ON SOLVABILITY OF QUADRATIC HAMMERSTEIN INTEGRAL EQUATIONS IN HÖLDER SPACES

Mohamed Abdalla Darwish, Mohamed M. A. Metwali and Donal O'Regan

Abstract

Using Schauder's fixed point theorem we consider the solvability of a quadratic Hammerstein integral equation in the space of functions satisfying a Hölder condition. An example is included to illustrate our results.

1. Introduction

In this paper, we investigate the existence of solutions of the following quadratic integral equation of Hammerstein type

$$
\begin{equation*}
x(t)=p(t)+x(t) \int_{0}^{1} k(t, \tau) f(\tau,(\Lambda x)(\tau)) d \tau, t \in[0,1] \tag{1}
\end{equation*}
$$

where Λ is a general operator.
If $f(t, y)=y$ we get an equation in [13], if $f(t, y)=y$ and $\Lambda x=\max \{|x(\tau)|:$ $0 \leq \tau \leq r(t)\}$, where $r:[0,1] \rightarrow[0,1]$ is a continuous and nondecreasing function we obtain an equation studied in [6] and if $f(t, y)=y$ and $(\Lambda x)(t)=x(r(t))$, where $r:[0,1] \rightarrow[0,1]$ is a measurable function, we obtain an equation studied in [5]. When $\Lambda y=y$ and $f(t, y)=-y$, (1) becomes

$$
x(t)+x(t) \int_{0}^{1} k(t, \tau) x(\tau) d \tau=p(t), t \in[0,1] .
$$

This equation is a generalization of a famous equation in transport theory, the socalled Chandrasekhar H-equation in which $p(t)=1, x$ must be identified with the H-function and for a nonnegative characteristic function $\phi, k(t, \tau)=\frac{t \phi(t)}{t+\tau}$; see for example $[7,10,12]$ and the references therein. Quadratic integral equations arise in the theory of radiative transfer, in the theory of neutron transport and in the theory of traffic; see $[1,4,8,9,11,14]$ and the references therein.

[^0]In the space of functions satisfying a Hölder condition, Schauder's fixed point theorem and the relative compactness in these spaces are the main tools used to prove our main result.

2. Preliminaries

We denote by $C[a, b]$ the space of all continuous functions $x:[a, b] \rightarrow \mathbb{R}$ equipped with the norm $\|x\|_{\infty}=\sup \{|x(t)|: t \in[a, b]\}$ for $x \in C[a, b]$. Let $H_{\alpha}[a, b], \alpha \in(0,1]$ be the collection of all real functions x defined on $[a, b]$ which satisfies a Hölder condition

$$
\begin{equation*}
|x(t)-x(\tau)| \leq H_{x}^{\alpha}|t-\tau|^{\alpha}, \quad \forall(t, \tau) \in[a, b]^{2} \tag{2}
\end{equation*}
$$

where H_{x}^{α} is the least possible constant for which inequality (2) is satisfied, i.e.,

$$
H_{x}^{\alpha}=\sup \left\{\frac{|x(t)-x(\tau)|}{|t-\tau|^{\alpha}}: t, \tau \in[a, b], t \neq \tau\right\}
$$

The spaces $H_{\alpha}[a, b], 0<\alpha \leq 1$, equipped with the norm $\|x\|_{\alpha}=|x(a)|+H_{x}^{\alpha}$ are Banach spaces.

Lemma 2.1. The norm $\|\cdot\|_{\infty}$ is dominated by the norm $\|\cdot\|_{\alpha}$, i.e., for an arbitrarily fixed $x \in H_{\alpha}[a, b]$ and for an arbitrary $t \in[a, b]$, the following inequality holds $\|x\|_{\infty} \leq$ $\max \left\{1,(b-a)^{\alpha}\right\}\|x\|_{\alpha}$.

