MATEMATIČKI VESNIK MATEMATИЧКИ ВЕСНИК 74, 4 (2022), 272–279 December 2022

research paper оригинални научни рад DOI: 10.57016/MV-aqsi1967

A GENERALIZATION OF NONSINGULAR REGULAR MAGIC SQUARES

Phichet Jitjankarn and Thitarie Rungratgasame

Abstract. A generalization of regular magic squares with magic sum μ is an sq-corner (or square corner) magic square. It is a magic square satisfying the condition that the sum of 4 entries, square symmetrically placed with respect to the center, equals $\frac{4\mu}{n}$. Using the sq-corner magic squares of order n, a construction of sq-corner magic squares of order n + 2 is derived. Moreover, this construction provides some nonsingular classical sq-corner magic squares of all orders. In particular, a nonsingular regular magic square of any odd order can be constructed under this new method, as well.

1. Introduction

An $n \times n$ matrix M over \mathbb{C} whose sum of n entries in any row and any column equals a constant μ is called a *semi-magic square*, and if n entries on each of its cross diagonals also sum to μ , then M is called a *magic square* with a *magic sum* μ . One of the special types of magic squares widely studied is a regular magic square, an $n \times n$ complex magic square $M = [m_{i,j}]$ such that

$$m_{i,j} + m_{n+1-i,n+1-j} = \frac{2\mu}{n}.$$

Mattingly showed in [6] that a regular magic square of any even order is singular. However, this is not the case for an odd-order regular magic square, which leads to many attempts to construct a nonsingular regular magic square of odd order. Lee and et. al. introduced in [3] a construction of nonsingular regular magic squares whose orders are odd primes and powers of odd primes by using a centroskew S-circulant matrix A with the first row of A defined as $a_j = j - 1$ for $j = 1, 2, \ldots, \left(\frac{n+1}{2}\right)$. Their construction also lead to further study of singularity of regular magic squares, e.g., see [2,4]. In our work, we are more interested in studying the singularity of its generalization. Rungratgasame and et. al. introduced in [7] a generalization of regular magic squares, called corner magic squares, which will be defined by Definition 1.1.

²⁰²⁰ Mathematics Subject Classification: 15A15, 15F10.

Keywords and phrases: Nonsingular matrices; determinants; magic squares.

To be precise, we shall call a corner magic square a sq-corner magic square. This work will give a construction of a nonsingular sq-corner magic square of any order $n \geq 3$.

DEFINITION 1.1. An $n \times n$ complex magic square $M = [m_{i,j}]$ with a magic sum μ is said to be a sq-corner (square corner) magic square if

$$m_{i,i} + m_{(n+1-i),(n+1-i)} + m_{i,(n+1-i)} + m_{(n+1-i),i} = \frac{4\mu}{n}$$
, for all $i = 1, 2, 3, \dots, n$.

Both regular and sq-corner magic squares can be symbolically illustrated in the following table where the same symbols represent associated entries added to be a constant.

Magic squares	n = 4	n = 5	n = 6
regular	$\begin{bmatrix} \blacklozenge & \nabla & \bigtriangleup & \blacklozenge \\ \lor & \heartsuit & \diamondsuit & \lor \\ \lor & \diamondsuit & \heartsuit & \lor \\ \clubsuit & \bigtriangleup & \nabla & \blacklozenge \end{bmatrix}$	$ \begin{bmatrix} \blacklozenge & \nabla & \circ & \Delta & \blacklozenge \\ \triangleleft & \heartsuit & \diamond & \bullet & \triangleright \\ \circ & \oplus & \bigstar & \oplus & \circ \\ \triangleright & \bullet & \diamond & \heartsuit & \triangleleft \\ \clubsuit & \Delta & \circ & \nabla & \blacklozenge \end{bmatrix} $	$\begin{bmatrix} \bullet & \nabla & \circ & \bullet & \bullet & \bullet \\ \bullet & \Box & \circ & \circ & \bullet & \bullet & \bullet \\ \bullet & \Box & \Box & \bullet & \bullet & \bullet & \bullet \\ \circ & \circ & \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet$
sq-corner			[♠ ↔ ★ ★ ★ ★ ♥ ↔

