A GENERALIZATION OF NONSINGULAR REGULAR MAGIC SQUARES

Phichet Jitjankarn and Thitarie Rungratgasame

Abstract

A generalization of regular magic squares with magic sum μ is an sq-corner (or square corner) magic square. It is a magic square satisfying the condition that the sum of 4 entries, square symmetrically placed with respect to the center, equals $\frac{4 \mu}{n}$. Using the sq-corner magic squares of order n, a construction of sq-corner magic squares of order $n+2$ is derived. Moreover, this construction provides some nonsingular classical sq-corner magic squares of all orders. In particular, a nonsingular regular magic square of any odd order can be constructed under this new method, as well.

1. Introduction

An $n \times n$ matrix M over \mathbb{C} whose sum of n entries in any row and any column equals a constant μ is called a semi-magic square, and if n entries on each of its cross diagonals also sum to μ, then M is called a magic square with a magic sum μ. One of the special types of magic squares widely studied is a regular magic square, an $n \times n$ complex magic square $M=\left[m_{i, j}\right]$ such that

$$
m_{i, j}+m_{n+1-i, n+1-j}=\frac{2 \mu}{n}
$$

Mattingly showed in [6] that a regular magic square of any even order is singular. However, this is not the case for an odd-order regular magic square, which leads to many attempts to construct a nonsingular regular magic square of odd order. Lee and et. al. introduced in [3] a construction of nonsingular regular magic squares whose orders are odd primes and powers of odd primes by using a centroskew S-circulant matrix A with the first row of A defined as $a_{j}=j-1$ for $j=1,2, \ldots,\left(\frac{n+1}{2}\right)$. Their construction also lead to further study of singularity of regular magic squares, e.g., see $[2,4]$. In our work, we are more interested in studying the singularity of its generalization. Rungratgasame and et. al. introduced in [7] a generalization of regular magic squares, called corner magic squares, which will be defined by Definition 1.1.

[^0]To be precise, we shall call a corner magic square a sq-corner magic square. This work will give a construction of a nonsingular sq-corner magic square of any order $n \geq 3$.

Definition 1.1. An $n \times n$ complex magic square $M=\left[m_{i, j}\right]$ with a magic sum μ is said to be a sq-corner (square corner) magic square if

$$
m_{i, i}+m_{(n+1-i),(n+1-i)}+m_{i,(n+1-i)}+m_{(n+1-i), i}=\frac{4 \mu}{n}, \quad \text { for all } i=1,2,3, \ldots, n
$$

Both regular and sq-corner magic squares can be symbolically illustrated in the following table where the same symbols represent associated entries added to be a constant.

Magic squares	$n=4$	$n=5$	$n=6$
regular		$\left[\begin{array}{lllll} \oplus & \nabla & \circ & \Delta & \dot{\infty} \\ \triangleleft & \diamond & \diamond & \bullet & \triangleright \\ \odot & \oplus & \star & \oplus & \odot \\ \triangleright & \bullet & \diamond & \odot & \triangleleft \\ \bullet & \Delta & \circ & \nabla & \oplus \end{array}\right]$	
sq-corner	$\left[\begin{array}{llll}\oplus & & & 凶 \\ & \boxtimes & \boxtimes & 凶 \\ & \boxtimes & \boxtimes & \\ \oplus & & & \oplus\end{array}\right]$	$\left[\begin{array}{lllll}\omega & 0 & & 0 & \omega \\ & 0 & \boldsymbol{\omega} & \\ & 0 & & 0 & \\ \omega & & & & \omega\end{array}\right]$	$\left[\begin{array}{llllll}\oplus & & & & & \oplus \\ & \circledast & \star & \star & \circledast & \\ & & \star & \star & \star & \\ \\ & \circledast & & & \circledast & \\ \hline\end{array}\right]$

