytic algebroid functions with uniform Schwarzian derivative is presented and
the question arises whether it contains all analytic algebroid functions with this property.

1. Introduction

Given a meromorphic function f(z) in a domain Ω of the complex plane C, the
Schwarzian derivative Sf(z) is defined by

Sf =

(
f ′′

f ′

)′

− 1

2

(
f ′′

f ′

)2

.

In the case that f(z) is locally injective then Sf(z) is analytic.
Here we shall consider the wider setting than meromorphic functions formed by the

algebroid functions. An algebroid function w(z) of order k is a k-valued function w(z)
in the entire complex plane C, or more generally in a finite disc D (0, R), determined
by an equation of the form

F (z, w) = Ak(z)w
k +Ak−1(z)w

k−1 + · · ·+A0(z) = 0,

where A0(z), A1(z), . . . , Ak(z) are uniform meromorphic functions either in C or more
generally in D (0, R). By a uniform function we mean an 1-valued function.

The multivalued function w = w(z) can be considered as a uniform function on
the associated Riemann surface XF defined by

XF = {(z, w) | F (z, w) = 0} .
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2 On algebroid functions with uniform Schwarzian derivative

The multivalued function w(z) has, for each z, different branches wi(z), i =
1, . . . , k, which can coincide in a discrete set of points called ramification points.
The surface XF can be described in terms of the branches by

XF = {(z, wj(z)) | z ∈ C, j = 1, . . . , k} ,
in such a way that XF becomes an n−sheeted covering of the complex plane by the
canonical projection

P : XF → C, (z, wj) 7→ z,

and the algebroid function w(z) becomes uniform on XF through

w : XF → Ĉ, (z, wj (z)) 7→ wj(z).

Now, given a point p = (z, wi(z)) ∈ XF \RF , RF = {p ∈ XF | p ramification point
of XF }, we define the Schwarzian derivative Sw of w(z) at p by

Sw (p) =

(
w′′ (z)

w′ (z)

)′

− 1

2

(
w′′ (z)

w′ (z)

)2

.

It is clear that Sw is a well-defined uniform meromorphic function considered on
XF\P (RF ) as a function of the local parameter z but in general it is not uniform
considered as a function on C.

2. A theorem on differential equations

We shall restrict ourselves to analytic algebroid functions, that is, the algebroid func-
tions w (z) that have no poles, or equivalently, all the coefficients Aj (z) of F (z, w)
are analytic functions in C. We present the following theorem which is an extension
of a well-known theorem on differential equations in the plane, see I. Laine [6].

Theorem 2.1. Let A (z) be analytic in C \ S, where S ⊂ C is a discrete set. Then
for any two linearly independent local solutions v1, v2 of the second order differential
equation

v′′ +A (z) v = 0, (1)

in a disc D (z0, ϵ) such that D (z0, ϵ) ∩ S = ∅, their quotient w = v1/v2 is a locally
injective analytic function which satisfies

Sw (z) =

(
w′′ (z)

w′ (z)

)′

− 1

2

(
w′′ (z)

w′ (z)

)2

= 2A (z) . (2)

Conversely, if a locally injective analytic function element (w (z) , D (z0, ϵ)) is
given, with A (z) defined by (2), then A (z) is analytic and we can find two linearly
independent local solutions v1, v2 of (1) such that w = v1/v2.

The function element (w (z) , D (z0, ϵ)) can be continued analytically without re-
striction to C \ S so that we get in general a complete analytic multivalent func-
tion w (z) with locally injective analytic branches wi (z) such that given two different
branches wi (z) , wj (z) in a small neighbourhood D (z1, ϵ), D (z1, ϵ)∩S = ∅ there exists
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a Möbius transformation T such that wj (z) = T ◦wi (z) for z in D (z1, ϵ). The set of
Möbius transformations obtained in this way is a group G of Möbius transformations
and when it turns out to be finite then the obtained complete multivalued function
w (z) is an algebroid function of order equal to ord (G).

Conversely, if we start from an analytic algebroid function w (z) of order k for
which all the branches wi (z), i = 1, . . . , k are related through the Möbius transforma-
tion T of a finite group of order k, then the Schwarzian derivative Sw is a uniform
function 2A (z) analytic in C \ S where S is the set of the projections of the ramifi-
cation points of w (z).