It is obvious that a regular magic square is sq-corner. However, a sq-corner magic square need not be regular, e.g. the magic square with Frénicle index 175:

$$F_{175} = \begin{bmatrix} 1 & 12 & 8 & 13 \\ 14 & 7 & 11 & 2 \\ 15 & 6 & 10 & 3 \\ 4 & 9 & 5 & 16 \end{bmatrix}$$

is regular and sq-corner whereas the magic squares in [5] with Frénicle indices 181 and 268 in Dudeney Group XI and VII, respectively

$$F_{181} = \begin{bmatrix} 1 & 12 & 13 & 8\\ 16 & 9 & 4 & 5\\ 2 & 7 & 14 & 11\\ 15 & 6 & 3 & 10 \end{bmatrix} \text{ and } F_{268} = \begin{bmatrix} 2 & 5 & 16 & 11\\ 8 & 12 & 1 & 13\\ 9 & 7 & 14 & 4\\ 15 & 10 & 3 & 6 \end{bmatrix},$$

are sq-corner but not regular.

The matrices F_{181} and F_{268} are examples of nonsingular sq-corner magic squares. In particular, these show that a sq-corner magic square of even order need not be singular. To study the singularity of sq-corner magic squares that we construct in this paper, we will find a method to determine their determinants.

2. A construction of nonsingular sq-corner magic squares

Recall that a square matrix is nonsingular if all of its eigenvalues are nonzero. In [1], Amir-Moéz and Fredricks showed the connection between eigenvalues of a magic square and its related magic square as follows.

THEOREM 2.1. If M is an $n \times n$ magic square and ρ is a complex number, then $M + \rho E$ has the same eigenvalues as M except that μ is replaced by $\mu + \rho n$.

For any $n \times n$ magic square M, the corresponding zero magic square of order n is defined to be $Z_M = M - \frac{\mu}{n}E$. From Theorem 2.1, Z_M has the same eigenvalues as M except that μ is replaced by 0. It implies that Z_M has no repeated zero eigenvalue if M is nonsingular. Next, we will construct an extended zero magic square of order $(n+2) \times (n+2)$ when a magic square of order n is given. For any $n \in \mathbb{N}$, we say that $\vec{a} = (a_1, a_2, \ldots, a_n) \in \mathbb{R}^n$ is zero-sum if $\sum_{i=1}^n a_i = 0$.

DEFINITION 2.2. Let Z be a zero magic square of order n. For a zero-sum $\vec{a} = (a_1, \ldots, a_{n+1}) \in \mathbb{R}^{n+1}$, we define an extended $(n+2) \times (n+2)$ matrix with respect to Z, denoted by $S_Z \vec{a}$, as follows:

$$S_Z \vec{a} = \begin{bmatrix} a_1 & a_2 & \cdots & a_{n+1} & 0\\ a_2 & & & -a_2\\ \vdots & Z & \vdots\\ a_{n+1} & & & -a_{n+1}\\ 0 & -a_2 & \cdots & -a_{n+1} & -a_1 \end{bmatrix}.$$

Then $S_Z \vec{a}$ is a zero magic square of order n+2. In particular, if Z is a zero sq-corner magic square, then so is $S_Z \vec{a}$.

EXAMPLE 2.3. Let us consider the following regular zero magic square of order 5 produced by an S-circulant matrix (see [2]),

$$C = \begin{vmatrix} 0 & 1 & 2 & -2 & -1 \\ -1 & 0 & 1 & 2 & -2 \\ -2 & -1 & 0 & 1 & 2 \\ 2 & -2 & -1 & 0 & 1 \\ 1 & 2 & -2 & -1 & 0 \end{vmatrix}$$

We choose $\vec{a} = (-3, 1, 0, 1, 0, 1)$. Then

$$\mathcal{S}_C \vec{a} = \begin{bmatrix} -3 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 2 & -2 & -1 & -1 \\ 0 & -1 & 0 & 1 & 2 & -2 & 0 \\ 1 & -2 & -1 & 0 & 1 & 2 & -1 \\ 0 & 2 & -2 & -1 & 0 & 1 & 0 \\ 1 & 1 & 2 & -2 & -1 & 0 & -1 \\ 0 & -1 & 0 & -1 & 0 & -1 & 3 \end{bmatrix}$$

is a zero sq-corner magic square of order 7 which has $1575x + 230x^3 - 10x^5 - x^7$ as its characteristic polynomial, i.e., $S_C \vec{a}$ has no repeated zero eigenvalue.