It is obvious that a regular magic square is sq-corner. However, a sq-corner magic square need not be regular, e.g. the magic square with Frénicle index 175:

$$
F_{175}=\left[\begin{array}{cccc}
1 & 12 & 8 & 13 \\
14 & 7 & 11 & 2 \\
15 & 6 & 10 & 3 \\
4 & 9 & 5 & 16
\end{array}\right]
$$

is regular and sq-corner whereas the magic squares in [5] with Frénicle indices 181 and 268 in Dudeney Group XI and VII, respectively

$$
F_{181}=\left[\begin{array}{cccc}
1 & 12 & 13 & 8 \\
16 & 9 & 4 & 5 \\
2 & 7 & 14 & 11 \\
15 & 6 & 3 & 10
\end{array}\right] \quad \text { and } \quad F_{268}=\left[\begin{array}{cccc}
2 & 5 & 16 & 11 \\
8 & 12 & 1 & 13 \\
9 & 7 & 14 & 4 \\
15 & 10 & 3 & 6
\end{array}\right]
$$

are sq-corner but not regular.
The matrices F_{181} and F_{268} are examples of nonsingular sq-corner magic squares. In particular, these show that a sq-corner magic square of even order need not be singular. To study the singularity of sq-corner magic squares that we construct in this paper, we will find a method to determine their determinants.

2. A construction of nonsingular sq-corner magic squares

Recall that a square matrix is nonsingular if all of its eigenvalues are nonzero. In [1], Amir-Moéz and Fredricks showed the connection between eigenvalues of a magic square and its related magic square as follows.

Theorem 2.1. If M is an $n \times n$ magic square and ρ is a complex number, then $M+\rho E$ has the same eigenvalues as M except that μ is replaced by $\mu+\rho n$.

For any $n \times n$ magic square M, the corresponding zero magic square of order n is defined to be $Z_{M}=M-\frac{\mu}{n} E$. From Theorem 2.1, Z_{M} has the same eigenvalues as M except that μ is replaced by 0 . It implies that Z_{M} has no repeated zero eigenvalue if M is nonsingular. Next, we will construct an extended zero magic square of order $(n+2) \times(n+2)$ when a magic square of order n is given. For any $n \in \mathbb{N}$, we say that $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ is zero-sum if $\sum_{i=1}^{n} a_{i}=0$.

Definition 2.2. Let Z be a zero magic square of order n. For a zero-sum $\vec{a}=$ $\left(a_{1}, \ldots, a_{n+1}\right) \in \mathbb{R}^{n+1}$, we define an extended $(n+2) \times(n+2)$ matrix with respect to Z, denoted by $\mathcal{S}_{Z} \vec{a}$, as follows:

$$
\mathcal{S}_{Z} \vec{a}=\left[\begin{array}{ccccc}
a_{1} & a_{2} & \cdots & a_{n+1} & 0 \\
a_{2} & & & & -a_{2} \\
\vdots & & Z & & \vdots \\
a_{n+1} & & & & -a_{n+1} \\
0 & -a_{2} & \cdots & -a_{n+1} & -a_{1}
\end{array}\right] .
$$

Then $\mathcal{S}_{Z} \vec{a}$ is a zero magic square of order $n+2$. In particular, if Z is a zero sq-corner magic square, then so is $\mathcal{S}_{Z} \vec{a}$.

Example 2.3. Let us consider the following regular zero magic square of order 5 produced by an S-circulant matrix (see [2]),

$$
C=\left[\begin{array}{ccccc}
0 & 1 & 2 & -2 & -1 \\
-1 & 0 & 1 & 2 & -2 \\
-2 & -1 & 0 & 1 & 2 \\
2 & -2 & -1 & 0 & 1 \\
1 & 2 & -2 & -1 & 0
\end{array}\right]
$$

We choose $\vec{a}=(-3,1,0,1,0,1)$. Then

$$
\mathcal{S}_{C} \vec{a}=\left[\begin{array}{ccccccc}
-3 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 2 & -2 & -1 & -1 \\
0 & -1 & 0 & 1 & 2 & -2 & 0 \\
1 & -2 & -1 & 0 & 1 & 2 & -1 \\
0 & 2 & -2 & -1 & 0 & 1 & 0 \\
1 & 1 & 2 & -2 & -1 & 0 & -1 \\
0 & -1 & 0 & -1 & 0 & -1 & 3
\end{array}\right]
$$

is a zero sq-corner magic square of order 7 which has $1575 x+230 x^{3}-10 x^{5}-x^{7}$ as its characteristic polynomial, i.e., $\mathcal{S}_{C} \vec{a}$ has no repeated zero eigenvalue.