Proof. Given two linearly independent local analytic solutions v1 (z) , v2 (z) of (1),
they can be continued without restriction in C\S (see Herold [5, page 33]). Therefore,
there exist multivalued extensions to C\S of v1 (z) , v2 (z), linearly independent local
solutions of (1), and therefore their quotient w (z) can be extended to a multiple
valued solution of (2) in C \ S. See I. Laine [6, Theorem 6.1.].

The fact that the quotient w = v1/v2 satisfies (2) is obtained by calculation.

Given two branches wi, wj in a disc D (z1, ϵ) outside S, we must have Swi
=

Swj = 2A (z), and again by [6, Remark next to Theorem 6.1], wi, wj can be written
as quotients of local linearly independent solutions of (1)

wi =
v1i
v2i

, wj =
v1j
v2j

,

so that for some constants α1, α2, β1, β2 it holds

wj =
v1j
v2j

=
α1v1i + α2v2i
β1v1i + β2v2i

= T ◦ wi,

where T (z) is the Möbius transformation

T (z) =
α1z + α2

β1z + β2
.

Now, if we consider the set of all the transformations obtained in this way then
we get a group G. In the case that G is finite, the number of different branches at
p must be finite and independent of p, and precisely equal to ord (G). In fact, the
composition of two Möbius transformations T, T1 obtained in this way should lead to
a new branch wk = (T1 ◦ T )◦wi of w solution of (2) obtained by analytic continuation
of wi. The order of the algebroid function obtained is equal to the number of different
branches at a certain point p and this is clearly equal to the number of different Möbius
transformations of G, that is ord (G).

The converse statement also follows from [6, Remark next to Theorem 6.1]. □

3. An example

Example 3.1. Let S = {an}n∈⋉ be a sequence of distinct points tending to infinity
and ordered in such a way that |an| ≤ |an+1|, that is, ordered according to increasing
moduli.
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We can form, by the Weierstrass Product Theorem, a function L (z) with zeros at
the points {an} and with no other zeros. This function is given in the form

L (z) =

∞∏
n=1

Epn

(
z

an

)
,

where Ep

(
z
a

)
denotes an elementary Weierstrass product. We consider the algebroid

function w (z) of order k determined by the equation F (z, w) = wk − L (z) = 0.

The associated Riemann surface XF is a covering of C with ramifications over the
points {an}, and given a disc D (ai, ϵ) excluding the an’ with n ̸= i, the different
branches wl, l = 1, 2, . . . , k at a point z ∈ D (ai, ϵ) are obtained as

wl (z) = e
2πli
k ·

( ∞∏
k=1

Epn

(
z

an

) 1
k

)
. (3)

Here, we have fixed inside the parenthesis a particular branch of
∞∏
k=1

Epn

(
z

an

) 1
k

,

in such a way that when we consider a function element

(wl (z) , D (zi, ρi)) ,

where D (zi, ρi) ⊂ D (ai, ϵ) and ai /∈ D (zi, ρi) ,

and where the function wl (z) = L (z)
1/k

assumes the values in (3) for z ∈ D (zi, ρi),
and we continue this element analytically along a circle C (ai, |zi − ai|), we get a
function element (wl−1 (z) , D (zi, ρi)), where wl−1 assumes the value wl−1 (z) in (3),

since the factor
(
1− z

ai

)1/k
suffers in L (z) an argument variation equal to − 2π

k

leaving the rest of the product invariant.
We conclude that the function element (wl (z) , D (zi, ρi)) gives rise by analytic

continuation around the ramification point ai to the function element

(wl−1 (z) = T ◦ wl (z) , D (zi, ρi)) ,

where T (z) = e−2πiz.
We remark that the Möbius transformation T associated to ai is the same for any

other aj .
We conclude that the associated group G is in this case the finite cyclic group

generated by T : G =
{
I, T, T 2, . . . , T k−1

}
.

Problem 3.1. Are all the analytic algebroid functions of order k with uniform
Schwarzian derivative of the type described in Example 3.1?

4. The associated group G

Let w (z) be an algebroid function with uniform Schwarzian derivative Sw (p) = 2A (z)
for every p ∈ XF , such that P (z) = z, where A (z) is an analytic function in C\S with
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S ⊂ C a discrete set. The group G associated to w (z) is generated in the following
way.