We directly obtain the following proposition from Definition 2.2 to construct a regular zero magic square of any odd order. Let J denote the permutation matrix

274

obtained by writing 1 in each of the cross diagonal entries and 0 elsewhere, that is,

	0		1	
J =		· · ·		
	1		0	

PROPOSITION 2.4. For a regular zero magic square Z of odd order n, the sq-corner magic square with respect to Z, $S_Z \vec{a}$, where $\vec{a} = (x, \vec{v}, y, \vec{v}J)$, \vec{v} is an $1 \times \left(\frac{n-1}{2}\right)$ matrix and J is of order $\frac{n-1}{2}$, viewed as

 $\begin{bmatrix} x & \vec{v} & y & \vec{v}J & 0\\ \vec{v}^T & & -\vec{v}^T \\ y & Z & -y \\ J\vec{v}^T & & -J\vec{v}^T \\ 0 & -\vec{v} & -y & -\vec{v}J & -x \end{bmatrix},$

is also a regular zero magic square of order n + 2.

The main result of this work is to derive a nonsingular magic square of order n + 2 once a nonsingular sq-corner magic square of order n is given. Here we shall begin with a definition of a submatrix and some of its properties in order to find a determinant of a matrix later on.

DEFINITION 2.5. Let A be an $n \times n$ matrix. For index sets $\mathcal{X}, \mathcal{Y} \subseteq \{1, \ldots, n\}$, let $A[\mathcal{X}, \mathcal{Y}]$ be a submatrix of A obtained by keeping entries positioned on the rows and columns with indices in \mathcal{X} and \mathcal{Y} , respectively. If $\mathcal{X} = \mathcal{Y}$, then $A[\mathcal{X}, \mathcal{X}]$ is a *principal submatrix* of A, denoted by $A[\mathcal{X}]$. Let $\mathcal{X}^c = \{1, \ldots, n\} \setminus \mathcal{X}$ denote the index set complementary to \mathcal{X} . Then $A[\mathcal{X}^c] = A[\{1, \ldots, n\} \setminus \mathcal{X}]$.

Let **e** denote a column vector containing all 1's and **e**_i a column vector whose i^{th} row entry is 1 and 0 elsewhere. For an $n \times n$ matrix M and a vector $\vec{a} \in \mathbb{R}^n$, we define $[M]^R_{(\vec{a},k)}$ and $[M]^C_{(\vec{a},k)}$ as matrices formed by replacing the k^{th} row and the k^{th} column of M by the vector \vec{a} , respectively.

The next lemma shows that the determinant of a matrix can be written in terms of a determinant of a principal submatrix.

LEMMA 2.6. Let Z be an $n \times n$ zero magic square. Then $\det(Z + \lambda E) = n^2 \lambda \det Z[\{t\}^c]$ for $t \in \{1, \ldots, n\}$.

Proof. The result immediately holds for $\lambda = 0$. Since the magic sum of Z is zero, we can apply elementary column operations to have that $\det(Z + \lambda E) = \det[Z + \lambda E]_{(n\lambda\mathbf{e},t)}^{C}$. Furthermore, $\det([Z + \lambda E]_{(n\lambda\mathbf{e},t)}^{C}) = \det\begin{bmatrix}Z[\{t\}^{c}] & n\lambda\mathbf{e}\\\mathbf{0} & n^{2}\lambda\end{bmatrix}$. Hence, $\det(Z + \lambda E) = n^{2}\lambda \det Z[\{t\}^{c}]$.