We directly obtain the following proposition from Definition 2.2 to construct a regular zero magic square of any odd order. Let J denote the permutation matrix
obtained by writing 1 in each of the cross diagonal entries and 0 elsewhere, that is,

$$
J=\left[\begin{array}{lll}
0 & & 1 \\
& . & \\
1 & & 0
\end{array}\right] .
$$

Proposition 2.4. For a regular zero magic square Z of odd order n, the sq-corner magic square with respect to $Z, \mathcal{S}_{Z} \vec{a}$, where $\vec{a}=(x, \vec{v}, y, \vec{v} J), \vec{v}$ is an $1 \times\left(\frac{n-1}{2}\right)$ matrix and J is of order $\frac{n-1}{2}$, viewed as

$$
\left[\begin{array}{ccccc}
x & \vec{v} & y & \vec{v} J & 0 \\
\vec{v}^{T} & & & & -\vec{v}^{T} \\
y & & Z & & -y \\
J \vec{v}^{T} & & & & -J \vec{v}^{T} \\
0 & -\vec{v} & -y & -\vec{v} J & -x
\end{array}\right]
$$

is also a regular zero magic square of order $n+2$.
The main result of this work is to derive a nonsingular magic square of order $n+2$ once a nonsingular sq-corner magic square of order n is given. Here we shall begin with a definition of a submatrix and some of its properties in order to find a determinant of a matrix later on.

Definition 2.5. Let A be an $n \times n$ matrix. For index sets $\mathcal{X}, \mathcal{Y} \subseteq\{1, \ldots, n\}$, let $A[\mathcal{X}, \mathcal{Y}]$ be a submatrix of A obtained by keeping entries positioned on the rows and columns with indices in \mathcal{X} and \mathcal{Y}, respectively. If $\mathcal{X}=\mathcal{Y}$, then $A[\mathcal{X}, \mathcal{X}]$ is a principal submatrix of A, denoted by $A[\mathcal{X}]$. Let $\mathcal{X}^{c}=\{1, \ldots, n\} \backslash \mathcal{X}$ denote the index set complementary to \mathcal{X}. Then $A\left[\mathcal{X}^{c}\right]=A[\{1, \ldots, n\} \backslash \mathcal{X}]$.

Let \mathbf{e} denote a column vector containing all 1 's and \mathbf{e}_{i} a column vector whose $i^{\text {th }}$ row entry is 1 and 0 elsewhere. For an $n \times n$ matrix M and a vector $\vec{a} \in \mathbb{R}^{n}$, we define $[M]_{(\vec{a}, k)}^{R}$ and $[M]_{(\vec{a}, k)}^{C}$ as matrices formed by replacing the $k^{\text {th }}$ row and the $k^{\text {th }}$ column of M by the vector \vec{a}, respectively.

The next lemma shows that the determinant of a matrix can be written in terms of a determinant of a principal submatrix.

Lemma 2.6. Let Z be an $n \times n$ zero magic square. Then $\operatorname{det}(Z+\lambda E)=n^{2} \lambda \operatorname{det} Z\left[\{t\}^{c}\right]$ for $t \in\{1, \ldots, n\}$.

Proof. The result immediately holds for $\lambda=0$. Since the magic sum of Z is zero, we can apply elementary column operations to have that $\operatorname{det}(Z+\lambda E)=$ $\operatorname{det}[Z+\lambda E]_{(n \lambda \mathbf{e}, t)}^{C}$. Furthermore, $\operatorname{det}\left([Z+\lambda E]_{(n \lambda \mathbf{e}, t)}^{C}\right)=\operatorname{det}\left[\begin{array}{cc}Z\left[\{t\}^{c}\right] & n \lambda \mathbf{e} \\ \mathbf{0} & n^{2} \lambda\end{array}\right]$. Hence, $\operatorname{det}(Z+\lambda E)=n^{2} \lambda \operatorname{det} Z\left[\{t\}^{c}\right]$.

Lemma 2.7. Let M be an $(n+1) \times n$ matrix of the form $[\vec{a}, Z]^{T}$ where $\vec{a} \in \mathbb{R}^{n}$ and Z is a zero magic square of order n. Then for $i \in\{3, \ldots, n+1\}$, $\operatorname{det} M\left[\{i\}^{c},\{1, \ldots, n\}\right]=$ $(-1)^{i} \operatorname{det} M\left[\{2\}^{c},\{1, \ldots, n\}\right]$.