Let us enumerate the points an ∈ S, assuming that we do this according to
increasing moduli and in case of equality of moduli according to increasing arguments.
For each an we consider a circle C (an, ϵn) of radius sufficiently small so that they
are mutually disjoint. Inside C (an, ϵn) we fix a disc D (zn, ρn) with ρn < ϵn −
d (zn, an), so that an /∈ D (zn, ρn). By analytic continuation of a finite function
element (w (z) , D (zn, ρn)) around a circle C (an, |zn − an|) we get a new function
element (w1 (z) , D (zn, ρn)) in such a way that there exists a Möbius transformation
Tn,i for which

w1 = Tn,i ◦ w, (4)

where Tn,i is associated to a ramification point pn,i over an. That is, we denote by
pn,1, pn,2, . . . , pn,kn

the ramifications points over an, i.e. P (pn,i) = an, i = 1, . . . , kn.

Then we can continue analytically both functions elements w,w1 over C \ S and
all the pairs of function elements obtained in this way by analytic continuation will
always satisfy the relation (4).

Now we proceed in the same way for each n ∈ N and obtain a sequence of
{Tn,i}n∈N,i=1,...,kn

of Möbius transformations.

Theorem 4.1. The group associated to the algebroid function w (z) is the group gener-
ated by the described sequence of Möbius transformations {Tn,i | n ∈ N, i = 1, . . . , kn}.

Proof. Let T be a Möbius transformation for which T ◦w (z) is a function element of
the algebroid function starting from a given function element (w (z) , (D (z0,ϵ))).

The function element T ◦ w (z) must be obtained by analytic continuation from
w (z) along a closed path γ ⊂ C \ S.

Since γ is compact, it is contained in a discD (0, R) and an /∈D (0, R) for n>N with
N sufficiently large. Then we consider paths γ1, . . . , γN in D (0, R)\{a1, . . . , aN} such
that γn = βn ∼ C (an, ϵn), where the βn’s are mutually disjoint Jordan arcs joining
z0 and C (an, ϵn). We know from basic Algebraic Topology that the γn, n = 1, . . . , N
form a set of generators of the fundamental group π1 of D \ {a1, . . . , aN} so that the
path γ is homotopic to a path of the form l1 ∼ l2 ∼ . . . ∼ lT where each path lj is
one of the paths γn or γ−1

n and the paths lj , lk can coincide for j ̸= k.

If we continue analytically the original function element (w,D (z0, ϵ)) along one
of the γn, we arrive to the function element (Tn,i ◦ w,D (z0, ϵ)) and similarly if we
continue the function element (w,D (z0, ϵ)) along the path γ−1

i we get to the func-
tion element

(
T−1
n,i ◦ w,D (z0, ϵ)

)
. Therefore the analytic continuation of (w,D (z0, ϵ))

along the path l1 ∼ l2 ∼ . . . ∼ lT , will yield a function element (w1, D (z0, ϵ)) where
w1 = Tl1,...,lT ◦ w, and Tl1,...,lT is obtained as a product of Tn,i’s and Tn,i’s with
n = 1, 2, . . . , N , i = 1, 2, . . . , kn.

By the Monodromy Theorem, since γ and l1 ∼ l2 ∼ . . . ∼ lT are homotopic, the
following function elements are equal: (T ◦ w , D (z0, ϵ)) = (Tl1,...,lT ◦ w , D (z0, ϵ)),
that is T is in the group generated by {Tn,i}. □
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5. The singularities of A (z) at S

Let w = w (z) be an algebroid function of order n with ramifications over a discrete set
of points S ⊂ C and assume that its Schwarzian derivative Sw (p) at a point p ∈ XF

satisfies

Sw (p) =

(
w′′ (z)

w′ (z)

)′

− 1

2

(
w′′ (z)

w′ (z)

)2

=
w′′′ (z)

w′ (z)
− 3

2

(
w′′ (z)

w′ (z)

)2

= 2A (z) ,

where z = P (p), that is, the value of the Schwarzian derivative is the same for all the
branches w1, . . . , wn and it only depends on P (p).