Lemma 2.2. For $0<\alpha<\beta \leq 1$, we have $H_{\beta}[a, b] \subset H_{\alpha}[a, b] \subset C[a, b]$. Moreover, for $x \in H_{\beta}[a, b]$ the following inequality is satisfied $\|x\|_{\alpha} \leq \max \left\{1,(b-a)^{\beta-\alpha}\right\}\|x\|_{\beta}$.

The authors in [2] established a sufficient condition for relative compactness in the spaces $H_{\alpha}[a, b], \alpha \in(0,1]$.

Theorem 2.3. Let $0<\alpha<\beta \leq 1$ and let B be a bounded subset in $H_{\beta}[a, b]$ (this means that $\|x\|_{\beta} \leq M$ for certain constant $M>0$, for any $x \in B$). Then B is a relatively compact subset of $H_{\alpha}[a, b]$.

3. Main results

In this section we discuss the solvability of (1) in Hölder spaces.
We assume the following are satisfied.
(a1) $p \in H_{\beta}[0,1], 0<\beta \leq 1$.
(a2) The function $k:[0,1]^{2} \rightarrow \mathbb{R}$ is a continuous function and there exists a constant $\kappa_{\beta}>0$ such that $|k(t, \tau)-k(s, \tau)| \leq \kappa_{\beta}|t-s|^{\beta}$ for any $t, \tau, s \in[0,1]$.
(a3) The function $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and there exists a nondecreasing function $\Psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that $|f(t, x)| \leq \Psi(|x|), \forall(t, x) \in([0,1], \mathbb{R})$.
(a4) The operator $\Lambda: H_{\beta}[0,1] \rightarrow C[0,1]$ is continuous and there exists a nondecreasing function $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that for any $x \in H_{\beta}[0,1],\|\Lambda x\|_{\infty} \leq \psi\left(\|x\|_{\beta}\right)$.
(a5) Let r be a positive solution of the following equation $\|p\|_{\beta}+\left(K+\kappa_{\beta}\right) \Psi(\psi(r)) r \leq r$, where $K=\sup \left\{\int_{0}^{1}|k(t, \tau)| d \tau: t \in[0,1]\right\}$.

THEOREM 3.1. Under assumptions (a1)-(a5), (1) has at least one solution $x \in H_{\alpha}[0,1]$ (here α is an arbitrarily fixed number satisfying $0<\alpha<\beta$).

Proof. Consider the operator \mathfrak{T} defined on $H_{\beta}[0,1]$ by

$$
(\mathfrak{T} x)(t)=p(t)+x(t) \int_{0}^{1} k(t, \tau) f(\tau,(\Lambda x)(\tau)) d \tau, t \in[0,1]
$$

We claim that \mathfrak{T} maps the space $H_{\beta}[0,1]$ into itself. Take $x \in H_{\beta}[0,1]$ and $t, s \in[0,1]$ with $t \neq s$. Then, by assumptions (a1) and (a2), we have

