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Abstract. In this article, we present a new proof of the Napoleon’s theorem using algo-
rithmic commutative algebra and algebraic geometry. We also show that, by using the same
technique, several related theorems, with the same basic set of objects can be proved. Thus,
from the new proof of Napoleon’s theorem, we prove the Relative of Napoleon’s theorem
(result given by B. Grünbaum). Then, we present a new theorem related to Napoleon’s
theorem. In this theorem the existence of two more quadruplets of equilateral triangles
associated with a given triangle was established.

1. Introduction

Napoleon’s theorem from elementary geometry has a fascinating history. An earlier
known formulation of this claim was published in 1825 in the journal The Ladies’
Diary. W. Rutherford posed the problem, and according to all relevant data, neither
the result nor the proof has anything to do with Napoleon. For a fuller treatment
of the history of this theorem, we refer the reader to [6]. Nevertheless, the name
Napoleon’s theorem is generally accepted and will probably remain so.

Napoleon’s theorem was proved by using various techniques. A proof of the the-
orem using elementary geometry can be found in [2, 9]. Numerous proofs use vectors
and trigonometry, complex numbers, but also coordinate approach.

There are also various generalizations of this theorem. The most famous are
undoubtedly the Napoleon-Barlotty theorem [7] and the Petr-Douglas-Neumann the-
orem [4].

The discovery of Gröbner bases and the development of algorithms for their cal-
culation began in the 1980s. At the same time, algorithms for the automatic proof
of geometric theorems were developed. Some of the automatic theorem proving al-
gorithms use pseudodivision of polynomials, such as Wu’s method [3]. Modern, so-
phisticated methods like the Gröbner Cover, make it possible to discover hypotheses
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290 Napoleon’s theorem from the view point of Gröbner bases

and generalize theorems from geometry [8,10]. However, most of these algorithms are
based on the calculation of Gröbner bases.

Note that not all theorems in geometry are suitable for proving using the method
of commutative algebra. Even when possible, it is not an easy task.

The aim of our paper is to offer a new proof of Napoleon’s theorem using algo-
rithmic commutative algebra. We will also use the same method to prove the result
discovered by Branko Grünbaum in his paper [5]. Grünbaum established two more
quadruplets of equilateral triangles joining the basic construction from Napoleon’s
theorem and called this result a Relative of Napoleon’s theorem. We will also present
a new theorem that might be considered as a relative of Grünbaum’s theorem. Start-
ing from the construction from Napoleon’s theorem, two quadruplets of equilateral
triangles can be joined to a given triangle in different way. Of course, the new theorem
can also be proved by the same technique as the previous two.

2. Gröbner bases and theorem proving

The theory of Gröbner bases is one of the algorithmic methods used in automatic
geometric theorem proving for a long time. We consider the basic ideas underlying
this method. For a more detailed presentation of the method, we refer the reader
to [1].

We first introduce Cartesian coordinates in the Euclidean plane, which allows us
to translate geometric statements to the language of algebra. We place the observed
figure in the coordinate plane and assign coordinates to the vertices. We always
presume that some coordinates depend upon our choices of other points. Coordinate
of the points that are chosen arbitrarily are denoted by ui. Such points are called
free points. Coordinates of the points that depend upon our choices for free points
are denoted by xi.

Hypotheses and the conclusions of a large class of geometric theorems can be
expressed as polynomial equations whose variables are coordinates of points specified
in the statements. Such theorems are called admissible.

The process of hypotheses translation to the equations is not uniquely determined.
If we add to this the fact that the choice of free points is not unique either, we can
conclude that the same theorem can be translated into the language of equations in
several different ways. Thus, we can obtain complex systems of equations determined
by the theorem’s assumptions or simple systems with a minimum number of variables.