In this section we shall study the behaviour of A (z) at a point a ∈ S, that is, at
a point which is the projection of some ramification point p ∈ RF of XF . At such a
point the branches group in cycles, the branches corresponding to such a cycle have
power series expansions of the form (see K. Hensel und Landsberg [4, Kap.5, page
77])

wi (z) = c−l (z − a)
−l/k

+ c−(l−1) (z − a)
−(l−1)/k

+ · · ·+ c0 + c1 (z − a)
1/k

+ . . .

where l < k. Then we obtain

w′
i (z) =− l

k
c−l (z − a)

−l/k−1 − (l − 1)

k
(z − a)

−(l−1)/k−1
+ · · · ,

w′′
i (z) =

l

k

(
l

k
+ 1

)
c−l (z − a)

−l/k−2
+

(l − 1)

k

(
l − 1

k
+ 1

)
(z − a)

−(l−1)/k−2
+ · · · ,

w′′′
i (z) =− l

k

(
l

k
+ 1

)(
l

k
+ 2

)
c−l (z − a)

−l/k−3

− (l − 1)

k

(
l − 1

k
+ 1

)(
l − 1

k
+ 2

)
(z − a)

−(l−1)/k−3
+ · · · ,

and we conclude that, for p in a neighbourhood of this branch point, it holds

Sw (p) =
w′′′ (z)

w′ (z)
− 3

2

(
w′′ (z)

w′ (z)

)2

=
− l

k

(
l
k + 1

) (
l
k + 2

)
c−l (z − a)

−l/k−3 ·
[
1 +O (z − a)

1/k
]

− l
k c−l (z − a)

−l/k−1 ·
[
1 +O (z − a)

1/k
]

− 3

2
·

− l
k

(
l
k + 1

)
c−l (z − a)

−l/k−2 ·
[
1 +O (z − a)

1/k
]

− l
k c−l (z − a)

−l/k−1 ·
[
1 +O (z − a)

1/k
]

2

=

(
l

k
+ 1

)(
l

k
+ 2

)
(z − a)

−2
(1 + o (1))− 3

2
·
(
l

k
+ 1

)2

(z − a)
−2

(1 + o (1))

=

(
l

k
+ 1

)[(
l

k
+ 2

)
− 3

2

(
l

k
+ 1

)]
(z − a)

−2
+ o (z − a)

−2
.

That is, at a point a ∈ S, since
(
l
k + 2

)
− 3

2

(
l
k + 1

)
= − 1

2

(
l
k − 1

)
, we obtain the
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coefficient of (z − a)
−2

at the Laurent expansion, namely 1
2

(
1−

(
l
k

)2)
, and therefore

that of A (z) will be 1
4

(
1−

(
l
k

)2)
, where l

k ̸= ±1, since we are assuming p to be a

ramification point.

We conclude that the singularity of the Schwarzian derivative of an algebroid
function w = w (z) at a point a ∈ C, which is the projection of a ramification point of

XF , should be a pole of order 2 and the coefficient γ−2 of the term (z − a)
−2

should

be of the particular form γ−2 = 1
4

(
1−

(
l
k

)2)
, l, k ∈ N, l < k, what implies γ−2 ∈ Q,

0 < γ−2 < 1.

Remark 5.1. It follows that for an algebroid function with uniform Schwarzian
derivative, the cycles associated to all the ramification points with the same pro-
jection should have the same length l.

Example 5.2. The multivalued function w (z) = zi
√
3 = ei

√
3 ln z has the successive

derivatives

w′ (z) =i
√
3 · zi

√
3−1 , w′′ (z) = i

√
3 ·
(
i
√
3− 1

)
· zi

√
3−2,

w′′′ (z) =i
√
3 ·
(
i
√
3− 1

)
·
(
i
√
3− 2

)
· zi

√
3−3,

so that we obtain for the Schwarzian derivative

Sw (z) =
(
i
√
3− 1

)
·
(
i
√
3− 2

)
· z−2 − 3

2

(
i
√
3− 1

)2
· z−2

=
(
i
√
3− 1

)[
i
√
3− 2− 3

2

(
i
√
3− 1

)]
· z−2 =

(
i
√
3− 1

)(
− i

√
3

2
− 1

2

)
· z−2

=− 1

2

(
i
√
3− 1

)(
i
√
3 + 1

)
· z−2 − 1

2
(−3− 1) = 2z−2.

In this case γ−2 = 2 and the Schwarzian derivative comes from the infinitely many

valued zi
√
3 which is clearly not an algebroid.

Example 5.3. One further example is yielded by the algebroid equation w6=z2 (z−1)
3
.

In this case the corresponding algebroid function w = w (z) gives rise to a uniform
Schwarzian derivative Sw (z) = 2A (z) with two poles at z = 0 and z = 1 and whose

respective developments around these points have the corresponding terms γ−2

z2 = 1/3
z2 ,

γ−2

z2 = 1/2
z2 , that is γ−2 = 1

3 , γ−2 = 1
2 at the points z = 0, z = 1 respectively.