$$
\begin{aligned}
& \frac{|(\mathfrak{T} x)(t)-(\mathfrak{T} x)(s)|}{|t-s|^{\beta}} \\
= & \frac{\left|p(t)+x(t) \int_{0}^{1} k(t, \tau) f(\tau, \Lambda x(\tau)) d \tau-p(s)-x(s) \int_{0}^{1} k(s, \tau) f(\tau, \Lambda x(\tau)) d \tau\right|}{|t-s|^{\beta}} \\
\leq & \frac{|p(t)-p(s)|}{|t-s|^{\beta}}+\frac{\left|x(t) \int_{0}^{1} k(t, \tau) f(\tau, \Lambda x(\tau)) d \tau-x(s) \int_{0}^{1} k(t, \tau) f(\tau, \Lambda x(\tau)) d \tau\right|}{|t-s|^{\beta}} \\
& +\frac{\left|x(s) \int_{0}^{1} k(t, \tau) f(\tau, \Lambda x(\tau)) d \tau-x(s) \int_{0}^{1} k(s, \tau) f(\tau, \Lambda x(\tau)) d \tau\right|}{|t-s|^{\beta}} \\
\leq & \frac{|p(t)-p(s)|}{|t-s|^{\beta}}+\frac{|x(t)-x(s)|}{|t-s|^{\beta}} \int_{0}^{1}|k(t, \tau)||f(\tau, \Lambda x(\tau))| d \tau \\
& +\frac{|x(s)|}{|t-s|^{\beta}} \int_{0}^{1}|k(t, \tau)-k(s, \tau)||f(\tau, \Lambda x(\tau))| d \tau \\
\leq & \frac{|p(t)-p(s)|}{|t-s|^{\beta}}+\frac{|x(t)-x(s)|}{|t-s|^{\beta}} \Psi\left(\|\Lambda x\|_{\infty}\right) \int_{0}^{1}|k(t, \tau)| d \tau \\
& +\frac{\|x\|_{\infty} \Psi\left(\|\Lambda x\|_{\infty}\right)}{|t-s|^{\beta}} \int_{0}^{1}|k(t, \tau)-k(s, \tau)| d \tau \\
\leq & \frac{|p(t)-p(s)|}{|t-s|^{\beta}}+K \Psi\left(\psi\left(\|x\|_{\beta}\right)\right) \frac{|x(t)-x(s)|}{|t-s|^{\beta}}+\kappa_{\beta} \Psi\left(\psi\left(\|x\|_{\beta}\right)\right)\|x\|_{\infty} \frac{\int_{0}}{|t-s|^{\beta}} .
\end{aligned}
$$

Thus $H_{\mathfrak{T} x}^{\beta} \leq H_{p}^{\beta}+\left(K H_{x}^{\beta}+\kappa_{\beta}\|x\|_{\beta}\right) \Psi\left(\psi\left(\|x\|_{\beta}\right)\right)$, so

$$
\begin{align*}
& \|\mathfrak{T} x\|_{\beta}=|(\mathfrak{T} x)(0)|+H_{\mathfrak{T} x}^{\beta} \\
\leq & |p(0)|+|x(0)| \int_{0}^{1}|k(0, \tau)||f(\tau, \Lambda x(\tau))| d \tau+H_{p}^{\beta}+\left(K H_{x}^{\beta}+\kappa_{\beta}\|x\|_{\beta}\right) \Psi\left(\psi\left(\|x\|_{\beta}\right)\right) \\
\leq & \|p\|_{\beta}+K|x(0)| \Psi\left(\psi\left(\|x\|_{\beta}\right)\right)+\left(K H_{x}^{\beta}+\kappa_{\beta}\|x\|_{\beta}\right) \Psi\left(\psi\left(\|x\|_{\beta}\right)\right) \\
\leq & \|p\|_{\beta}+\left(K+\kappa_{\beta}\right)\|x\|_{\beta} \Psi\left(\psi\left(\|x\|_{\beta}\right)\right) \tag{3}
\end{align*}
$$

This proves that the operator \mathfrak{T} maps $H_{\beta}[0,1]$ into itself.

Using assumption (a5) and inequality (3), we deduce that \mathfrak{T} maps the closed ball $B_{r_{0}}^{\beta}=\left\{x \in H_{\beta}[0,1]:\|x\|_{\beta} \leq r_{0}\right\}$ into itself, for any r_{0} satisfying $\|p\|_{\beta}+$ $\left(K+\kappa_{\beta}\right) r_{0} \Psi\left(\psi\left(r_{0}\right)\right) \leq r_{0}$. Theorem 2.3 guarantees that the set $B_{r_{0}}^{\beta}$ is relatively compact in $H_{\alpha}[0,1]$ for any $0<\alpha<\beta \leq 1$. Moreover, it is easy to see that $B_{r_{0}}^{\beta}$ is a compact subset in $H_{\alpha}[0,1]$ for any $0<\alpha<\beta \leq 1$; see the Appendix in [5].