The typical form of hypotheses of admissible geometric theorem translated to the
language of polynomials in variables u1, . . . , um, xi, . . . , xn is the following:

h1(u1, . . . , um, xi, . . . , xn) =0

h2(u1, . . . , um, xi, . . . , xn) =0

...

hl(u1, . . . , um, xi, . . . , xn) =0.
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The conclusion of the theorem is expressed in the same form as polynomials in the
u1, . . . , um, xi, . . . , xn. It is sufficient to consider the case of one conclusion since
we can treat one at a time if there are more. Hence we write the conclusion as
g(u1, . . . , um, xi, . . . , xn) = 0. If we want to show that g is satisfied if the assumptions
h1, . . . , hl hold, then in the language of algebra, we want to show that g vanishes
whenever h1, . . . , hl do. The hypotheses define a variety, which we denote by V =
V(h1, . . . , hl). This leads to the following definition.

Definition 2.1. The conclusion g follows strictly from the hypotheses h1, . . . hl if
g ∈ I(V ) ⊆ R[u1, . . . , um, x1, . . . , xn], where V = V(h1, . . . , hl).

Since we are working over R, we do not have an effective method for determining
I(V ), but we do have the following useful criterion (see [1, Section 6.4.]).

Proposition 2.2. If g ∈
√

⟨h1, h2, . . . hl⟩, then g follows strictly from h1, . . . , hl.

In the described way, we have reduced the geometric problem to the problem of
belonging to a given ideal in a polynomial ring which is solved by applying the theory
of the Gröbner bases. Namely, only when the Gröbner bases generate the observed
ideal, the remainder of the division of a polynomial with ideal generators determines
whether or not the polynomial belongs to a given ideal.

For most geometric theorems, Definition 2.1 is too strict. There are two main
reasons for this. The first reason is that ideal I(V ) is an ideal in a ring of polynomials
with coefficients from a set of real numbers R. We do not have effective methods for
determining this ideal, but the different criteria can be used (see [1]). The second
reason is that the variety of ideals is reducible. Such varieties contain subvarieties of
degenerate cases in which the assertions of the theorem often do not hold or do not
make sense. We overcome this problem by isolating the corresponding subvarieties
on which the theorem is observed.

However, the theorems we are interested in, belong to the category of very rare
geometric theorems to which the Definition 2.1 refers.

3. Napoleon’s theorem and its relatives

We now use the described method of application of Gröbner bases to prove the famous
Napoleon’s theorem, Grünbaum’s theorem, and an entirely new theorem related to
Napoleon’s theorem.

We have already noted that there are several different ways a theorem can be
translated into the language of equations. We intend to obtain the most compact and
elegant form of the ideal generated by the hypotheses of the theorem. That is why
we need the following proposition.

Proposition 3.1. Given an arbitrary triangle ABC:
(i) Let the equilateral triangles BA1C, CB1A, AC1B be constructed not overlapping
ABC and let their centroids be denoted by T1, T2, T3. Then centroids of the triangles
ABC and T1T2T3 coincide.
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(ii) Let the equilateral triangles CA2B, AB2C, BC2A be constructed so that each one
overlaps ABC and let their centroids be denoted by S1, S2, S3. Then centroids of the
triangles ABC and S1S2S3 coincide.

Proof. Denote the midpoints of CB, AC, and AB by A′, B′ and C ′, respectively. Let
the equilateral triangles BA1C, CB1A and AC1B be constructed on the sides of the
triangle ABC externally and their centroids denoted by T1, T2, T3. Denote by T the
centroid of the triangle ABC (see Figure 1).

Figure 1: Proposition 2.2

We know that T is the centroid of the triangle ABC if and only if the following
equation holds

−→
TA+

−→
TB +

−→
TC = 0⃗. (1)

We have
−−→
TT1 +

−−→
TT2 +

−−→
TT3 =

−−→
TA′ +

−−→
A′T1 +

−−→
TB′ +

−−−→
B′T2 +

−−→
TC ′ +

−−→
C ′T3

=− 1

2

(−→
TA+

−→
TB +

−→
TC
)
+
(−−→
A′T1 +

−−−→
B′T2 +

−−→
C ′T3

)
. (2)

If we rotate the vectors
−−→
BC,

−→
CA and

−−→
AB by an angle of 90◦ clockwise, we get

vectors that have the same direction as the vectors
−−→
A′T1,

−−−→
B′T2 and

−−→
C ′T3, respectively.