6. The reciprocal question

In Section 5 we have shown that given an algebroid function w (z) for which the
Schwarzian derivative Sw (p) at a given point p ∈ XF depends only on the projection
z = P (p), say Sw (p) = 2A (z), the projection a = P (p) of a branch point p ∈ XF ,
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the function A (z), has a pole of order 2 with Laurent expansion of the form

A (z) =

1
4

(
1−

(
l
k

)2)
(z − a)

2 +
b1

z − a
+ b2 + b3 (z − a) + . . . (5)

Now we consider the reciprocal question—given a meromorphic function A (z) with
Laurent expansion of type (5) at its poles, can we find an algebroid function w (z)
with Schwarzian derivative Sw (p) satisfying

Sw (p) = 2A (z) , (6)

where z = P (p)?

The question can be solved locally making use of the following lemma which is an
adaptation to our situation of [6, Lemma 6.6] and bearing in mind Theorem 2.1.

Lemma 6.1. Suppose that h (z) is analytic in

B (z0, R) = {z | |z − z0| < R} ,
where R > 0 and consider the differential equation

f ′′ +
h (z)

(z − z0)
2 · f = 0, (7)

in B (z0, R). Let ρ1, ρ2 be the roots of ρ (ρ− 1) + h (z0) = 0, assuming that ρ1 > ρ2,
ρ1 − ρ2 < 1. Then (7) admits in some disc B (z0, r), r ≤ R two linearly independent
solutions f1, f2 of the form{

f1 (z) = (z − z0)
ρ1
∑∞

i=0 c
1
i (z − z0)

i
, c10 ̸= 0

f2 (z) = (z − z0)
ρ2
∑∞

i=0 c
2
i (z − z0)

i
, c20 ̸= 0.

(8)

Proof. It is clear that two solutions as in (8) should be linearly independent.

First of all we remark that the functions f1 (z) and f2 (z) will be multivalued so

as their quotient is f1(z)
f2(z)

= (z − z0)
ρ1−ρ2 · g (z), g (z) analytic.

The idea of the proof is in [6], we shall proceed in the same way for both values
ρ1, ρ2 and obtain the corresponding coefficients c1i , c

2
i in a recursive way. Let ρ be

one of the values and ci the corresponding coefficients.

That is, we are looking for a function with power series expansion of the form

f (z) = (z − z0)
ρ

∞∑
i=0

ci (z − z0)
i
. (9)

We assume the Taylor expansion of h (z) to be

h (z) =

∞∑
i=0

bi (z − z0)
i
. (10)

Substituting (9) and (10) into (7) we obtain

(ρ+ n) (ρ+ n− 1) +

n∑
i=0

bicn−i = 0, for n = 0, 1, . . . (11)
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We introduce the notation{
φ0 (ρ) = ρ (ρ− 1) + b0 = ρ (ρ− 1) + h (z0) ,

φi (ρ) = bi, for i ∈ N \ {0} .
(12)

From (11), making use of the notation (12), we obtain
c0φ0 (ρ) = 0

c1φ0 (ρ+ 1) + c0φ1 (ρ) = 0

. . . . . . . . . . . .

cnφ0 (ρ+ n) + cn−1 (ρ+ n− 1) + · · ·+ c1φn−1 (ρ+ 1) + c0φn (ρ) = 0.

(13)

Once we have fixed a value c0 ̸= 0, the first equality gives the indicial equation
which has the roots ρ1, ρ2 which by our hypotheses satisfy ρ1 − ρ2 < 1 and therefore
φ0 (ρ1 + n) ̸= 0, φ0 (ρ2 + n) ̸= 0, for every n ∈ N \ {0} and therefore (13) determines
recursively the coefficients ci.

The convergence of the series obtained in this way is proved in I. Laine [6]. □

In our case the indicial equation is

ρ (ρ− 1) +
1

4

(
1−

(
l

k

)2
)

= 0, that is ρ (ρ− 1) +
1

4
=

1

4

(
l

k

)2

,

which can be written as[(
ρ− 1

2

)
+

1

2

]
·
[(

ρ− 1

2

)
− 1

2

]
+

1

4
=

1

4

(
l

k

)2

,

whence

(
ρ− 1

2

)2

=
1

4

(
l

k

)2

,

that is ρ1 =
1

2
+

1

2
· l
k
, ρ2 =

1

2
− 1

2
· l
k
,

so that ρ1 − ρ2 =
l

k
< 1,

and hence we get that the hypotheses of Lemma 6.1 are satisfied. Finally, we obtain

a local solution of (6) of the form w (z) = (z − z0)
l/k · g (z), where g (z) is analytic

and g (z0) ̸= 0.