Proof. Since Z is a zero magic square, $-\mathbf{e}_{i}^{T} Z=\mathbf{e}_{1}^{T} Z+\cdots+\mathbf{e}_{i-1}^{T} Z+\mathbf{e}_{i+1}^{T} Z+\cdots+\mathbf{e}_{n}^{T} Z$, and hence the desired results can be obtained by using elementary row operations.

Theorem 2.8. Let Z be an $n \times n$ zero magic square. Let $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n+1}\right) \in \mathbb{R}^{n+1}$ be zero-sum. For $\lambda \in \mathbb{R}, \operatorname{det}\left(\mathcal{S}_{Z} \vec{a}+\lambda E\right)=-a_{1}^{2}(n+2)^{2} \lambda \operatorname{det} Z\left[\{1\}^{c}\right]$.

Proof. By using elementary row and column operations and $a_{1}=-a_{2}-a_{3}-\cdots-a_{n+1}$, the determinant of $\mathcal{S}_{Z} \vec{a}+\lambda E$ is

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{cccccc}
a_{1}+\lambda & a_{2}+\lambda & a_{3}+\lambda & \cdots & a_{n+1}+\lambda & \lambda \\
a_{2}+\lambda & & & & & -a_{2}+\lambda \\
a_{3}+\lambda & & Z+\lambda E & & & -a_{3}+\lambda \\
\vdots & & & & & \vdots \\
a_{n+1}+\lambda & & & & & -a_{n+1}+\lambda \\
\lambda & -a_{2}+\lambda & -a_{3}+\lambda & \cdots & -a_{n+1}+\lambda & -a_{1}+\lambda
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cccccc}
a_{1}+\lambda & a_{2}+\lambda & a_{3}+\lambda & \cdots & a_{n+1}+\lambda & a_{1}+2 \lambda \\
a_{2}+\lambda & & & & & 2 \lambda \\
a_{3}+\lambda & & Z+\lambda E & & & 2 \lambda \\
\vdots & & & & & \vdots \\
a_{n+1}+\lambda & & & & & 2 \lambda \\
a_{1}+2 \lambda & 2 \lambda & 2 \lambda & \cdots & 2 \lambda & 4 \lambda
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cccccc}
a_{1}+\lambda & a_{2}+\lambda & a_{3}+\lambda & \cdots & a_{n+1}+\lambda & a_{1}+2 \lambda \\
a_{2}+\lambda & & & & & 2 \lambda \\
a_{3}+\lambda & & Z+\lambda E & & & 2 \lambda \\
\vdots & & & & & \vdots \\
a_{n+1}+\lambda & & & & & 2 \lambda \\
(n+2) \lambda & (n+2) \lambda & (n+2) \lambda & \cdots & (n+2) \lambda & 2(n+2) \lambda
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cccccc}
a_{1}+\lambda & a_{2}+\lambda & a_{3}+\lambda & \cdots & a_{n+1}+\lambda & (n+2) \lambda \\
a_{2}+\lambda & & & & & (n+2) \lambda \\
a_{3}+\lambda & & Z+\lambda E & & & (n+2) \lambda \\
\vdots & & & & & \vdots \\
a_{n+1}+\lambda & & & & & (n+2) \lambda \\
(n+2) \lambda & (n+2) \lambda & (n+2) \lambda & \cdots & (n+2) \lambda & (n+2)^{2} \lambda
\end{array}\right] \\
& =(n+2)^{2} \operatorname{det}\left[\begin{array}{cccccc}
a_{1} & a_{2} & a_{3} & \cdots & a_{n+1} & 0 \\
a_{2} & & & & & 0 \\
a_{3} & & Z & & & 0 \\
\vdots & & & & & \vdots \\
a_{n+1} & & & & & 0 \\
\lambda & \lambda & \lambda & \cdots & \lambda & \lambda
\end{array}\right] .
\end{aligned}
$$

We write

$$
\operatorname{det}\left(\mathcal{S}_{Z} \vec{a}+\lambda E\right)=(n+2)^{2} \lambda \operatorname{det} Q, \quad \text { where } \quad Q=\left[\begin{array}{ccccc}
a_{1} & a_{2} & \cdots & a_{n} & a_{n+1} \\
a_{2} & & & & \\
\vdots & & Z & & \\
a_{n} & & & & \\
a_{n+1} & & & &
\end{array}\right]
$$