Since T1, T2 and T3 are the centroids of equilateral triangles BA1C, CB1A and AC1B
it follows that∣∣∣−−→A′T1

∣∣∣ = √
3

6

∣∣∣−−→BC
∣∣∣ , ∣∣∣−−−→B′T2

∣∣∣ = √
3

6

∣∣∣−→CA
∣∣∣ , ∣∣∣−−→C ′T3

∣∣∣ = √
3

6

∣∣∣−−→AB
∣∣∣ .

From this we obtain
−−→
A′T1 +

−−−→
B′T2 +

−−→
C ′T3 = 0⃗. (3)
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We conclude from (1), (2) and (3) that
−−→
TT1 +

−−→
TT2 +

−−→
TT3 = 0⃗, hence T is centroid of

the triangle T1T2T3.

In the same manner we can see that (ii) holds. □

Theorem 3.2. Given an arbitrary triangle ABC.

(i) Let the equilateral triangles CA1B, CB1A, AC1B be constructed not overlapping
ABC and their centroids be denoted by T1, T2, T3. Then T1T2T3 is an equilateral
triangle.

(ii) Let the equilateral triangles CA2B, AB2C, BC2A be constructed so that each
overlaps ABC and let their centroids be denoted by S1, S2, S3. Then S1S2S3 is an
equilateral triangle.

(iii) If we denote by (ABC) the area of the triangle ABC, then the following equality
holds:

(ABC) = (T1T2T3)− (S1S2S3). (4)

Proof. Let us apply the technique described earlier to prove the theorem. First, we
write the hypotheses and the conclusion in the form of equations.

The properties of triangles are unchanged under isometric transformations. Hence
we can place the triangle so that the vertex A be at the origin and align the side AB
with the horizontal coordinate axis. The unit of length can be chosen arbitrarily, so
we assume that the coordinates of vertex B are given by (1, 0). The vertex C of the
triangle can be at any point (u1, u2), where u1, u2 are variables whose values are in R.
All other points are entirely determined by A, B and C.

Denote by A′, B′, C ′ midpoints of the BC, AC and AB (see Figure 2). Then we
have A′ (u1+1

2 , u2

2

)
, B′ (u1

2 , u2

2

)
, C ′ ( 1

2 , 0
)
.

Figure 2: Illustration of parts (i) and (ii) of the Theorem 3.2
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Denote by sAB , sBC and sAC the bisectors of the sides of triangle ABC. Their
equations are given by

sAB : x− 1

2
= 0

sAC : 2u1x+ 2u2y − u2
1 − u2

2 = 0

sBC : 2u2y − u2
2 − 2(1− u1)x+ (1− u2

1) = 0.

Let (x1, x2) be the coordinates of the vertex of an equilateral triangle constructed
over the side BC. This point belongs to the intersection of the bisector and the circle
whose centre is at point B and diameter is equal to BC. Therefore x1 and x2 satisfy
the system of equations:

s1

{
2(1− u1)x1 − 2u2x2 + u2

1 + u2
2 − 1 = 0

(x1 − 1)2 + x2
2 − (u1 − 1)2 − u2

2 = 0.

If (x3, x4) denote the coordinates of the centroid of this equilateral triangle, then they
satisfy the following system

s2

{
x1 + u1 + 1− 3x3 = 0

x2 + u2 − 3x4 = 0.

Similarly, we conclude that the coordinates (x5, x6) of the vertex of an equilateral
triangle constructed over the side AC satisfy the following system of equations:

s3

{
2u2x6 + 2u1x5 − u2

1 − u2
2 = 0

x2
5 + x2

6 − u2
1 − u2

2 = 0.

If we denote by (x7, x8) the coordinates of the centroid of that equilateral triangle,
then we have:

s4

{
x5 + u1 − 3x7 = 0

x6 + u2 − 3x8 = 0.