7. A partial answer to the problem in Section 3

The following theorem yields a partial answer to the problem in Section 3. More
precisely, it describes the analytic algebroid functions of a given order k with uni-
form Schwarzian derivative under the additional assumption of the existence of a
ramification point of maximal order k.

Example 5.3 shows that this additional hypothesis is not satisfied by every alge-
broid function with uniform Schwarzian derivative.
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Theorem 7.1. Let w = w (z) be an algebroid function of order k with a uniform
Schwarzian derivative 2A (z), that is

Sw (p) = 2A (z) , (14)

for p ∈ X, X—the associated Riemann surface, with z = P (p), and such that w (z)
has a ramification point a of maximal order k. Then the algebroid function w (z) is
of the form

w (z) = T ◦ (e (z) · wL (z)) , (15)

where e (z) is an entire function, T is a Möbius transformation and wL (z) will be an
algebroid function as described in Example 3.1, i.e. wL (z) is defined by an equation
of the form

wk − L (z) = 0, where L (z) =

∞∏
i=1

Epi

(
z

ai

)
.

Proof. Let D (a, ra) be a disc centered at a, where a is a ramification point of order k

of w (z) and therefore a pole of order 2 of 2A (z) with coefficient γ−2 of (z − a)
−2

in

its Laurent expansion around a equal to 1
2

(
1−

(
1
k

)2)
. Let us assume that D (a, ra)

does not contain any other ramification point of w (z), that is, it does not contain any
other pole of A (z). By the results in Section 6 and as a consequence of Lemma 6.1
there exists a solution wa (z) of (14), which we can assume to be defined in D (a, ra),

of the form wa (z) = (z − a)
1
k · ga (z), where ga (z) is a uniform analytic function with

ga (a) ̸= 0.
We can assume that w (a) = 0 just by application of a Möbius transformation and

then since both functions w (z) and wa (z) have at a a ramification point of order k,
the function w ◦w−1

a (z) is a uniform analytic function T (z) in D (a, ra). It should be
a Möbius transformation since both functions have the same Schwarzian derivative.
Therefore, by application again of a Möbius transformation, we can assume that

w (z) = (z − a)
1
k · ga (z) (16)

in D (a, ra), where ga (z) is a uniform analytic function with ga (a) ̸= 0.
Let us enumerate the rest of ramification points an according to increasing moduli

and in case of equality according to increasing argument. For each an there exists a
function element (wan

(z) , D (an, ran
)) solution of (14) and such that

wan (z) = (z − an)
ln
k · gan (z) , (17)

where gan (z) is a uniform analytic function with gan (an) ̸= 0.
We take now a non-selfintersecting path γ1 outside the set of projections of ram-

ification points of w (z), that is, outside the set of poles of A (z), joining a point
ζ ∈ D∗ (a, ra), the punctured disc D (a, ra) \ {a}, where ζ ̸= a, and a point ζ1 ∈
D∗ (a1, ra1

) = D∗ (a1, ra1
)\{a1}, ζ1 ̸= a1. Let ∆ (ζ, rζ) ⊂ D∗ (a, ra) be a disc centered

at ζ and let ∆ (ζ1, rζ1) ⊂ D∗ (a1, ra1) be a disc centered at ζ1. In ∆ (ζ, rζ), we can con-
sider the function element (w (z) ,∆(ζ, rζ)) and we can continue it analytically along
γ1 up to ζ1 and obtain clearly the function element (w (z) ,∆(ζ1, rζ1)). We can further
continue this function element inside D∗ (a1, ra1

). On the other hand, a k/l1-valued
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function wa1
(z) is defined in D∗ (a1, ra1

) by (17), that is wa1
(z) = (z − a1)

l1
k ·ga1

(z).

Since the function element (w (z) ,∆(ζ1, rζ1)) and the function element (wa1
(z) ,

∆(ζ1, rζ1)) have the same Schwarzian derivative, they are related by a Möbius trans-
formation, say Ta1

(z), in such a way that

w (z) = Ta1
◦ wa1

(z) , (18)

in ∆ (ζ1, rζ1).

By analytic continuation of wa1
(z) to the whole D∗ (a1, ra1

) we deduce that the
relation (18) is valid in the whole D∗ (a1, ra1

). Both functions w (z) and wa1
(z) are

k/l1-valued functions there, and the relation w (a1) = Ta1
(0) holds.