LEMMA 2.7. Let M be an $(n+1) \times n$ matrix of the form $[\vec{a}, Z]^T$ where $\vec{a} \in \mathbb{R}^n$ and Z is a zero magic square of order n. Then for $i \in \{3, \ldots, n+1\}$, det $M[\{i\}^c, \{1, \ldots, n\}] = (-1)^i \det M[\{2\}^c, \{1, \ldots, n\}].$

Proof. Since Z is a zero magic square, $-\mathbf{e}_i^T Z = \mathbf{e}_1^T Z + \dots + \mathbf{e}_{i-1}^T Z + \mathbf{e}_{i+1}^T Z + \dots + \mathbf{e}_n^T Z$, and hence the desired results can be obtained by using elementary row operations. \Box

THEOREM 2.8. Let Z be an $n \times n$ zero magic square. Let $\vec{a} = (a_1, a_2, \ldots, a_{n+1}) \in \mathbb{R}^{n+1}$ be zero-sum. For $\lambda \in \mathbb{R}$, det $(\mathcal{S}_Z \vec{a} + \lambda E) = -a_1^2 (n+2)^2 \lambda \det Z[\{1\}^c]$.

Proof. By using elementary row and column operations and $a_1 = -a_2 - a_3 - \cdots - a_{n+1}$, the determinant of $S_Z \vec{a} + \lambda E$ is

	$\begin{bmatrix} a_1 + \lambda \end{bmatrix}$	$a_2 + \lambda$	$a_3 + \lambda$	•••	$a_{n+1} + \lambda$	λ	-
	$a_2 + \lambda$					$-a_2 + \lambda$	
dat	$a_3 + \lambda$		$Z + \lambda E$			$-a_3 + \lambda$	
det						:	
	$a_{n+1} + \lambda$					$-a_{n+1} +$	λ
	λ	$-a_2 + \lambda$	$-a_3 + \lambda$	•••	$-a_{n+1} + \lambda$	$-a_1 + \lambda$	_
	$\begin{bmatrix} a_1 + \lambda \end{bmatrix}$	$a_2 + \lambda$	$a_3 + \lambda \cdot$	$\cdots a_r$	$a_{+1} + \lambda a_{-1}$	$1+2\lambda$	
	$a_2 + \lambda$	2 .	0	,		2λ	
	$a_3 + \lambda$	2	$Z + \lambda E$			2λ	
$= \det$:					:	
	$\begin{vmatrix} \cdot \\ a \\ +1 \\ + \\ \lambda \end{vmatrix}$					$\frac{1}{2\lambda}$	
	$\begin{vmatrix} a_{n+1} + \lambda \\ a_1 + 2\lambda \end{vmatrix}$	2λ	2λ .		2λ	$\frac{2\lambda}{4\lambda}$	
	$\begin{bmatrix} \alpha_1 + \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$		<u>-</u> , (-~~ _ ~ ? \]	
	$\begin{vmatrix} u_1 + \lambda \\ a_2 + \lambda \end{vmatrix}$	$u_2 + \lambda$	$u_3 + \lambda$		$u_{n+1} + \lambda$	$\begin{array}{c} u_1 + 2\lambda \\ 2\lambda \end{array}$	
	$\begin{vmatrix} a_2 + \lambda \\ a_2 + \lambda \end{vmatrix}$		$Z + \lambda E$			$\frac{2\lambda}{2\lambda}$	
$= \det$			5 1 112				
						:	
	$\begin{vmatrix} a_{n+1} + \lambda \\ (m+2) \end{pmatrix}$	(n + 2)	(m+2)		(m + 2)	2λ	
	$\left\lfloor \left(n+2\right) \right\rangle$	$(n+2)\lambda$	$(n+2)\lambda$		$(n+2)\lambda$	$2(n+2)\lambda$	
	$a_1 + \lambda$	$a_2 + \lambda$	$a_3 + \lambda$		$a_{n+1} + \lambda$	$(n+2)\lambda$	
	$a_2 + \lambda$					$(n+2)\lambda$	
= det	$a_3 + \lambda$		$L + \lambda E$			$(n+2)\lambda$	
						:	
	$a_{n+1} + \lambda$					$(n+2)\lambda$	
	$\lfloor (n+2)\lambda \rfloor$	$(n+2)\lambda$	$(n+2)\lambda$	•••	$(n+2)\lambda$	$(n+2)^2\lambda$	
=(n +	[a	$a_1 a_2 a_3$	$a_3 \cdots a_n$	n+1	0]		
	0	l_2		(0		
	$2)^2 dot$	l_3	Ζ		0		
	2) det				: '		
	a_r	<i>i</i> +1		(0		
	Ĺ	$\lambda \lambda \lambda$	λ	λ.	λ		