Note that each of the systems s1 and s3 defines two points. Namely, we can
construct an equilateral triangle from the outside and the inside over each side of
the triangle. Similarly, the systems s2 and s4 determine a pair of points that are the
centroids of the inner and outer constructed triangle. So, if we only use these systems,
we will not distinguish between the inner and outer equilateral triangle. Therefore,
we will use Proposition 3.1.

Also, due to the choice of vertices A and B of the triangle ABC, the coordinates of

equilateral triangles constructed over side AB are given by C1

(
1
2 ,−

√
3
2

)
, C2

(
1
2 ,

√
3
2

)
.

Thus, the coordinates of their centroids are entirely determined, T3

(
1
2 ,−

√
3
6

)
,

S3

(
1
2 ,

√
3
6

)
. Note that C1 is the vertex of the outer triangle, and C2 is the vertex of

the inner triangle constructed over AB if u2 > 0. If u2 < 0 the role of these vertices
is replaced with each other.

It follows from Proposition 2.2 that the centroids of the triangles ABC, T1T2T3
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and S1S2S3 coincide, hence we conclude that

s5

{
x3 + x7 − u1 − 1

2 = 0

x4 + x8 − u2 −
√
3
6 = 0,

s′5

{
x3 + x7 − u1 − 1

2 = 0

x4 + x8 − u2 +
√
3
6 = 0.

Statements (i) and (ii) of Napoleon’s theorems are identical, but the assumptions
differ. To prove them, we do not have to know which case refers to the outer and the
inner triangles. It suffices to prove that the assertions are valid in both cases.

We can now represent the hypotheses of the theorem by two collections of poly-
nomial equations in variables u1, u2, x1, . . . , x8 and form the appropriate ideals. The
ideal of hypotheses relating to triangles constructed not to overlap with the triangle
ABC (for u2 > 0) contains the equations of systems s1, s2, s3, s4 and s5. We will
denote this ideal by I1.

I1 = ⟨2(1− u1)x1 − 2u2x2 + u2
1 + u2

2 − 1, (x1 − 1)2 + x2
2 − (u1 − 1)2 − u2

2,

x1 + u1 + 1− 3x3, x2 + u2 − 3x4, 2u2x6 + 2u1x5 − u2
1 − u2

2, x
2
5 + x2

6 − u2
1 − u2

2,

x5 + u1 − 3x7, x6 + u2 − 3x8, x3 + x7 − u1 −
1

2
, x4 + x8 − u2 −

√
3

6
⟩.

The ideal of hypotheses relating to triangles constructed to overlap with the triangle
ABC (for u2 > 0) contains the equations of systems s1, s2, s3, s4 and s′5. We will
denote this ideal by I2.

I2 = ⟨2(1− u1)x1 − 2u2x2 + u2
1 + u2

2 − 1, (x1 − 1)2 + x2
2 − (u1 − 1)2 − u2

2,

x1 + u1 + 1− 3x3, x2 + u2 − 3x4, 2u2x6 + 2u1x5 − u2
1 − u2

2, x
2
5 + x2

6 − u2
1 − u2

2,

x5 + u1 − 3x7, x6 + u2 − 3x8, x3 + x7 − u1 −
1

2
, x4 + x8 − u2 +

√
3

6
⟩.

Using lex order with x1 > x2 > · · · > x8 > u1 > u2, the Gröbner bases for ideal I1 is
given by GBI1 = {f1, f2, f3, f4, f5, f6, f7, f8}, where

f1 = −
√
3u1 − 3u2 + 6x8, f5 = −

√
3 +

√
3u1 − 3u2 + 6x4,

f2 = −3u1 +
√
3u2 + 6x7, f6 = −3− 3u1 −

√
3u2 + 6x3,

f3 = −
√
3u1 − u2 + 2x6, f7 = −

√
3 +

√
3u1 − u2 + 2x2,

f4 = −u1 +
√
3u2 + 2x5, f8 = −1− u1 −

√
3u2 + 2x1.