Let Ta1
(z) = αz+β

γz+λ , so that

w (z) =
α (z − a1)

l1
k · ga1 (z) + β

γ (z − a1)
l1
k · ga1 (z) + λ

, (19)

for any z ∈ D∗ (a1, ra1
), assuming the values

w (z) =
α · e 2πs

k i (z − a1)
l1
k · ga1

(z) + β

γ · e 2πs
k i (z − a1)

l1
k · ga1

(z) + λ
, s = l1, 2l1, . . . , k − l1. (20)

In particular, this will happen for any z ∈ ∆(ζ1, rζ1) so that each of these values should
be the analytic continuation along γ1 of different branches of w (z) in ∆ (ζ, rζ); but all
these branches differ by a k-root of unity, so that the corresponding continuations (20)
should also differ by a k-root of unity.

We conclude that a relation of the type

e
2πt
k i · w (z) =

α · e 2πs
k i (z − a1)

l1
k · ga1

(z) + β

γ · e 2πs
k i (z − a1)

l1
k · ga1

(z) + λ
, (21)

should also hold for z ∈ ∆(ζ1, rζ1) and we obtain from (19) and (21)

e
2πt
k i · α (z − a1)

l1
k · ga1 (z) + β

γ (z − a1)
l1
k · ga1 (z) + λ

=
α · e 2πs

k i (z − a1)
l1
k · ga1 (z) + β

γ · e 2πs
k i (z − a1)

l1
k · ga1 (z) + λ

, (22)

and working out this equality,(
e

2πt
k i · α (z − a1)

l1
k · ga1 (z) + e

2πt
k i · β

)
·
(
γ · e 2πs

k i (z − a1)
l1
k · ga1 (z) + λ

)
=
(
γ (z − a1)

l1
k · ga1 (z) + λ

)
·
(
α · e 2πs

k i (z − a1)
l1
k · ga1 (z) + β

)
. (23)

From (23) we obtain e
2πt
k i · β · λ = β · λ, and since e

2πt
k i ̸= 1, we conclude that either

β = 0 or λ = 0.

Let us assume first λ = 0; then we obtain from (22)

e
2πt
k i · β

γ
(z−a1)

− l1
k · ga1

(z)
−1

+e
2πt
k i · α

γ
=
β

γ
· e− 2πs

k i · β
γ
(z−a1)

− l1
k · ga1

(z)
−1

+
α

γ
,

whence we conclude e
2πt
k i · α

γ = α
γ , and arguing as above we obtain α

γ = 0 and also
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α = 0. In this case we should have Ta1 (z) =
β
γz , so that for z ∈ D∗ (a1, ra1)

w (z) = Ta1 ◦
(
(z − a1)

l1
k · ga1 (z)

)
=

β

γ
· (z − a1)

− l1
k · ga1 (z)

−1
. (24)

If we assume β = 0 we obtain from (23)

e
2π(t+s)

k i · α · γ · (z − a1)
2l1
k · ga1 (z)

2
+ e

2πt
k i · α · λ · (z − a1)

l1
k · ga1 (z)

=e
2πs
k i · α · γ · (z − a1)

2l1
k · ga1

(z)
2
+ e

2πs
k i · α · λ · (z − a1)

l1
k · ga1

(z) ,

and cancelling the factor (z − a1)
l1
k · ga1

(z) we come to

e
2π(t+s)

k i · α · γ · (z − a1)
l1
k · ga1

(z) + e
2πt
k i · α · λ

=e
2πs
k i · α · γ · (z − a1)

l1
k · ga1

(z) + e
2πs
k i · α · λ,

whence, on one hand we should have e
2πt
k i · α · λ = e

2πs
k i · α · λ. so that t = s. On

the other hand, e
2π(t+s)

k i · α · γ · (z − a1)
l1
k · ga1

(z) = e
2πs
k i · α · γ · (z − a1)

l1
k · ga1

(z),
whence it must follow α · γ = 0 and it is clear that from β = 0, it cannot happen
α = 0 so that we conclude γ = 0.

