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Abstract. We study the linear combinations f(z) = λf1(z) + (1 − λ)f2(z) of two uni-
valent harmonic mappings f1 and f2 in the cases when λ is some complex number. We
determine the radius of close-to-convexity of f and establish some sufficient conditions for f
to be locally-univalent and sense-preserving. Some known results reduce to particular cases
of our general results.

1. Introduction and preliminaries

A complex-valued harmonic function f in the open unit disk D = {z ∈ C : |z| < 1}
can be represented as f(z) = h(z) + g(z), where both h and g are analytic in D.
The collection of all such functions is denoted by H. In 1936, Lewy [6] proved that a
harmonic function f ∈ H, f(z) = h(z)+g(z), is sense-preserving and locally-univalent,
if and only if its Jacobian, Jf (z) = |h′(z)|2 − |g′(z)|2, is positive or equivalently the
dilatation function w(z) = g′(z)/h′(z), h′(z) ̸= 0 in D, has the property |w(z)| < 1 in
D. We denote by SH the subclass of H consisting of harmonic sense-preserving and
univalent functions in D normalized by the conditions f(0) = 0 and fz(0) = 1. Such
mappings can be represented as

f(z) = h(z) + g(z) = z +

∞∑
n=2

anz
n +

∞∑
n=1

bnzn, z ∈ D.

Additionally, if a function f also satisfies fz(0) = 0, then the class of such functions is
denoted by S0

H. The classical family S of normalized, univalent and analytic functions
in D is a subclass of SH with g(z) ≡ 0.

A domain Ω ⊂ C is said to be convex in the direction φ ∈ [0, π) if the intersection
of Ω and every line parallel to the one passing through the origin and eiφ is connected
or empty. In particular, a domain is convex in the horizontal direction (CHD) if
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every line parallel to the real axis has either an empty or a connected intersection
with the domain. A domain convex in every direction is a convex domain. A function
is said to be convex in the direction φ if it maps the open unit disk D onto a domain
convex in the direction φ. A domain Ω ⊂ C is close-to-convex if the complement of
Ω can be written as the union of non intersecting half lines. A normalized analytic
function f in D is close-to-convex if there exists an analytic convex function ϕ in D
such that Re

(
f ′(z)
ϕ′(z)

)
> 0, z ∈ D. Clunie and Sheil-Small [2] obtained the following

sufficient condition for a harmonic function to be close-to-convex.

Lemma 1.1. If h, g are analytic in D with |h′(0)| > |g′(0)| and h(z) + ϵg(z) is close-
to-convex for each ϵ with |ϵ| = 1, then f(z) = h(z)+ g(z) is harmonic close-to-convex
in D.

As a consequence of the above lemma several other sufficient conditions for a
harmonic function to be close-to-convex have been established, for example see [1, 4,
11,12]. In particular, we recall the following sufficient conditions for close-to-convexity
of a harmonic function.

Theorem 1.2 ([11]). Let f(z) = h(z)+ g(z), where h and g are analytic functions in
D such that h(0) = g(0) = 0 and h′(0) = 1. Further, let ϕ be univalent, analytic and
convex in D. If f satisfies

Re

(
eiθ

h′(z)

ϕ′(z)

)
>

∣∣∣∣ g′(z)ϕ′(z)

∣∣∣∣
for all z ∈ D and for some real θ, then f is sense-preserving, harmonic univalent and
close-to-convex in D.

Theorem 1.3 ([1]). Let f(z) = h(z) + g(z) be a sense-preserving harmonic mapping
in D, where h ∈ S∗ and g(0) = 0. If H and G are analytic functions defined by the
relations zH ′(z) = h(z), zG′(z) = −g(z), H(0) = G(0) = 0, then for each |λ| ≤ 1,
the harmonic function Fλ(z) = H(z)+λG(z) is sense-preserving and close-to-convex
in D. In particular, F (z) = H(z) +G(z) is a close-to-convex mapping in D.

For two analytic functions f1 and f2 and a real number λ, 0 ≤ λ ≤ 1, the function
λf1(z) + (1 − λ)f2(z) = f(z)(say) is called the linear combination of f1 and f2.
Generally, the function f may not possess the same properties as those possessed
by f1 and f2. For example, linear combination of two univalent functions may not
be univalent. It is therefore a subject of interest to find conditions on f1 and f2
so that their linear combination has desired property. For more details we refer
to [7, 8, 13–16]. Linear combination of two harmonic mappings f1(z) = h1(z) + g1(z)
and f2 = h2(z) + g2(z), for 0 ≤ λ ≤ 1, can be written as

f(z) = λf1(z) + (1− λ)f2(z) = λh1(z) + (1− λ)h2(z) + λg1(z) + (1− λ)g2(z).