We write

$$\det(\mathcal{S}_{Z}\vec{a} + \lambda E) = (n+2)^{2}\lambda \det Q, \text{ where } Q = \begin{bmatrix} a_{1} & a_{2} & \cdots & a_{n} & a_{n+1} \\ a_{2} & & & \\ \vdots & & Z & \\ a_{n} & & & \\ a_{n+1} & & & \end{bmatrix}.$$

To determine the formula of the determinant of Q, we pick the first column of Q and find all of its cofactors. Let $\vec{b} = (a_2, a_3, \ldots, a_{n+1})$. For $k \geq 3$, $Q[\{k\}^c, \{1\}^c]$ can be viewed as the submatrix of $[\vec{b}, Z]^T$ by deleting the $(k-1)^{\text{th}}$ row of Z. By applying Lemma 2.7, det $Q[\{k\}^c, \{1\}^c] = (-1)^k \det Q[\{2\}^c, \{1\}^c]$. From the assumption of $\sum_{j\geq 2} a_j = -a_1$, we have

$$\det Q = \sum_{i=1}^{n+1} a_i (-1)^{i+1} \det Q[\{i\}^c, \{1\}^c]$$

= $-a_2 \det Q[\{2\}^c, \{1\}^c] + \sum_{i=3}^{n+1} a_i (-1)^{i+1} (-1)^i \det Q[\{2\}^c, \{1\}^c]$
= $-(a_2 + a_3 + \dots + a_{n+1}) \cdot \det Q[\{2\}^c, \{1\}^c] = a_1 \cdot \det([Z]^R_{(\vec{b},1)}).$

By applying elementary column operations, we get

$$\det([Z]^{R}_{(\vec{b},1)}) = \det \begin{bmatrix} -a_{1} & a_{3} \cdots & a_{n} \\ 0 & & \\ \vdots & Z[\{1\}^{c}] \\ 0 & & \end{bmatrix}.$$

Then det $Q = a_1(-a_1) \cdot \det Z[\{1\}^c].$

From Theorem 2.8 and Lemma 2.6, the following corollary is obtained immediately.

COROLLARY 2.9. For a zero-sum $\vec{a} = (a_1, \ldots, a_{n+1})$,

$$\det(\mathcal{S}_Z \vec{a} + \lambda E) = -a_1^2 \left(\frac{n+2}{n}\right)^2 \det(Z + \lambda E).$$

EXAMPLE 2.10. Let us consider the following nonsingular regular magic square of order 9,

$$M = \begin{bmatrix} 0 & 5 & 4 & 5 & 4 & 5 & 4 & 5 & 4 \\ 5 & 1 & 5 & 4 & 5 & 4 & 5 & 4 & 3 \\ 4 & 5 & 4 & 5 & 6 & 2 & 3 & 3 & 4 \\ 5 & 4 & 3 & 4 & 5 & 6 & 2 & 4 & 3 \\ 4 & 5 & 2 & 3 & 4 & 5 & 6 & 3 & 4 \\ 5 & 4 & 6 & 2 & 3 & 4 & 5 & 4 & 3 \\ 4 & 5 & 5 & 6 & 2 & 3 & 4 & 3 & 4 \\ 5 & 4 & 3 & 4 & 3 & 4 & 3 & 7 & 3 \\ 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 8 \end{bmatrix}$$

with the magic sum 36. This regular magic square is originally an extended matrix from the S-circulant matrix C of order 5 given in Example 2.3. To be precise, $M = S_{S_C \vec{a}} \vec{b} + 4E$, where $\vec{a} = (-3, 1, 0, 1, 0, 1)$ and $\vec{b} = (-4, 1, 0, 1, 0, 1, 0, 1)$. Using Corollary 2.9,

$$\det M = -(-4)^2 \left(\frac{9}{7}\right)^2 \left[-(-3)^2 \left(\frac{7}{5}\right)^2 \det(C+4E)\right] = 1166400,$$

showing that M is nonsingular.