We should have in this case Ta1 (z) =
αz
λ , so that for z ∈ D∗ (a1, ra1),

w (z) = Ta1
◦
(
(z − a1)

l1
k · ga1

(z)
)
=

α

λ
· (z − a1)

l1
k · ga1

(z) . (25)

The possibility (24) should be excluded since we are assuming that w (z) has no poles
and therefore in D∗ (a1, ra1

), (25) must be the right relation.
We conclude from this fact and (16) that the analytic continuation of w (z) =

(z − a1)
1
k · ga (z) should also vanish at a1, that is, the analytic continuation of ga (z)

to D∗ (a1, ra1
) vanishes at a1 and can be factorized as

ga (z) = (z − a1)
l1
k · ea1

(z) , (26)

where ea1
(z) is a uniform analytic function in D (a1, ra1

) with ea1
(a1) ̸= 0.

We have obtained a cycle of k/l1 branches of w (z) at D∗ (a1, ra1
) as analytic

continuations of corresponding k/l1 branches of w (z) at D∗ (a, ra). If we now start
with one of the remaining branches of w (z) in ∆ (ζ, rζ), that is, one of the branches
not corresponding with any of the branches of the obtained cycle in D∗ (a1, ra1), and
proceed again by analytic continuation along γ1, we should obtain a new and disjoint
cycle of k/l1 branches at D∗ (a1, ra1

) of w (z). And proceeding in this way until we
have all the branches of w (z) in D∗ (a, ra), we should finally have the k-branches
of w (z) in D∗ (a, ra), corresponding by analytic continuation along γ1 with the k
branches of w (z) in D∗ (a1, ra1), grouped in cycles of k/l1 branches each.

By the representation (26) and by (16), w (z) = (z − a)
1
k · (z − a1)

l1
k · ea1 (z),

will be valid in every simply connected domain excluding the remaining ramification
points, that is, an for n ≥ 2 A (γ1, a, a1) and such that

A (γ1, a, a1) ⊃ γ∗
1 ∪D∗ (a, ra) ∪D∗ (a1, ra1

) .

Now, we may start at any point z ∈ A (γ1, a, a1), considering a particular branch of
w (z), and proceed by analytic continuation along a non-selfintersecting arc γ2 joining
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z and a point ζ2 ∈ D∗ (a2, ra2). Arguing with γ2, w (z) and wa2 (z) as we did before
with γ1, w (z) and wa1

(z), we conclude that w (z) can be represented in every simply
connected A (γ1, γ2,a, a1, a2) excluding the remaining ramification points, that is, an
for n ≥ 3 and such that

A (γ1, γ2,a, a1, a2) ⊃ γ∗
2 ∪D∗ (a2, ra2

) ∪A (γ1, a, a1) ,

in the form w (z) = (z − a)
1
k ·(z − a1)

l1
k ·(z − a2)

l2
k ·e1,2 (z), where e1,2 (z) is a uniform

analytic function in A (γ1, γ2, a, a1, a2).

We have ordered the an’s according to increasing moduli and now proceeding
inductively we obtain for a given n0 ∈ N a representation of w (z) of the form

w (z) = (z − a)
1
k · (z − a1)

l1
k · (z − a2)

l2
k · · · · · (z − an0)

ln0
k · e1,2,...,n0 (z) , (27)

in every simply connected domain containing the points a1, a2, . . . , an0 and excluding
an for n > n0 and where e1,2,...,n0

(z) is a uniform analytic function in that domain.

Now let r > 0, such that r > |a| and r ̸= |an|, for every n ∈ N and let a1, a2, . . . , an0

be all the an’s with |an| < r. Then the representation (27) is also valid in D (0, r).

Finally, if we consider an algebroid equation of the form

wk = L (z) =

∞∏
n=1

Epn

(
z

an

)
,

where the sequence {an}n∈N is formed by the an’s but each an repeated ln times, we
obtain an algebroid function wL (z) of order k as that in the example. If we consider
the restriction of this algebroid function to D (0, r), we obtain a function of the form

wL (z) = (z − a)
1
k · (z − a1)

l1
k · (z − a2)

l2
k · · · · · (z − an0

)
ln0
k · g (z) ,

where g (z) is a uniform non-vanishing analytic function in D (0, r). Therefore, we
obtain

w (z)

wL (z)
=

e1,2,...,n0
(z)

g (z)
,

that is w (z) = wL (z) · e (z) , (28)

where e (z) is a uniform analytic function in D (0, r).

Since r > 0 can be taken arbitrarily large, we conclude that the relation (28) is
true in the entire plane and e (z) is an entire function.

Since we modified w (z) by a Möbius transformation initially, we conclude the
relation w (z) = T ◦ (wL (z) · e (z)) holds, which is (15). □
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