We now prove that the operator \mathfrak{T} is continuous on $B_{r_{0}}^{\beta}$ with respect to the norm $\|\cdot\|_{\alpha}$, where $0<\alpha<\beta \leq 1$. Fix $\varepsilon>0$ and take $x, y \in B_{r_{0}}^{\beta^{0}}$ with $\|x-y\|_{\alpha} \leq \varepsilon$. Then, for $t \in[0,1]$, we have

$$
\begin{aligned}
& \frac{|[(\mathfrak{T} x)(t)-(\mathfrak{T} y)(t)]-[(\mathfrak{T} x)(s)-(\mathfrak{T} y)(s)]|}{|t-s|^{\alpha}} \\
= & \left.\frac{1}{|t-s|^{\alpha}} \right\rvert\,\left(x(t) \int_{0}^{1} k(t, \tau) f(\tau, \Lambda x(\tau)) d \tau-y(t) \int_{0}^{1} k(t, \tau) f(\tau, \Lambda y(\tau)) d \tau\right) \\
& -\left(x(s) \int_{0}^{1} k(s, \tau) f(\tau, \Lambda x(\tau)) d \tau-y(s) \int_{0}^{1} k(s, \tau) f(\tau, \Lambda y(\tau)) d \tau\right) \mid \\
= & \left.\frac{1}{|t-s|^{\alpha}} \right\rvert\,\left(x(t) \int_{0}^{1} k(t, \tau) f(\tau, \Lambda x(\tau)) d \tau-y(t) \int_{0}^{1} k(t, \tau) f(\tau, \Lambda x(\tau)) d \tau\right) \\
& +\left(y(t) \int_{0}^{1} k(t, \tau) f(\tau, \Lambda x(\tau)) d \tau-y(t) \int_{0}^{1} k(t, \tau) f(\tau, \Lambda y(\tau)) d \tau\right) \\
& -\left(x(s) \int_{0}^{1} k(s, \tau) f(\tau, \Lambda x(\tau)) d \tau-y(s) \int_{0}^{1} k(s, \tau) f(\tau, \Lambda x(\tau)) d \tau\right) \\
= & \left.\frac{1}{|t-s|^{\alpha}} \right\rvert\,(x(t)-y(t)) \int_{0}^{1} k(t, \tau) f(\tau, \Lambda x(\tau)) d \tau \\
& +y(t) \int_{0}^{1} k(t, \tau)(f(\tau, \Lambda x(\tau))-f(\tau, \Lambda y(\tau))) d \tau \\
& -(x(s)-y(s)) \int_{0}^{1} k(s, \tau)(f(\tau, \Lambda x(\tau)) d \tau \\
& -y(s) \int_{0}^{1} k(s, \tau)(f(\tau, \Lambda x(\tau))-f(\tau, \Lambda y(\tau))) d \tau \mid \\
= & \left.\frac{1}{|t-s|^{\alpha}} \right\rvert\,((x(t)-y(t))-(x(s)-y(s))) \int_{0}^{1} k(t, \tau) f(\tau, \Lambda x(\tau)) d \tau \\
& +(x(s)-y(s)) \int_{0}^{1}(k(t, \tau)-k(s, \tau))(f(\tau, \Lambda x(\tau)) d \tau \\
& +(y(t)-y(s)) \int_{0}^{1} k(t, \tau)(f(\tau, \Lambda x(\tau))-f(\tau, \Lambda y(\tau))) d \tau \\
& +y(s) \int_{0}^{1}(k(t, \tau)-k(s, \tau))(f(\tau, \Lambda x(\tau))-f(\tau, \Lambda y(\tau))) d \tau \mid
\end{aligned}
$$