To determine the formula of the determinant of Q, we pick the first column of Q and find all of its cofactors. Let $\vec{b}=\left(a_{2}, a_{3}, \ldots, a_{n+1}\right)$. For $k \geq 3, Q\left[\{k\}^{c},\{1\}^{c}\right]$ can be viewed as the submatrix of $[\vec{b}, Z]^{T}$ by deleting the $(k-1)^{\text {th }}$ row of Z. By applying Lemma 2.7, $\operatorname{det} Q\left[\{k\}^{c},\{1\}^{c}\right]=(-1)^{k} \operatorname{det} Q\left[\{2\}^{c},\{1\}^{c}\right]$. From the assumption of $\sum_{j \geq 2} a_{j}=-a_{1}$, we have

$$
\begin{aligned}
\operatorname{det} Q & =\sum_{i=1}^{n+1} a_{i}(-1)^{i+1} \operatorname{det} Q\left[\{i\}^{c},\{1\}^{c}\right] \\
& =-a_{2} \operatorname{det} Q\left[\{2\}^{c},\{1\}^{c}\right]+\sum_{i=3}^{n+1} a_{i}(-1)^{i+1}(-1)^{i} \operatorname{det} Q\left[\{2\}^{c},\{1\}^{c}\right] \\
& =-\left(a_{2}+a_{3}+\cdots+a_{n+1}\right) \cdot \operatorname{det} Q\left[\{2\}^{c},\{1\}^{c}\right]=a_{1} \cdot \operatorname{det}\left([Z]_{(\vec{b}, 1)}^{R}\right)
\end{aligned}
$$

By applying elementary column operations, we get

$$
\operatorname{det}\left([Z]_{(\vec{b}, 1)}^{R}\right)=\operatorname{det}\left[\begin{array}{ccc}
-a_{1} & a_{3} \cdots & a_{n} \\
0 & & \\
\vdots & Z\left[\{1\}^{c}\right] & \\
0 & &
\end{array}\right]
$$

Then $\operatorname{det} Q=a_{1}\left(-a_{1}\right) \cdot \operatorname{det} Z\left[\{1\}^{c}\right]$.
From Theorem 2.8 and Lemma 2.6, the following corollary is obtained immediately.

Corollary 2.9. For a zero-sum $\vec{a}=\left(a_{1}, \ldots, a_{n+1}\right)$,

$$
\operatorname{det}\left(\mathcal{S}_{Z} \vec{a}+\lambda E\right)=-a_{1}^{2}\left(\frac{n+2}{n}\right)^{2} \operatorname{det}(Z+\lambda E)
$$

Example 2.10. Let us consider the following nonsingular regular magic square of order 9,

$$
M=\left[\begin{array}{lllllllll}
0 & 5 & 4 & 5 & 4 & 5 & 4 & 5 & 4 \\
5 & 1 & 5 & 4 & 5 & 4 & 5 & 4 & 3 \\
4 & 5 & 4 & 5 & 6 & 2 & 3 & 3 & 4 \\
5 & 4 & 3 & 4 & 5 & 6 & 2 & 4 & 3 \\
4 & 5 & 2 & 3 & 4 & 5 & 6 & 3 & 4 \\
5 & 4 & 6 & 2 & 3 & 4 & 5 & 4 & 3 \\
4 & 5 & 5 & 6 & 2 & 3 & 4 & 3 & 4 \\
5 & 4 & 3 & 4 & 3 & 4 & 3 & 7 & 3 \\
4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 8
\end{array}\right]
$$

with the magic sum 36. This regular magic square is originally an extended matrix from the S-circulant matrix C of order 5 given in Example 2.3. To be precise, $M=\mathcal{S}_{\mathcal{S}_{C} \vec{a}} \vec{b}+4 E$, where $\vec{a}=(-3,1,0,1,0,1)$ and $\vec{b}=(-4,1,0,1,0,1,0,1)$. Using Corollary 2.9,

$$
\operatorname{det} M=-(-4)^{2}\left(\frac{9}{7}\right)^{2}\left[-(-3)^{2}\left(\frac{7}{5}\right)^{2} \operatorname{det}(C+4 E)\right]=1166400
$$

showing that M is nonsingular.
Theorem 2.8 and Corollary 2.9 provide us the following result.
Theorem 2.11. Let M be a nonsingular magic sq-corner square of order n. For a zero-sum $\vec{a}=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n+1}\right)$ and $\lambda \in \mathbb{R}$, the sq-corner magic square $\mathcal{S}_{Z_{M}} \vec{a}+\lambda E$ is nonsingular if and only if $a_{1}, \lambda \neq 0$.