In 2012, Dorff and Rolf [3] presented sufficient conditions so that linear combina-
tion of two suitably harmonic functions is univalent and convex in the direction of
imaginary axis. Several other authors also presented beautiful results in this direc-
tion, for example see [5, 17,18,20].



D. Khurana, R. Kumar, S. Gupta, S. Singh 191

In 1971, Stump [19] studied linear combinations of two analytic functions by taking
the constant λ a complex number instead of a real one. Motivated by this, in the
present article we investigate the linear combination f = λf1 + (1 − λ)f2 of two
univalent harmonic functions f1 and f2 where the constant λ is a complex number.
Apart from proving several sufficient conditions for f to be sense-preserving and
locally-univalent, the radius of close-to-convexity of f is obtained. Some known results
reduce to particular cases of the results presented here. In order to prove our main
results, we shall require the following results.

Lemma 1.4. A harmonic function f = h + g, locally-univalent in D, is a univalent
mapping of D onto a domain convex in the direction θ, if and only if h− e2iθg is an
analytic univalent mapping of D onto a domain convex in direction θ.

Lemma 1.5. If |u − a| ≤ d and |v − a| ≤ d where a and d are real and a > d ≥ 0,
and w = u 1

1+Aeiα + v 1
1+A−1e−iα , where A is real and A > 0 and α ∈ [0, π), then

ℜ (w) ≥ a− d secα/2.

Lemma 1.6. Let f be an analytic function in D with f(0) = 0 and f ′(0) ̸= 0 and let

K(z) = z
(1+zeiθ)(1+ze−iθ)

, θ ∈ R. If Re
(

zf ′(z)
K(z)

)
> 0 (z ∈ D), then f is convex in the

horizontal direction (CHD).

Lemma 1.4 is due to Clunie and Sheil-Small [2], whereas Lemmas 1.5 and 1.6 are
given by Stump [19] and Pommerenke [10], respectively.

2. Main results

It is well known that every close-to-convex function in D is univalent in D and also that
univalency and other geometric properties of individual mappings are not, generally,
transferred to their convex combination. It is therefore of interest to find radius of
the largest disc in which convex combination of two analytic/harmonic mappings is
close-to-convex or exhibits other geometric properties like starlikeness, convexity etc.
We refer the reader to [4, 9] for some glimpse of the radius problems of harmonic
mappings.

In the first theorem below, we obtain radius of close-to-convexity of the linear
combination of two univalent harmonic mappings which are shears of same convex
univalent function in D.

Theorem 2.1. Let ϕ be convex univalent in D. For j = 1, 2, let fj(z) = hj(z) +

gj(z) ∈ SH such that hj(z) + gj(z) = ϕ(z). Then for a complex number λ, F (z) =
λf1(z)+(1−λ)f2(z) is close-to-convex in |z| < R, where R is the least positive root of

the equation br2+r
(
b+ sec β

2

)
−1 = 0, with b = |λ|+|1−λ| and β = arg

(
λ

1−λ

)
, 0 ≤

β < π.
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Proof. If wj(z) = g′j(z)/h
′
j(z) is a dilatation of fj (j = 1, 2), then h′j(z) = ϕ′(z)

1+wj(z)

and g′j(z) =
ϕ′wj(z)
1+wj(z)

. Since wj(0) = 0 and |wj(z)| ≤ |z| = r < 1, for j = 1, 2, it

follows that ∣∣∣∣ 1

1 + wj(z)
− 1

1− r2

∣∣∣∣ ≤ r

1− r2
(1)

and

∣∣∣∣ wj(z)

1 + wj(z)

∣∣∣∣ ≤ r

1− r
.

Let

F (z) = λf1(z) + (1− λ)f2(z) = λh1(z) + (1− λ)h2(z) + (λg1(z) + (1− λ)g2(z))

= H(z) +G(z) (say),

where H(z) = λh1(z) + (1− λ)h2(z) and G(z) = λg1(z) + (1− λ)g2(z). Now

H ′(z)

ϕ′(z)
=
λh′1(z) + (1− λ)h′2(z)

ϕ′(z)

=
h′1(z)

ϕ′(z)

(
1 +

(
λ

1− λ

)−1
)−1

+
h′2(z)

ϕ′(z)

(
1 +

(
λ

1− λ

))−1

.

In view of Lemma 1.5 and (1), we have

Re

(
H ′(z)

ϕ′(z)

)
≥ 1

1− r2
− r

1− r2
sec

β

2
. (2)

Also, ∣∣∣∣G′(z)

ϕ′(z)

∣∣∣∣ = ∣∣∣∣λg′1(z) + (1− λ)g′2(z)

ϕ′(z)

∣∣∣∣ ≤ |λ|
∣∣∣∣g′1(z)ϕ′(z)

∣∣∣∣+ |1− λ|
∣∣∣∣g′2(z)ϕ′(z)

∣∣∣∣
= |λ|

∣∣∣∣ w1(z)

1 + w1(z)

∣∣∣∣+ |1− λ|
∣∣∣∣ w2(z)

1 + w2(z)

∣∣∣∣ ≤ (|λ|+ |1− λ|) r

1− r
.