$$
\begin{aligned}
\leq & \frac{|(x(t)-y(t))-(x(s)-y(s))|}{|t-s|^{\alpha}} \int_{0}^{1}|k(t, \tau)||f(\tau, \Lambda x(\tau))| d \tau \\
& +\frac{|x(s)-y(s)|}{|t-s|^{\alpha}} \int_{0}^{1}|k(t, \tau)-k(s, \tau)||f(\tau, \Lambda x(\tau))| d \tau \\
& \frac{|y(t)-y(s)|}{|t-s|^{\alpha}} \int_{0}^{1}|k(t, \tau)||f(\tau, \Lambda x(\tau))-f(\tau, \Lambda y(\tau))| d \tau \\
& +\frac{|y(s)|}{|t-s|^{\alpha}} \int_{0}^{1}|k(t, \tau)-k(s, \tau)||f(\tau, \Lambda x(\tau))-f(\tau, \Lambda y(\tau))| d \tau \\
\leq & \frac{K|(x(t)-y(t))-(x(s)-y(s))|}{|t-s|^{\alpha}} \Psi\left(\psi\left(\|x\|_{\beta}\right)\right)+K_{\beta}\|x-y\|_{\infty} \Psi\left(\psi\left(\|x\|_{\beta}\right)\right) \int_{0}^{1}|t-s|^{\beta-\alpha} d \tau \\
& +\frac{K|y(t)-y(s)|}{|t-s|^{\alpha}} \gamma_{f}(\varepsilon)+K_{\beta}\|y\|_{\infty} \gamma_{f}(\varepsilon) \int_{0}^{1}|t-s|^{\beta-\alpha} d \tau \\
\leq & \left(\frac{K|(x(t)-y(t))-(x(s)-y(s))|}{|t-s|^{\alpha}}+K_{\beta}\|x-y\|_{\alpha}\right) \Psi\left(\psi\left(\|x\|_{\beta}\right)\right) \\
& +\left(\frac{K|y(t)-y(s)|}{|t-s|^{\alpha}}+K_{\beta}\|y\|_{\alpha}\right) \gamma_{f}(\varepsilon)
\end{aligned}
$$

where, $\gamma_{f}(\varepsilon)=\sup \left\{\left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right|: t \in[0,1], y_{1}, y_{2} \in\left[0, \psi\left(r_{0}\right)\right],\left\|y_{1}-y_{2}\right\| \leq \varepsilon\right\}$. Hence,

$$
\begin{equation*}
H_{\mathfrak{T} x-\mathfrak{T} y}^{\alpha} \leq\left(K H_{x-y}^{\alpha}+K_{\beta}\|x-y\|_{\alpha}\right) \Psi\left(\psi\left(\|x\|_{\beta}\right)\right)+\left(K H_{y}^{\alpha}+K_{\beta}\|y\|_{\alpha}\right) \gamma_{f}(\varepsilon) \tag{4}
\end{equation*}
$$

Also, we have

$$
\begin{align*}
& |(\mathfrak{T} x)(0)-(\mathfrak{T} y)(0)| \\
= & \left|x(0) \int_{0}^{1} k(0, \tau) f(\tau, \Lambda x(\tau)) d \tau-y(0) \int_{0}^{1} k(0, \tau) f(\tau, \Lambda y(\tau)) d \tau\right| \\
\leq & \left|x(0) \int_{0}^{1} k(0, \tau) f(\tau, \Lambda x(\tau)) d \tau-y(0) \int_{0}^{1} k(0, \tau) f(\tau, \Lambda x(\tau)) d \tau\right| \\
& +\left|y(0) \int_{0}^{1} k(0, \tau) f(\tau, \Lambda x(\tau)) d \tau-y(0) \int_{0}^{1} k(0, \tau) f(\tau, \Lambda y(\tau)) d \tau\right| \\
\leq & |x(0)-y(0)| \int_{0}^{1}|k(0, \tau)||f(\tau, \Lambda x(\tau))| d \tau+|y(0)| \int_{0}^{1}|k(0, \tau)||f(\tau, \Lambda x(\tau))-f(\tau, \Lambda y(\tau))| d \tau \\
\leq & K|x(0)-y(0)| \Psi\left(\psi\left(\|x\|_{\beta}\right)\right)+K|y(0)| \gamma_{f}(\varepsilon) \tag{5}
\end{align*}
$$