Theorem 2.8 and Corollary 2.9 provide us the following result.

THEOREM 2.11. Let M be a nonsingular magic sq-corner square of order n. For a zero-sum $\vec{a} = (a_1, a_2, a_3, \ldots, a_{n+1})$ and $\lambda \in \mathbb{R}$, the sq-corner magic square $S_{Z_M}\vec{a} + \lambda E$ is nonsingular if and only if $a_1, \lambda \neq 0$.

Proof. By Theorem 2.1, $\det(Z_M + \lambda E) \neq 0$ if and only if $\lambda \neq 0$. By Corollary 2.9, $\det(S_{Z_M}\vec{a} + \lambda E) \neq 0$ if and only if $a_1 \neq 0$ and $\lambda \neq 0$.

Our construction here shows that starting from any nonsingular sq-corner magic square of order 3, by repeatedly choosing appropriate λ and \vec{a} , we can construct non-singular sq-corner magic square of any odd order, and similarly for the even order cases.

From Proposition 2.4, a noteworthy special case of Theorem 2.11 is the next corollary.

COROLLARY 2.12. For a regular zero magic square Z of odd order n with no repeated zero eigenvalue, the regular zero magic squares $S_Z(x, \vec{v}, y, \vec{v}J)$ of order n+2 have also no repeated zero eigenvalue when x is nonzero.

In conclusion, we construct a nonsingular sq-corner magic square $S_{Z_M}\vec{a} + \lambda E$ of order n + 2 when we know a nonsingular sq-corner magic square M of order n by choosing $\lambda \neq 0$ and $\vec{a} = (a_1, a_2, \ldots, a_{n+1})$ such that $a_1 \neq 0$. If we begin with

$$\begin{bmatrix} -13 & -4 & 8 & 9 \\ -4 & 7 & -9 & 6 \\ 8 & -9 & 11 & -10 \\ 9 & 6 & -10 & -5 \end{bmatrix},$$

by our construction, we can derive a sequence of nonsingular sq-corner magic squares of even orders: 4, 6, 8, 10, Also, if M is a nonsingular regular magic square of order 3, then this construction will provide a sequence of nonsingular regular magic squares of odd orders: 3, 5, 7, 9, Our construction here depends on the choices of λ and \vec{a} which gives another form of a nonsingular regular magic square different from those given in [2,3].

ACKNOWLEDGEMENT. This research was supported by SWU endowment fund.

The authors are also grateful to the referees whose suggestions through proofreading led to many improvements in the manuscript.

278

References

- A. R. Amir-Moéz, G. A. Fredricks, Characteristic polynomials of magic squares, Math. Mag., 57 (1984), 220–221.
- [2] C.Y.J. Chan, M.G. Mainkar, S.K. Narayan, J.D. Webster, A construction of regular magic squares of odd order, Linear Algebra Appl., 457 (2014), 293–302.
- [3] M. Lee, E. Love, S.K. Narayan, E. Wascher, d J. D. Webster, On nonsingular regular magic squares of odd order, Linear Algebra Appl., 437 (2012), 1346–1355.
- [4] L. Liu, Z. Gao, W. Zhao, On an open problem concerning regular magic squares of odd order, Linear Algebra Appl., 459 (2014), 1–12.
- [5] P. Loly, I. Cameron, W. Trump, D. Schindel, Magic square spectra, Linear Algebra Appl., 430 (2009), 2659–2680.
- [6] R. B. Mattingly, Even order regular magic squares are singular, Am. Math. Mon., 107 (2000), 777–782.
- [7] T. Rungratgasame, P. Amornpornthum, P. Boonmee, B. Cheko, N. Fuangfung, Vector spaces of new special magic squares: reflective magic squares, corner magic squares and skew-regular magic squares, Int. J. Math. Math. Sci., 9721725 (2016).

(received 13.02.2021; in revised form 10.01.2022; available online 14.08.2022)

Division of Mathematics, School of Science, Walailak University, Nakhon Si Thammarat 80161, Thailand

E-mail: jitjankarn@gmail.com

Department of Mathematics, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand

E-mail: thitarie@g.swu.ac.th