Therefore, ∣∣∣∣G′(z)

ϕ′(z)

∣∣∣∣ ≤ br

1− r
. (3)

From equations (2) and (3) we have,

Re

(
H ′(z)

ϕ′(z)

)
−
∣∣∣∣G′(z)

ϕ′(z)

∣∣∣∣ ≥ 1

1− r2
− r

1− r2
sec

β

2
− br

1− r
.

Thus using Theorem 1.2 with θ = 0, F is close-to-convex in |z| < R, where R is the

least positive root of br2 + r
(
b+ sec β

2

)
− 1 = 0. This completes the proof. □

The following examples illustrate our above result.

Example 2.2. Let f1(z) = h1(z) + g1(z) be such that h1(z) + g1(z) = z
(1−z) and

w1(z) =
g′
1(z)

h′
1(z)

= z. Then h1(z) = 1
4 log

(
1+z
1−z

)
+ 1

2
z

(1−z) and g1(z) = 1
2

z
(1−z) −

1
4 log

(
1+z
1−z

)
. Also, let f2(z) = h2(z) + g2(z) be such that h2(z) + g2(z) =

z
(1−z) and
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w2(z) =
g′
2(z)

h2(z)
= −z. Then h2(z) = z−z2/2

(1−z)2 and g2(z) =
−z2/2
(1−z)2 .

(a) Set λ = 1+i
2 , so that |λ| + |1 − λ| =

√
2 and β = arg

(
λ

1−λ

)
= π

2 . Then F1(z) =
1+i
2 f1(z) +

1−i
2 f2(z), is close-to-convex in the disc |z| < r1 ≈ 0.3067, where r1 is the

positive root of the equation
√
2r2 + 2

√
2r − 1 = 0.

(b) Take λ = 1+i
√
3

2 , so that |λ| + |1 − λ| = 2 and β = arg
(

λ
1−λ

)
= 2π

3 . Thus

F2(z) = 1+i
√
3

2 f1(z) +
1−i

√
3

2 f2(z), is close-to-convex in the disc |z| < r2 ≈ 0.2247,
where r2 is the least positive root of the equation 2r2 + 4r − 1 = 0.

Images of |z| < r1 and |z| < r2 under F1 and F2 are shown in Figure 1 (plotted using
Mathematica).
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Figure 1: Images of |z| < r1 under F1 (left) and images of |z| < r2 under F2 (right)

Remark 2.3. We observe that the values of r1 and r2 obtained in Example 2.2, using
Theorem 2.1, are not sharp.

In [3,5,20], it is proved that the linear combination λf1(z)+(1−λ)f2(z), 0 ≤ λ ≤ 1
of two univalent harmonic mappings f1 and f2 with real constant λ is locally-univalent
and sense-preserving as long as the dilatations of both harmonic mappings f1 and f2
are the same. In the next result we present a more general condition in the case of
complex constant λ.

Theorem 2.4. If fj(z) = hj(z)+gj(z) ∈ SH, (j = 1, 2) with g′1(z)/h
′
1(z) = g′2(z)/h

′
2(z).

Then for a complex constant λ, F (z) = λf1(z) + (1− λ)f2(z) is locally-univalent and
sense-preserving, provided

Im(λ)Im(h′1(z)h
′
2(z)) ≤ 0. (4)
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Proof. Let w(z) = g′1(z)/h
′
1(z) = g′2(z)/h

′
2(z). Then for a complex constant λ, we

have

F (z) = λf1(z) + (1− λ)f2(z) = λh1(z) + (1− λ)h2(z) + λg1(z) + (1− λ)g2(z)

= H(z) +G(z) (say),

where, H(z) = λh1(z) + (1 − λ)h2(z) and G(z) = λg1(z) + (1 − λ)g2(z). Since
|w(z)| < 1, we have

|G′(z)/H ′(z)| =
∣∣∣∣ λg′1(z) + (1− λ)g′2(z)

λh′1(z) + (1− λ)h′2(z)

∣∣∣∣ (5)

= |w(z)|
∣∣∣∣λh′1(z) + (1− λ)h′2(z)

λh′1(z) + (1− λ)h′2(z)

∣∣∣∣ < ∣∣∣∣λh′1(z) + (1− λ)h′2(z)

λh′1(z) + (1− λ)h′2(z)

∣∣∣∣ .
Thus F is locally-univalent and sense-preserving if

∣∣∣∣λh′1(z) + (1− λ)h′2(z)