Add (4) and (5), and we obtain

$$
\begin{aligned}
\|\mathfrak{T} x-\mathfrak{T} y\|_{\alpha} \leq & \left(K H_{x-y}^{\alpha}+K_{\beta}\|x-y\|_{\alpha}\right) \Psi\left(\psi\left(\|x\|_{\beta}\right)\right)+\left(K H_{y}^{\alpha}+K_{\beta}\|y\|_{\alpha}\right) \gamma_{f}(\varepsilon) \\
& +K|x(0)-y(0)| \Psi\left(\psi\left(\|x\|_{\beta}\right)\right)+K|y(0)| \gamma_{f}(\varepsilon) \\
= & \left(K+K_{\beta}\right) \Psi\left(\psi\left(\|x\|_{\beta}\right)\right)\|x-y\|_{\alpha}+\left(K+K_{\beta}\right)\|y\|_{\alpha} \gamma_{f}(\varepsilon) \\
\leq & \left(K+K_{\beta}\right) \Psi\left(\psi\left(r_{0}\right)\right) \varepsilon+\left(K+K_{\beta}\right) r_{0} \gamma_{f}(\varepsilon) \rightarrow 0 \text { as } \varepsilon \rightarrow 0
\end{aligned}
$$

where, we used the fact that $\gamma_{f}(\varepsilon) \rightarrow 0$ since the function f is uniformly continuous on the set $[0,1] \times\left[0, \psi\left(r_{0}\right)\right]$. Therefore, \mathfrak{T} is continuous on $B_{r_{0}}^{\beta}$.

Apply the Schauder fixed point theorem (recall $B_{r_{0}}^{\beta}$ is compact in $H_{\alpha}[0,1]$) to
obtain the desired result.

4. Example

Here we illustrate our theory with an example.
Example 4.1. Consider the quadratic integral equation

$$
\begin{equation*}
x(t)=\sqrt[8]{m \cos ^{2} t+n}+x(t) \int_{0}^{1} \sqrt[6]{l \sin ^{2} t+\tau} \arctan \left(\frac{\tau^{2} x(\tau)}{1+\tau^{2}}\right)^{\frac{1}{3}} d \tau, t \in[0,1] \tag{6}
\end{equation*}
$$

where, l, m and n are nonnegative constants.
Note that (6) is a special case of (1), where $p(t)=\sqrt[8]{m \cos ^{2} t+n}, k(t, \tau)=$ $\sqrt[6]{l \sin t^{2}+\tau}, f(\tau, y)=\arctan (\tau y)^{\frac{1}{3}}$ and $\Lambda x=\frac{\tau x}{1+\tau^{2}}$.

One can easily check that:

$$
\begin{aligned}
|p(t)-p(s)| & =\left|\sqrt[8]{(\sqrt{m} \cos t)^{2}+n}-\sqrt[8]{(\sqrt{m} \cos s)^{2}+n}\right| \leq \sqrt[8]{|\sqrt{m} \cos t-\sqrt{m} \cos s|^{2}} \\
& =\sqrt[8]{m|\cos t-\cos s|^{2}}=\sqrt[8]{m} \sqrt[4]{|\cos t-\cos s|}=\sqrt[8]{m}|\cos t-\cos s|^{\frac{1}{4}} \\
& \leq \sqrt[8]{m}|t-s|^{\frac{1}{8}}|t-s|^{\frac{1}{8}} \leq \sqrt[8]{m}|t-s|^{\frac{1}{8}}
\end{aligned}
$$

for $t, s \in[0,1]$, where we use [3, Theorem 2.1]. Thus $p \in H_{\frac{1}{8}}[0,1]$ and $H_{p}^{\frac{1}{8}}=\sqrt[8]{m}$. Therefore, the assumption (a1) of Theorem 3.1 is satisfied with $0<\alpha<\beta=\frac{1}{8}$ and $\|p\|_{\frac{1}{8}}=|p(0)|+H_{p}^{\frac{1}{8}}=\sqrt[8]{m+n}+\sqrt[8]{m}$. Moreover, we have