Using the same order, we find the Gröbner basis GBI2 = {f ′
1, f

′
2, f

′
3, f4, f

′
5, f

′
6, f

′
7, f

′
8},

for the ideal I2, where

f ′
1 = −u1 +

√
3u2 − 2

√
3x8, f ′

5 = −1 + u1 +
√
3u2 − 2

√
3x4,

f ′
2 = 3u1 +

√
3u2 − 6x7, f ′

6 = 3 + 3u1 −
√
3u2 − 6x3,

f ′
3 = 3u1 −

√
3u2 + 2

√
3x6, f ′

7 = 3− 3u1 −
√
3u2 + 2

√
3x2,

f ′
4 = −u1 −

√
3u2 + 2x5, f ′

8 = −1− u1 +
√
3u2 + 2x1.
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The triangle T1T2T3 is equilateral if and only if T1T2 = T1T3 and T1T2 = T2T3.
Therefore, from statements (i) and (ii), the conclusion of the theorem translated into
the language of algebra, can be expressed by

g1 =(x3 − x7)
2 + (x4 − x8)

2 −
(
x7 −

1

2

)2

−

(
x8 +

√
3

6

)2

,

g2 =(x3 − x7)
2 + (x4 − x8)

2 −
(
x3 −

1

2

)2

−

(
x4 +

√
3

6

)2

.

Let us examine whether the polynomials g1 and g2 belong to the ideal I1. Therefore,
we divide the polynomials g1 and g2 by the set {f1, . . . , f8} which is the Gröbner basis
of the ideal I1. Since

g1 =− 1

3

(
1

2
√
3
− x4

)
f1 +

1

3

(
1

2
− x3

)
f2

+
1

3

(
1

4
√
3
−

√
3u1

4
− u2

4
+

x4

2

)
f5 +

1

3

(
1

4
− u1

4
+

√
3u2

4
+

x3

2

)
f6,

g2 =
1

3

(
u1

4
√
3
+

u2

4
− x4 +

x8

2

)
f1 +

1

3

(
u1

4
− u2

4
√
3
− x3 +

x7

2

)
f2

+
1

3

(
− 1

2
√
3
− u1

2
√
3
− u2

2

)
f5 +

1

3

(
1

2
− u1

2
+

u2

2
√
3

)
f6,

the remainder is zero, and we have g1, g2 ∈ I1.

Similarly,

g1 =
1

3

(
−1

2
+
√
3x4

)
f ′
1 +

1

3

(
−1

2
+ x3

)
f ′
2

+
1

3

(
1

4
− 3u1

4
+

√
3u2

4
−

√
3x4

2

)
f ′
5 +

1

3

(
−1

4
+

u1

4
+

√
3u2

4
− x3

2

)
f ′
6,

g2 =
1

3

(
u1

4
−

√
3u2

4
+
√
3x4 +

√
3x8

2

)
f ′
1 +

1

3

(
−u1

4
− u2

4
√
3
+ x3 −

x7

2

)
f ′
2

+
1

3

(
−1

2
− u1

2
+

√
3u2

2

)
f ′
5 +

1

3

(
−1

2
+

u1

2
+

u2

2
√
3

)
f ′
6,

so we conclude that g1, g2 ∈ I2.

Since I ⊆
√
I is satisfied for every ideal I, it follows from above that g1, g2 ∈

√
I1

and g1, g2 ∈
√
I2 . From Proposition 2.2 we now have that the conclusions g1 and g2

follow directly from hypotheses of the theorem. We have thus proved (i) and (ii) of
Theorem 3.2.