λh′1(z) + (1− λ)h′2(z)

∣∣∣∣ ≤ 1. That

is, if µ(λ) = |λh′1(z) + (1− λ)h′2(z)|
2 −

∣∣λh′1(z) + (1− λ)h′2(z)
∣∣2 ≥ 0. After computa-

tions we have, µ(λ) = 2Re
(
2iIm(λ)h′1(z)h

′
2(z)

)
= −4Im(λ)Im(h′1(z)h

′
2(z)). Thus

F is locally-univalent and sense-preserving, provided Im(λ)Im(h′1(z)h
′
2(z)) ≤ 0. □

Remark 2.5. In Theorem 2.4, if we set λ as a real constant then the condition (4) is
trivially true.

In the case when w1(z) = g′1(z)/h
′
1(z) ̸= w2(z) = g′2(z)/h

′
2(z), Theorem 2.4 can

be stated in a more general way as follows.

Theorem 2.6. Let fj(z) = hj(z) + gj(z) ∈ SH (j = 1, 2) be harmonic univalent
mappings and w1, w2 the dilatations of f1 and f2, respectively. For a complex constant
λ, suppose that

Re
(
(λ(1− λ)− λ(1− λ)w1(z)w2(z))h

′
1(z)h

′
2(z)

)
≥ 0. (6)

Then F (z) = λf1(z) + (1− λ)f2(z) is locally-univalent and sense-preserving in D.

Proof. If w1(z) ̸= w2(z), then in view of (5), we get

|G′(z)/H ′(z)| =
∣∣∣∣λw1(z)h

′
1(z) + (1− λ)w2(z)h

′
2(z)

λh′1(z) + (1− λ)h′2(z)

∣∣∣∣ .
Thus F is locally-univalent and sense-preserving if

ψ(λ) = |λh′1(z) + (1− λ)h′2(z)|
2 −

∣∣λw1(z)h
′
1(z) + (1− λ)w2(z)h

′
2(z)

∣∣2 > 0.

After a simplification, we get

ψ(λ) =|λ|2|h′1(z)|2(1− |w1(z)|2) + |1− λ|2|h′2(z)|2(1− |w2(z)|2)

+ 2Re
(
(λ(1− λ)− λ(1− λ)w1(z)w2(z))h

′
1(z)h

′
2(z)

)
.

Thus in view of (6), ψ(λ) ≥ 0 and hence F is locally-univalent and sense-preserving
in D. □

Remark 2.7. In case of real constant λ, condition (6) coincides with [20, Theorem 2].
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We end this paper by presenting another sufficient condition for the linear combi-
nation of some univalent harmonic mappings with complex constant λ to be convex
in the horizontal direction (CHD).

Theorem 2.8. For j = 1, 2, let fj(z) = hj(z) + gj(z) ∈ SH such that

h1(z)− e−2iαg1(z) =

∫ z

0

e−iαdζ

(1 + ζeiθ)(1 + ζe−iθ)
, θ ∈ R

and h2(z)− e−2iβg2(z) =

∫ z

0

e−iβdζ

(1 + ζeiθ)(1 + ζe−iθ)
, θ ∈ R,

where α = arg(λ) and β = arg(1− λ). Then F (z) = λf1(z) + (1− λ)f2(z) is convex
in the horizontal direction provided it is locally-univalent.

Proof. Let

F (z) = λf1(z) + (1− λ)f2(z)

= λh1(z) + (1− λ)h2(z) +
(
λg1(z) + (1− λ)g2(z)

)
= H(z) +G(z) (say).

Then, let f(z) = H(z) − G(z) =
(
λh1(z)− λg1(z)

)
+ (1 − λ)h2(z) − (1 − λ)g2(z).

Setting λ = |λ|eiα and 1− λ = |1− λ|eiβ , we get

f(z) =|λ|eiαh1(z)− |λ|e−iαg1(z) + |1− λ|eiβh2(z)− |1− λ|e−iβg2(z),

= |λ|eiα
(
h1(z)− e−2iαg1(z)

)
+ |1− λ|eiβ

(
h2(z)− e−2iβg2(z)

)
.

If k(z) =
z

(1 + zeiθ)(1 + ze−iθ)
, then

Re

(
z
f ′(z)

k(z)

)
=|λ|Re

(
zeiα

(h′1(z)− e−2iαg′1(z))

k(z)

)
+ |1− λ|Re

(
zeiβ

(h′2(z)− e−2iβg′2(z))

k(z)

)
= |λ|+ |1− λ| > 0.

Thus in view of Lemma 1.6, f is convex in the horizontal direction and also univalent
in D, see [10]. Subsequently, using Lemma 1.4, F is univalent and convex in the
horizontal direction. □
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