$$
\begin{aligned}
|k(t, \tau)-k(s, \tau)| & =\left|\sqrt[6]{l \sin t^{2}+\tau}-\sqrt[6]{l \sin s^{2}+\tau}\right| \leq \sqrt[6]{\left|l \sin t^{2}-l \sin s^{2}\right|} \leq \sqrt[6]{l} \sqrt[6]{\left|t^{2}-s^{2}\right|} \\
& =\sqrt[6]{l} \sqrt[6]{t+s} \sqrt[6]{|t-s|} \leq \sqrt[6]{l} \sqrt[6]{2}|t-s|^{\frac{1}{6}}=\sqrt[6]{2 l}|t-s|^{\frac{1}{8}}|t-s|^{\frac{1}{24}} \leq \sqrt[6]{2 l}|t-s|^{\frac{1}{8}}
\end{aligned}
$$

where the inequality $\left|\sqrt[6]{l \sin t^{2}+\tau}-\sqrt[6]{l \sin s^{2}+\tau}\right| \leq \sqrt[6]{\left|l \sin t^{2}-l \sin s^{2}\right|}$ follows from [3, Theorem 2.1]. Therefore, the assumption (a2) of Theorem 3.1 is satisfied with $\kappa_{\beta}=\kappa_{\frac{1}{8}}=\sqrt[6]{2 l}$.

Now, since $|f(\tau, x)|=\left|\arctan (\tau x)^{\frac{1}{3}}\right| \leq|\tau x|^{\frac{1}{3}} \leq|x|^{\frac{1}{3}}$, then $f(\tau, x)=\arctan (\tau x)^{\frac{1}{3}}$, satisfies the assumption (a3) of Theorem 3.1 with a nondecreasing function $\Psi(r)=r^{\frac{1}{3}}$.

Also, we have $\|\Lambda x\|_{\infty} \leq \sup _{\tau \in[0,1]} \frac{\tau|x(\tau)|}{1+\tau^{2}} \leq \frac{1}{2}\|x\|_{\infty} \leq \frac{1}{2}\|x\|_{\beta}$, so the assumption (a4) is satisfied with $\psi(t)=\frac{1}{2} t$.

Next, we will show that the operator $\Lambda: H_{\beta}[0,1] \rightarrow C[0,1]$ is continuous with respect to the norm $\|\cdot\|_{\alpha}$. Take $x, y \in H_{\beta}[0,1]$ and $\tau \in[0,1]$, and we have

$$
\left|\frac{\tau x(\tau)}{1+\tau^{2}}-\frac{\tau y(\tau)}{1+\tau^{2}}\right|=\frac{\tau}{1+\tau^{2}}|x(\tau)-y(\tau)| \leq \frac{1}{2}|x(\tau)-y(\tau)| \leq \frac{1}{2}\|x-y\|_{\infty} \leq \frac{1}{2}\|x-y\|_{\alpha}
$$

Then $\|\Lambda x-\Lambda y\|_{\infty} \leq \frac{1}{2}\|x-y\|_{\alpha}$.
Note that the constant K satisfies

$$
K=\sup \left\{\int_{0}^{1}|k(t, \tau)| d \tau: t \in[0,1]\right\}=\sup \left\{\int_{0}^{1} \sqrt[6]{l \sin t^{2}+\tau} d \tau: t \in[0,1]\right\}
$$

$$
=\sup \left\{\frac{6}{7}\left(\sqrt[6]{\left(l \sin t^{2}+1\right)^{7}}-\sqrt[6]{l^{7} \sin ^{7} t^{2}}\right): t \in[0,1]\right\} \leq \frac{6}{7}\left(\sqrt[6]{(l+1)^{7}}-\sqrt[6]{l^{7}}\right)
$$

so for the inequality appearing in the assumption (a5), we could consider the inequality

$$
\begin{equation*}
\sqrt[8]{m+n}+\sqrt[8]{m}+\left(\frac{6}{7}\left(\sqrt[6]{(l+1)^{7}}-\sqrt[6]{l^{7}}\right)+\sqrt[6]{2 l}\right) \sqrt[3]{\frac{r}{2}} r \leq r \tag{7}
\end{equation*}
$$