Proof. By Theorem 2.1, $\operatorname{det}\left(Z_{M}+\lambda E\right) \neq 0$ if and only if $\lambda \neq 0$. By Corollary 2.9, $\operatorname{det}\left(\mathcal{S}_{Z_{M}} \vec{a}+\lambda E\right) \neq 0$ if and only if $a_{1} \neq 0$ and $\lambda \neq 0$.

Our construction here shows that starting from any nonsingular sq-corner magic square of order 3 , by repeatedly choosing appropriate λ and \vec{a}, we can construct nonsingular sq-corner magic square of any odd order, and similarly for the even order cases.

From Proposition 2.4, a noteworthy special case of Theorem 2.11 is the next corollary.

Corollary 2.12. For a regular zero magic square Z of odd order n with no repeated zero eigenvalue, the regular zero magic squares $\mathcal{S}_{Z}(x, \vec{v}, y, \vec{v} J)$ of order $n+2$ have also no repeated zero eigenvalue when x is nonzero.

In conclusion, we construct a nonsingular sq-corner magic square $\mathcal{S}_{Z_{M}} \vec{a}+\lambda E$ of order $n+2$ when we know a nonsingular sq-corner magic square M of order n by choosing $\lambda \neq 0$ and $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n+1}\right)$ such that $a_{1} \neq 0$. If we begin with

$$
\left[\begin{array}{cccc}
-13 & -4 & 8 & 9 \\
-4 & 7 & -9 & 6 \\
8 & -9 & 11 & -10 \\
9 & 6 & -10 & -5
\end{array}\right],
$$

by our construction, we can derive a sequence of nonsingular sq-corner magic squares of even orders: $4,6,8,10, \ldots$. Also, if M is a nonsingular regular magic square of order 3 , then this construction will provide a sequence of nonsingular regular magic squares of odd orders: $3,5,7,9, \ldots$ Our construction here depends on the choices of λ and \vec{a} which gives another form of a nonsingular regular magic square different from those given in $[2,3]$.

Acknowledgement. This research was supported by SWU endowment fund.
The authors are also grateful to the referees whose suggestions through proofreading led to many improvements in the manuscript.

References

[1] A. R. Amir-Moéz, G. A. Fredricks, Characteristic polynomials of magic squares, Math. Mag., 57 (1984), 220-221.
[2] C.Y.J. Chan, M.G. Mainkar, S.K. Narayan, J.D. Webster, A construction of regular magic squares of odd order, Linear Algebra Appl., 457 (2014), 293-302.
[3] M. Lee, E. Love, S.K. Narayan, E. Wascher, d J. D. Webster, On nonsingular regular magic squares of odd order, Linear Algebra Appl., 437 (2012), 1346-1355.
[4] L. Liu, Z. Gao, W. Zhao, On an open problem concerning regular magic squares of odd order, Linear Algebra Appl., 459 (2014), 1-12.
[5] P. Loly, I. Cameron, W. Trump, D. Schindel, Magic square spectra, Linear Algebra Appl., 430 (2009), 2659-2680.
[6] R. B. Mattingly, Even order regular magic squares are singular, Am. Math. Mon., 107 (2000), 777-782.
[7] T. Rungratgasame, P. Amornpornthum, P. Boonmee, B. Cheko, N. Fuangfung, Vector spaces of new special magic squares: reflective magic squares, corner magic squares and skew-regular magic squares, Int. J. Math. Math. Sci., 9721725 (2016).
(received 13.02.2021; in revised form 10.01.2022; available online 14.08.2022)
Division of Mathematics, School of Science, Walailak University, Nakhon Si Thammarat 80161, Thailand
E-mail: jitjankarn@gmail.com
Department of Mathematics, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
E-mail: thitarie@g.swu.ac.th

[^0]: 2020 Mathematics Subject Classification: 15A15, 15F10.
 Keywords and phrases: Nonsingular matrices; determinants; magic squares.