Let us prove that (iii) holds. As mentioned earlier, the role of triangles T1T2T3

and S1S2S3 changes depending on the value of u2. Therefore, condition (4) can be
replaced by the condition

(ABC)2 = ((T1T2T3)− (S1S2S3))
2
. (5)
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The triangle T1T2T3 is equilateral, and we can quickly compute its area if we know
the coordinates of its vertices. On the other hand, observing the polynomials from the
Gröbner bases GBI1, we see that each contains only one of the variables x1, x2, . . . , x8.
This allows us to simply determine the area of the triangle T1T2T3 depending only on
u1 and u2. It follows that

(T1T2T3) =
1

4
√
3

(
1− u1 + u2

1 +
√
3u2 + u2

2

)
. (6)

In the same manner, from the Gröbner bases GBI2 we have

(S1S2S3) =
1

4
√
3

(
1− u1 + u2

1 −
√
3u2 + u2

2

)
. (7)

Substituting (6) and (7) into (5), after simplifying, we obtain ((T1T2T3)− (S1S2S3))
2
=

u2
2

4 , which is the square of area of the triangle ABC. □

Remark 3.3. This theorem is one of the very rare theorems in elementary geometry
where conclusions directly follow from the hypotheses. The variety of the ideal of
hypotheses is irreducible. Although geometrically speaking, the theorem does not
make sense when the vertex C is on the x-axis (triangle ABC then becomes a line
segment) algebraically, the conclusions of the theorem are still valid. A similar situ-
ation occurs in the case when a given triangle ABC is equilateral. Then, the outer
Napoleon’s triangle degenerates into a point. However, algebraically, the conclusions
of the theorem remain satisfied.

Theorem 3.4. Given an arbitrary triangle ABC.
(i) Let the equilateral triangles AC1B, BA1C, CB1A be constructed not overlapping
ABC. Denote the midpoints of B1C1, C1A1 and A1B1 by A1, B1 and C1, respectively.
Then, C1AB1, A1BC1 and B1CA1 are equilateral triangles, and the centroids T ∗

1 ,
T ∗
2 and T ∗

3 of these triangles are vertices of an equilateral triangle.

(ii) Let the equilateral triangles AC2B, BA2C, CB2A be constructed so that each
overlaps ABC. Denote the midpoints of B2C2, C2A2 and A2B2 by A2, B2 and C2,
respectively. Then, B2AC2, C2BA2 and A2CB2 are equilateral triangles, and the
centroids S∗

1 , S
∗
2 and S∗

3 of these triangles are vertices of an equilateral triangle.

(iii) If we denote by (ABC) the area of the triangle ABC, then the following equality
holds: (ABC) = 4 ((T ∗

1 T
∗
2 T

∗
3 )− (S∗

1S
∗
2S

∗
3 )).

Proof. Note that in this theorem, we have the same basic construction as in Napoleon’s
theorem. Therefore, we can use the same ideals I1 and I2 generated by the hypotheses
of Theorem 3.2. We will keep the same notation for the coordinates of the vertices
and the essential points of the basic structure.

Denote by A1, B1, C1 the midpoints of the sides of triangle A1B1C1, and by T ∗
1 ,

T ∗
2 , T

∗
3 , the centroids of triangles C1AB1, A1BC1 and B1CA1, respectively. The

coordinates of these points can be expressed in terms of the coordinates of the points
of the base structure (see Figure 3).

A1

(
2x5 + 1

4
,
2x6 −

√
3

4

)
, B1

(
2x1 + 1

4
,
2x2 −

√
3

4

)
, C1

(
x1 + x5

2
,
x2 + x6

2

)
,
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T ∗
1

(
4x1 + 2x5 + 1

12
,
4x2 + 2x6 −

√
3

12

)
, T ∗

2

(
4x5 + 2x1 + 5

12
,
4x6 + 2x2 −

√
3

12

)
,

T ∗
3

(
2x5 + 2x1 + 4u1 + 2

12
,
2x6 + 2x2 − 2

√
3 + 4u2

12

)
.

Figure 3: Illustration of parts (i) and (ii) of the Theorem 3.4

The conclusion that the triangle C1AB1 is equilateral is expressed by the following
equations

c1 = (2x1 + 1)2 + (2x2 −
√
3)2 − (2x5 − 1)2 − (2x6 +

√
3)2

c2 = 4
(
(x1 + x5)

2 + (x2 + x6)
2
)
− (2x5 + 1)2 − (2x6 −

√
3)2.