Choosing suitable values for the constants m, n and l, one can find a positive solution of inequality (7) and then all the assumptions of Theorem 3.1 will be satisfied and (6) will have at least one solution $x \in H_{\alpha}[0,1]$, where $0<\alpha<\frac{1}{8}$.

References

[1] J. Banaś, D. O'Regan, R. P. Agarwal, Measures of noncompactness and asymptotic stability of solutions of a quadratic Hammerstein integral equation, Rocky Mountain J. Math., 41 (2011), 1769-1792.
[2] J. Banaś, R. Nalepa, On the space of functions with growths tempered by a modulus of continuity and its applications, J. Func. Spaces Appl., (2013), Article ID 820437, 13 pages.
[3] J. Banaś, A. Chlebowicz, On an elementary inequality and its application in the theory of integral equations, J. Math. Inequal., 11 (2017), 595-605.
[4] A. Bellour, D. O'Regan, M. A. Taoudi, On the existence of integrable solutions for a nonlinear quadratic integral equation, J. Appl. Math. Comput., 46 (2014), 67-77.
[5] J. Caballero, M. A. Darwish, K. Sadarangani, Solvability of a quadratic integral equation of Fredholm type in Hölder spaces, Electron. J. Differ. Equ., 31 (2014), 10 pp.
[6] J. Caballero, R. Nalepa, K. Sadarangani, Solvability of a quadratic integral equation of Fredholm type with supremum in Hölder spaces, J. Funct. Spaces, (2014), Art. ID 856183, 7 pp.
[7] S. Chandrasekher, Radiative Transfer, Dover Publications, New York, 1960.
[8] M. Cichon, M. Metwali, Existence of monotonic L_{φ}-solutions for quadratic Volterra functional-integral equations, Electron. J. Qual. Theory Differ. Equ., 13 (2015), 16 pp.
[9] M .A. Darwish, Existence and asymptotic behaviour of solutions of a fractional integral equation, Appl. Anal., 88 (2009), 169-181.
[10] M. A. Darwish, On a perturbed quadratic fractional integral equation of Abel type, Comput. Math. Appl., 61 (2011), 182-190.
[11] M. A. Darwish, Nondecreasing solutions of a fractional quadratic integral equation of UrysohnVolterra type, Dynam. Syst. Appl., 20 (2011), 423-438.
[12] K. Deimling, Nonlinear Fuctional Analysis, Springer-Verlag, Berlin, 1985.
[13] M. T. Ersoy, H. Furkan, On the existence of the solutions of a Fredholm integral equation with a modified argument in Hölder Spaces, Symmetry, 10 (2018), 1-13.
[14] M. Metwali, On a class of quadratic Urysohn-Hammerstein integral equations of mixed type and initial value problem of fractional order, Mediterr. J. Math., 13 (2016), 2691-2707.
(received 15.01.2021; in revised form 06.11.2021; available online 04.07.2022)
Department of Mathematics, Faculty of Sciences, Damanhour University, Egypt
E-mail: dr.madarwish@gmail.com
Department of Mathematics, Faculty of Sciences, Damanhour University, Egypt
E-mail: m.metwali@yahoo.com
School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
E-mail: donal.oregan@nuigalway.ie

[^0]: 2020 Mathematics Subject Classification: 45G10, 45M99, 47H09.
 Keywords and phrases: Quadratic Hammerstein integral equation; Hölder condition; Schauder fixed point theorem.