As in the proof of Theorem 3.2, after dividing by the polynomials that form the
Gröbner bases of the ideal I1, we find

c1 =(−2
√
3−

√
3u1 − u2 − 2x6)f3 + (2− u1 +

√
3u2 − 2x5)f4

+ (−
√
3−

√
3u1 + u2 + 2x2)f7 + (3 + u1 +

√
3u2 + 2x1)f8,

c2 =(
√
3− 2 + 4x2)f3 + (2 + 4x1)f4

+ (
√
3 +

√
3u1 + 3u2 + 2x2)f7 + (1 + 3u1 −

√
3u2 + 2x1)f8.

It follows that c1, c2 ∈ I1 ⊆
√
I1. Thus, the conclusion that the triangle C1AB1 is

equilateral follows directly from the hypotheses of the theorem.
The rest of the proof runs as before. □

The following theorem provides the existence of two more quadruplets of equilat-
eral triangles associated with a given triangle ABC.

The basic construction of points in this theorem remains the same as in the previ-
ous two (see Figure 4). The conclusions of the theorem can be expressed in polynomial
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form with the same variables as before. We can use ideals I1 and I2 as ideals of hy-
potheses, and their Gröbner bases GBI1 and GBI2 that are already calculated.

So, the proof of the following theorem is omitted because it can be obtained in
the same way as the previous one.

Theorem 3.5. Given an arbitrary triangle ABC, denote midpoints of BC, CA and
AB by A′, B′ and C ′, respectively.

(i) Let the equilateral triangles AC1B, BA1C, CB1A be constructed not overlapping
ABC. Denote the midpoints of B1C1, C1A1 and A1B1 by A1, B1 and C1, respectively.
Then, A1B

′C ′, B1A
′C ′ and C1B

′A′ are equilateral triangles, and the centroids T ′
1,

T ′
2 and T ′

3 of these triangles are vertices of an equilateral triangle.

(ii) Let the equilateral triangles AC2B, BA2C, CB2A are constructed so that each
overlaps ABC. The midpoints of B2C2, C2A2 and A2B2 are denoted by A2, B2 and
C2 respectively. Then, A2B

′C ′, B2C
′A′ and C2A

′B′ are equilateral triangles, and the
centroids S′

1, S
′
2 and S′

3 of these triangles are vertices of an equilateral triangle.

(iii) If we denote by (ABC) the area of the triangle ABC, then the following equality
holds: (ABC) = 4 ((T ′

1T
′
2T

′
3)− (S′

1S
′
2S

′
3)).

Figure 4: Illustration of parts (i) and (ii) of the Theorem 3.5

Remark 3.6. The triangles T ∗
1 T

∗
2 T

∗
3 and S′

1S
′
2S

′
3 are obtained by completely different

constructions. Nevertheless, comparing the coordinates of their vertices we conclude
that they coincide. The same applies to triangles S∗

1S
∗
2S

∗
3 and T ′

1T
′
2T

′
3.
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4. Conclusion

The main advantage of the proof of Napoleon’s theorem, which we presented in this
paper, is that it can be used quickly and efficiently to prove theorems relating to
the same basic construction of points. We can join several objects such as Fermat’s
point, Napoleon’s hexagon, Fermat’s hexagon and others to the basic construction
of the outer or inner Napoleon’s triangles. The proof of the theorem via algorithmic
commutative algebra can be adapted to prove the existence and properties of the
above objects.

Napoleon’s theorem has many generalizations. It would certainly be interesting
to see how Grünbaum’s and Theorem 3.5 can be generalized to regular n-gones or in
some other direction.

It is easily shown algebraically that the pairs of triangles, whose vertices are the
centroids of the corresponding triangles, from Theorems 3.4 and 3.5, coincide. It
would be interesting, as an exercise, to give a purely geometric proof of this fact.

Acknowledgement. The symbolic algebra computations in the paper were per-
formed with the aid of Wolfram Mathematica 12.3.
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